«Нет ничего мягче и слабее воды, но все же нет ничего лучше для обработки твердых и крепких вещей».

Этот парадокс был сформулирован китайским мудрецом Лао-цзы в древнем тексте «Тао-Те-Кинг, или писание о нравственности». Действительно, способность воды омывать, успокаивать и питать контрастирует с неудержимой силой, примером этому является Ниагарский водопад, Большой каньон (он был высечен с течением веков рекой Колорадо) и цунами.

Точно так же парадоксально, что вода и крайне знакома – она составляет около двух третей нашего тела и покрывает три четверти планеты – и крайне загадочна. Хотя вам кажется, что вы ее отлично знаете, многие свойства воды вас очень удивят. А некоторые из них настолько странные, что до сих пор до конца не поняты наукой.

Гонка по нисходящей



Логично мыслящий человек предположит, что горячей воде понадобится больше времени, чтобы остудиться до температуры 0 градусов Цельсия и замерзнуть, чем холодной. Но странно то, что это не всегда правда. В 1963 году танзанийский учащийся по имени Эрасто Мпемба заметил, что в действительности горячая вода замерзает быстрее, чем холодная, когда две массы воды подвергаются воздействию одинаковых условий с температурой ниже нуля.

И никто не знает, почему.

Единственное допущение – это что эффект Мпембы появляется в результате процесса циркуляции тепла под названием конвекция. В контейнере теплая вода поднимается вверх, вытесняя холодную и создавая «утепленный верх». Ученые предполагают, что конвекция может каким-то образом ускорить процесс охлаждения, позволяя более теплой воде замерзать быстрее, чем холодной, несмотря на то, сколько ртутного столбика ей нужно преодолеть до точки замерзания.

Скользкая субстанция



Полтора века научных исследований так и не дали ответ, почему на льду можно упасть. Ученые единогласны в том, что тонкий слой жидкой воды на верху твердого льда становится причиной скользкости, а подвижность жидкости затрудняет движение, даже если лет тонкий. Но нет консенсуса относительного того, почему лед в отличие от большинства твердых веществ имеет такой слой.

Теоретики предполагают, что именно процесс скольжения, то есть контакт со льдом, заставляет таять его поверхность. Другие считают, что жидкий слой существует еще до того, как появляется скользящий предмет, и что он образуется благодаря внутреннему движению молекул поверхности.

Несомненно, вы ищете виновного, лежа на спине и кипя от злости, но, к сожалению, его еще предстоит найти.

Акванавт

На Земле кипящая вода создает тысячи крошечных пузырьков пара. В космосе же создается один гигантский колеблющийся пузырь.

Динамика жидкости столь сложна, что физики не могли предположить, что случится с кипящей водой при нулевой гравитации, пока в 1992 году не был проведен эксперимент на борту космического корабля. После этого физики решили, что упрощенный вид кипения в космосе, очевидно, связан с отсутствием конвекции и подъемной силы – оба этих явления образуются гравитацией . На Земле эти эффекты вызывают бурление, которое мы видим в чайнике.

Парящая жидкость

Когда капля воды падает на поверхность гораздо горячее ее точки кипения, она может гораздо дольше носиться по поверхности, чем вы ожидаете. Это эффект Лейденфроста, и он появляется из-за того, что когда нижний слой капли испаряется, газообразным молекулам воды в этом слое некуда деться, и их присутствие изолирует остаток капли и препятствует ее касанию горячей поверхности. Таким образом, капля существует несколько секунд до того, как полностью испариться.

Необыкновенная оболочка



Порой кажется, что вода отрицает законы физики, удерживаясь от распада, даже несмотря на попытки гравитации или даже давление тяжелых объектов разорвать ее.

Это сила поверхностного натяжения, свойство, которое делает внешний слой массы воды (и некоторых других жидкостей) вести себя, как гибкая оболочка. Поверхностное натяжение возникает из-за того, что молекулы воды слабо связаны друг с другом. Благодаря этому молекулы поверхности испытывают внутреннее усилие от молекул под ними. Вода останется целостной, пока разрывающая ее сила не превзойдет силу этих слабых связей и не прорвет поверхность.

Например, на фото выше скрепка для бумаги лежит на поверхности воды. Хотя металл плотнее воды и потому должен утонуть, поверхностное натяжение не позволяет скрепке прорвать поверхность воды.

Кипящий снег

Когда есть огромная разница температур между водой и внешним воздухом, происходит удивительный эффект – скажем, если вылить кастрюлю кипящей воды (100 градусов Цельсия) в воздух температурой минус 34 градуса Цельсия, то кипящая вода мгновенно превратиться в снег и разлетится.

Объяснение: крайне холодный воздух очень плотный, расстояние между его молекулами такое маленькое, что не остается достаточно места для переноса водяного пара. Кипящая вода, с одной стороны, очень активно испускает пар. Когда ее кидают в воздух, она распадается на капельки, из-за чего появляется еще больше пространства для распространения пара. Это представляет собой проблему. Испускается больше пара, чем может удержать воздух, и потому он распределяется, закрепляясь на микроскопических частицах в воздухе, как сода или кальций, и формирует кристаллы. Именно так и образуются снежинки.

Пустое пространство



Хотя твердое состояние почти любой субстанции плотнее, чем жидкое, так как атомы в твердых телах обычно плотно прилегают друг к другу, это не действует для Н2О. Когда вода замерзает, ее объем увеличивается на почти 8 процентов. Это странное свойство, позволяющее кубам льда и даже громадным айсбергам плавать.

Когда вода охлаждается до точки замерзания, существует меньше энергии, заставляющей молекулы скрепляться, и потому они могут формировать более прочные водородные связи со своими соседями и постепенно закрепляться. Этот же процесс заставляет все жидкости отвердевать. И, как и в других твердых телах, связи между молекулами льда действительно короче и прочнее, чем в жидкой воде; разница в том, что гексагональная структура кристаллов льда оставляет много пустого места, что делает лед в целом менее плотным, чем вода.

Избыток объема можно иногда увидеть в форме выступов на верху кубиков льда в вашей морозильной камере. Эти выступы состоят из избытка воды, выдавленной из кубика замораживающимся (и расширяющимся) льдом. В контейнере вода замерзает от боков и низа к центру и верху, и лед расширяется по направлению к центру.

Единственные в своем роде



Как говорится, нет двух одинаковых снежинок. В самом деле, за всю историю исследования снега каждая прекрасная структура была абсолютно уникальной. И вот почему: снежинка зарождается в форме простой гексагональной призмы. Во время падения она сталкивается с неповторяющимися условиями, меняющими их форму, включая разные температуры, уровни влажности и атмосферное давление. Этих переменных факторов достаточно для того, чтобы формирование кристаллов никогда не проходило дважды по одной схеме.

И что самое интересное относительно снежинок – это что все их шесть ответвлений вырастают абсолютно синхронно, создавая гексагональную симметрию, потому как каждое ответвление испытывает те же условия, что и все другие.

Откуда она?



Точное происхождение воды на нашей планете, покрывающей около 70 процентов поверхности, все еще остается загадкой для ученых. Они подозревают, что любая вода, накапливавшаяся на поверхности планеты во время ее формирования в течение 4,5 миллиардов лет, испарилась бы из-за интенсивного жара молодого Солнца. Это означает, что вода, которую мы сейчас имеем, должна была появиться позже.

Как? В течение периода под названием поздняя тяжелая бомбардировка, проходившего около 4 миллиардов лет назад, массивные объекты, возможно, из других систем падали на Землю и планеты Солнечной системы. Возможно, что такие объекты были наполнены водой, и эти столкновения могли доставить на нашу планету громадные объемы этого вещества.

Кометы – глыбы изо льда и камня с хвостами из испаряющегося льда, вращающиеся по длинным орбитам вокруг Солнца – вполне могут быть остатками того, что упало на планету. Однако есть проблема: удаленные исследования воды, испаряющейся с нескольких крупных комет, выявили, что они состоят из воды другого типа Н2О (содержат более тяжелый изотоп водорода), чем земная, потому такие кометы не могут быть источником всей нашей чудесной воды.

Аномальные физические свойства воды столь будничны и естественны, что обычно мы и не подозреваем об их существовании, совершенно забыв, что эти свойства - подарок природы всему живому на Земле.

О воде пишут много. Пишут ученые разных специальностей - физики, химики, геологи, биологи, астрономы. Сложилась даже определенная традиция в написании статен о воде начинать рассказ с описания необычных, аномальных свойств этой жидкости.

· Температура плавления и кипения воды

Самое удивительное и благостное для живой природы свойство воды - это ее способность при "нормальных" условиях быть жидкостью. Молекулы очень похожих на воду соединений (например, молекулы H 2 S или H 2 Se) намного тяжелее, а образуют при тех же условиях газ. Тем самым вода как будто противоречит закономерностям таблицы Менделеева, которая, как известно, предсказывает, когда, где и какие свойства веществ будут близки.

В нашем случае из таблицы следует, что свойства водородных соединений элементов (называемых гидридами), расположенных в одних и тех же вертикальных столбцах, с ростом массы атомов должны изменяться монотонно. Кислород - элемент шестой группы этой таблицы. В этой же группе находятся сера S (с атомным весом 32), селен Se (с атомным весом 79), теллур Te (с атомным весом 128) и поллоний Po (с атомным весом 209). Следовательно, свойства гидридов этих элементов должны меняться монотонно при переходе от тяжелых элементов к более легким, т.е. в последовательности H 2 Po → H 2 Te → H 2 Se → H 2 S → H 2 O. Что и происходит, но только с первыми четырьмя гидридами. Например, температуры кипения и плавления растут при увеличении атомного веса элементов. На рисунке крестиками отмечены температуры кипения этих гидридов, а кружочками - температуры плавления.

При уменьшении атомного веса температуры снижаются совершенно линейно. Область существования жидкой фазы гидридов становится все более "холодной", и если бы гидрид кислорода Н 2 О был нормальным соединением, похожим на своих соседей по шестой группе, то жидкая вода существовала бы в диапазоне от -80° С до -95° С. При более высоких температурах Н 2 О всегда была бы газом. К счастью для нас и всего живого на Земле, вода аномальна, она не признает периодической закономерности а следует своим законам.



Объясняется это довольно просто - большая часть молекул воды соединена водородными связями. Именно этими связями отличается вода от жидких гидридов H 2 S, H 2 Se и H 2 Te. Если бы их не было, то вода кипела бы уже при минус 95 °C. Энергия водородных связей достаточно велика, и разорвать их можно лишь при значительно более высокой температуре. Даже в газообразном состоянии большое число молекул H 2 O сохраняет свои водородные связи, объединяясь в димеры (H 2 O) 2 . Полностью водородные связи исчезают только при температуре водяного пара 600 °C.

Напомним, что кипение заключается в том, что пузыри пара образуются внутри кипящей жидкости. При нормальном давлении чистая вода кипит при 100 "С. В случае подведения тепла через свободную поверхность будет ускоряться процесс поверхностного испарения, но объёмного парообразования, характерного для кипения, не возникает. Кипение может быть осуществлено и понижением внешнего давления, так как в этом случае давление пара, равное внешнему давлению, достигается при более низкой температуре. На вершине очень высокой горы давление и соответственно точка кипения настолько понижаются, что вода становится непригодной для варки пищи - не достигается требуемая температуры воды. При достаточно высоком давлении воду можно нагреть настолько, что в ней может расплавиться свинец (327 °С), и все же она не будет кипеть.

Помимо сверхбольших температур кипения плавления (причем последний процесс требует слишком большой для такой простой жидкости теплоты плавления), аномален сам диапазон существования воды - сто градусов, на которые разнятся эти температуры, - довольно большой диапазон для такой низкомолекулярной жидкости, как вода. Необычайно велики пределы допустимых значении переохлаждения и перегрева воды - при аккуратном нагревании или охлаждении вода остается жидкой от -40 °C до +200 °C. Тем самым температурный диапазон, в котором вода может оставаться жидкой, расширяется до 240 °C.

При нагревании льда сначала температура его повышается, но с момента образования смеси воды со льдом температура будет оставаться неизменной до того момента, пока не расплавится весь лёд. Это объясняется тем, что тепло, подводимое к тающему льду, прежде всего расходуется только на разрушение кристаллов. Температура тающего льда остаётся неизменной до тех пор, пока не произойдёт разрушение всех кристаллов (см. скрытую теплоту плавления).

· Плотность воды и льда

Жизненно важной для всей биосферы является способность воды при замерзании уменьшать, а не увеличивать свою плотность (как это происходит почти со всеми остальными веществами). Висмут в этом отношении ведет себя, как вода, но он является одним из крайне редких исключений из общего правила. Впервые на это необычное свойство воды обратил внимание еще Г. Галилей. В самом деле, при переходе жидкости в твердое состояние молекулы вещества как будто должны располагаться теснее, а само вещество должно становиться, плотнее. Обычно вещества так и ведут себя. Но вода представляет исключение. Если взять обычную воду и, постепенно охлаждая ее, следить за изменением плотности то можно заметить, что в начале будет происходить совершенно обычный и естественный процесс - вода становится при охлаждении все плотнее и плотнее, и никаких отклонений от нормы мы не увидим до тех пор, пока не охладим воду до 4 °C. Ниже этой температуры вопреки общим представлениям вода вдруг становится легче, а замерзая она делается еще легче и образует лед, который плавает по поверхности воды. Замерзая, вода расширяется на 9% по отношению к прежнему объему. Это расширение может оказаться роковым для водопровода в случае наступления неожиданных морозов. Вода, замерзая в трубах, разорвет их.

Именно эта особенность воды, как известно предохраняет от сплошного промерзания в суровые зимы озера и пруды и тем самым спасает жизнь в этих водоемах. Осенний воздух охлаждает поверхностные слои озера, они становятся тяжелее и опускаются на дно. Озеро охлаждается. Но этот процесс идет лишь до тех пор, пока температура воды не достигнет 4 °C. Если теперь поверхностные слои станут еще холоднее, то они уже не опускаются на дно, так как плотность этих слоев меньше плотности глубинной воды, где сохраняется температура 4 °C. Отличия в плотности не велики - эти отличия проявляются лишь в четвертом знаке после запятой, - но этих отличий вполне достаточно, чтобы вода с температурой, близкой к 0 °C не могла проникнуть в глубину озера. Процесс охлаждения поверхностных слоев пойдет теперь быстрее и вскоре свинцовая гладь озера закроется первым хрупким льдом. Лед - плохой проводник тепла, надежно спрячет от страшных зимних морозов жизнь озера. Такой циркуляцией объясняется, почему на более мелких участках озера лед образуется раньше и в последствии он толще.

Разницей в температурах верхних и нижних слоев воды пользуются при работе земснарядов в зимних условиях. При помощи насосов из более глубоко части водоёма накачивают воду в поверхностные слои, чем предупреждают образование льда у работающего агрегата.

А вот морская вода (представляющая собой, как известно, рассол, в каждом литре которого содержится около 35 граммов солей) при охлаждении ведет себя совсем по-иному: наибольшая плотность у нее отмечается при более низких температурах, чем у пресной, а именно при -3,5 °C. Но замерзает морская вода при -1,9 °C, т.е. она превращается в лед не достигая максимальной плотности.

Если при плавлении льда объём полученной жидкости меньше, чем объём взятого льда, то можно сделать предположение, что переход льда в жидкое состояние будет облегчён, если лёд подвергнуть давлению, т.е. сближению кристаллов между собою. В самом деле, если оказать на лёд высокое давление, то температура плавления его понижается. Так, под давлением в 2045 атм (на 1 см 2) лёд будет плавиться при температуре -22 °C. Дальнейшее повышение давления уже не снижает температуры плавления, так как образуются новые формы льда с новыми свойствами. Способностью льда таять при более низкой температуре под большим давлением объясняется и то, что у ледников, толщина которых громадна, таяние у основания начинается раньше чем на поверхности.

· Теплоемкость воды

Количество тепла, необходимого для нагревания 1 г воды на 1°, достаточно, чтобы нагреть на 1° 9,25 г железа, 10,3 г меди. Аномально высокая теплоемкость воды превращает моря и океаны в гигантский термостат, сглаживающий суточные колебания температуры воздуха. Причем не только большие массы воды, как моря, способы сглаживать эти колебания, но и обычный водяной пар атмосферы. Резкие суточные колебания температуры в районах великих пустынь связаны с отсутствием водяного пара в воздухе. Сухой воздух пустыни почти лишен водяного пара, который мог бы сдержать быстрое ночное охлаждение накалившегося за день песка, поэтому температура воздуха может оказаться не больше 5 °C.

Теплоёмкостью воды объясняется явление различного нагревания воды и суши: так как теплоёмкость твёрдых пород, составляющих поверхность суши, и теплоёмкость воды резко отличаются, то для нагревания до одной и той же температуры воды и песка потребуется различное количество тепла, поэтому днём температура песка выше, чем воды. Вода охлаждается медленнее, чем твёрдые породы, поэтому ночью песок холоднее, чем вода. Как известно, нагревание воздуха происходит не непосредственно лучами солнца, а путём отдачи тепла от нагреваемой поверхности суши и воды. В летнее время создаётся значительная разница температур между поверхностью суши и воды, в силу чего происходит перемещение воздуха в направлении, определяемом разницей температур воды морей и океанов и прилегающей к ним суши.

Теплоемкость воды (1 кал), кстати, в 2 раза больше теплоемкости льда (0,5 кал), а для всех других веществ плавление почти не сказывается на этой величине.

Почему в случае воды эта величина демонстрирует столь большое значение? Удельная теплоемкость - это количество тепла, которое надо сообщить одному грамму вещества, чтобы увеличить его температуру на один градус Цельсия. Следовательно, вода требует для своего нагревания аномально большое количество тепла. Так как возрастание температуры означает увеличение средней скорости движения молекул, то на молекулярном языке большая теплоемкость воды означает, что ее молекулы очень инертны. Чтобы увеличить среднюю скорость молекул H 2 O, им нужно почему-то сообщить довольно много энергии, хотя сами молекулы по молекулярным масштабам сравнительно невелики. Все объясняется существованием водородных связей. Так как большая часть молекул связана в довольно большие комплексы, то отдельная "среднестатистическая" молекула H 2 O может увеличить свою кинетическую энергию одним из двух способов. Она может, во-первых, освободившись от всех своих водородных связей, начать двигаться самостоятельно. И во-вторых, ускорение всего комплекса молекул приведет, разумеется, к увеличению скорости каждой молекулы H 2 O, входящей в этот комплекс. Очевидно, что оба эти способа требуют значительных энергетических затрат, что и приводит к большому значению удельной теплоемкости воды.

· Скрытая теплота плавления и испарения воды

Если температура твердого тела повысилась до точки плавления или если жидкость достигла точки кипения, то наступает переходная фаза, как бы пауза, во время которой две фазы (твердая и жидкая или жидкая и газообразная) существуют одновременно. В течение этого промежутка времени, который продолжается до тех пор, пока твердое тело полностью не превратится в жидкость или жидкость в пар, поглощаемое тепло не вызывает никаких изменений в температуре тела. Это тепло называется скрытой теплотой, и его количество у различных веществ неодинаково. Скрытая теплота плавления, а также испарения, у воды необычайно велика; это обстоятельство имеет огромное значение для температуры поверхности земли. Употребляемое нами слово "скрытая" содержит уже некоторый намек на один физический закон, который необходимо подчеркнуть: тепло, поглощаемое водой, никуда не исчезает. Как известно, одним из основных законов природы является закон сохранения и превращения энергии. В самом общем виде этот закон формулируется так: энергия из одной формы переходит в другою (например, тепловая энергия может превращаться в механическую) не уничтожаясь; в замкнутой системе общее количество энергии остается постоянным. Этот закон подтверждается и приведенным нами случаем. Когда мы говорим, что вода обладает исключительной теплоемкостью, мы попросту констатируем, что вода как вещество может накопить больше тепловой энергии при меньшем движении атомов и молекул (а это как раз то, что измеряется температурой), чем любое другое широко распространенное вещество. Энергия остается на месте, в воде; она высвободится в виде тепла, когда температура окружающей среды понизится; в результате понижение температуры не будет таким резким. Вода, замерзая, отдает то же самое количество тепла, которое она поглощает при таянии льда. Мы знаем, что труднее переносить жаркую, но сырую погоду с температурой около 30°, чем сухую и ясную погоду с еще более высокой температурой. Причина этого двоякая: во-первых, наш пот, испаряясь, охлаждает нас, отнимая тепло с поверхности кожи и из окружающего воздуха, но он не может испаряться в насыщенной водяным паром атмосфере сырого дня; во-вторых, при конденсации водяного пара и превращении его в воду выделяется ровно столько тепла, сколько его было затрачено на испарение.

У воды самая высокая в мире минералов скрытая теплота испарения и скрытая теплота плавления. Чтобы выпарить воду из чайника, тепла потребуется в пять с половиной раз больше, чем для того, чтобы вскипятить его. Если бы не это ее свойство - даже в жару медленно испаряться, многие озера и реки летом пересыхали бы до дна. Для плавления льда нужно затратить большое количество теплоты. Скрытая теплота плавления (количество тепла, необходимое для расплавления 1 г льда при температуре 0°) составляет 79,4 кал. Вот почему весеннее таяние льда происходит медленно и спасает нас от больших половодий (хоть и не всегда).

· Диэлектрическая проницаемость воды

Основная электрическая характеристика любой среды - диэлектрическая проницаемость - в случае воды демонстрирует необычные для жидкости особенности. Во-первых, она очень велика, для статических электрических полей она равна 81, в то время как для большинства других веществ она не превышает значения 10. Если на любое вещество воздействовать переменным электрическим полем, то диэлектрическая проницаемость перестанет быть постоянной величиной, а зависит от частоты приложенного поля, сильно уменьшаясь для высокочастотных полей. Но диэлектрическая проницаемость воды уменьшается не только в переменных во времени полях, но также и в пространственно переменных полях, т.е. вода является нелокально поляризующейся средой.

Большое значение диэлектрической проницаемости объясняется особенностями молекулы H 2 O. Большая величина статической диэлектрической проницаемости воды ε =81 связана с тем, что вода - сильно полярная жидкость и поэтому обладает мягкой ориентационной степенью свободы (т.е. вращения молекулярных диполей). Каждая молекула воды обладает значительным дипольным моментом. В отсутствие электрического поля диполи ориентированы случайным образом, и суммарное электрическое поле, создаваемое ими, равно нулю. Если воду поместить в электрическое поле, то диполи начнут переориентироваться так, чтобы ослабить приложенное поле. Такая картина наблюдается и в любой другой полярной жидкости, но вода благодаря большому значению дипольного момента молекул H 2 O способна очень сильно (в 80 раз) ослабить внешнее поле. Так реагирует вода на внешнее электрическое поле, если приложенное поле постоянно по времени и слабо меняется (или вообще не меняется) в пространстве, заполняемом водой. В переменных электрических полях диэлектрическая проницаемость воды уменьшается с ростом частоты приложенного поля, достигая значения 4-5 для частот больше 10 12 Гц. В 1929 г. П. Дебай предложил описывать реакцию воды на внешнее электрическое поле с помощью комплексной диэлектрической проницаемости:

ε(ω) = ε ∞ + (ε ο - ε ∞)/(1 + i ω τ)

где ω - частота внешнего электрического поля, i - мнимая единица, τ - характерное время релаксации, ε ∞ ≈ 4÷5 - диэлектрическая проницаемость воды при максимально высокой частоте внешнего поля.

Хотя при выводе своей формулы Дебай использовал довольно искусственную модель структуры воды, это выражение хорошо соответствует экспериментальным данным. Как видим, с ростом частоты внешнего поля диэлектрическая проницаемость резко падает. Молекулярное объяснение этого явления довольно просто. Любые индивидуальные движения молекулы H 2 O сильно ограничены водородными связями. В переменных электрических полях молекулярные диполи стремятся отследить меняющееся поле. При небольших частотах это им удается. Однако по мере увеличения частоты ориентироваться становится все труднее и труднее. В конце концов диполи вообще перестают реагировать на внешнее поле. Диэлектрическая проницаемость теперь определяется лишь быстрым атомно-молекулярным механизмом перераспределения электрического заряда, который присущ всем веществам. Такие механизмы действуют в воде и в случае постоянных полей, но их вклад в общую величину диэлектрической проницаемости невелик, всего 4-5 единиц.

· Поверхностное натяжение воды

Вы видите его проявление всякий раз, когда наблюдаете, как вода медленно капает из водопроводного крана. Из крана появляется водяная пленка и начинает растягиваться, словно тонкая резиновая оболочка, под тяжестью заключенной в ней жидкости. Эта пленка, прикрепленная к отверстию крана, постепенно удлиняется, пока ее вес не станет вдруг слишком большим. Пленка, однако, не рвется, как порвалась бы резника при перегрузке. Вместо этого она "соскальзывает" с копчика крана и, как бы охватив небольшое количество воды, образует свободно падающую капельку. Несомненно, вы не раз наблюдали, что падающие капельки принимают почти шарообразную форму. Если бы не было внешних сил, они были бы строго шарообразны. То, что вы наблюдаете, является одним из проявлений необычной способности воды "стягиваться", "самоуплотняться", или, другими словами, ее способность к сцеплению (когезии). Капля воды, капающая из крана, стягивается в крошечный шар, а шар из всех возможных геометрических тел обладает наименьшей поверхностью при данном объеме.

Вследствие сцепления на поверхности воды образуется натяжение, и для того, чтобы разорвать поверхность воды, требуется физическая сила, причем, как это ни странно, довольно значительная. Ненарушенная водная поверхность может удерживать на себе предметы, которые значительно "тяжелее" воды, например стальную иголку или лезвие бритвы, или некоторых насекомых, которые скользят по воде, словно это не жидкость, а твердое тело.

Из всех жидкостей, кроме ртути, у воды самое большое поверхностное натяжение.

Внутри жидкости притяжение молекул друг к другу уравновешено. А на поверхности нет. Молекулы воды, которые лежат глубже, тянут вниз самые верхние молекулы. Поэтому капля воды как бы стремится максимально сжаться. Стягивают ее силы поверхностного натяжения.

Физики точно рассчитали, какую гирю надо подвесить к столбику воды толщиной в три сантиметра, чтобы разорвать его. Гиря потребуется огромная - больше ста тонн! Но это когда вода исключительно чистая. В природе такой воды нет. Всегда в ней что-то растворено. Пусть хоть немного, но чужеродные вещества разрывают звенья в прочной цепи молекул воды, и силы сцепления между ними уменьшаются.

Если нанести на стеклянную пластинку капли ртути, а на парафиновую - капли воды, то очень маленькие капельки будут иметь форму шара, а более крупные окажутся слегка сплюснутыми под действием силы тяжести.

Подобное явление объясняется тем, что между ртутью и стеклом, а также между парафином и водой возникают силы притяжения (адгезия) меньшие чем между самими молекулами (когезия). При соприкосновении воды с чистым стеклом, а ртути с металлической пластинкой мы наблюдаем почти равномерное распределение того и другого вещества на пластинках, так как силы притяжения между стеклом и молекулами воды, металлом и молекулами ртути больше, чем притяжение между отдельными молекулами воды и ртути. Такое явление, когда жидкость равномерно располагается на поверхности твёрдого тела, называется смачиванием. Значит, вода смачивает чистое стекле, но не смачивает парафин. Смачиваемость в частном случае может показать степень загрязнённости поверхности. Например, на чисто вымытой тарелке (фарфоровой, фаянсовой) вода растекается ровным слоем, в чисто вымытой колбе стенки равномерно покрываются водой, если же вода на поверхности принимает форму капель, то это указывает, что поверхность посуды покрыта тонким слоем вещества, которое не смачивает вода, чаще всего жиром.

Примеры строение воды:

1. Кристалл дистиллированной воды, не подвергнутый никакому воздействию.

2. Ключевая вода.

3. Антарктический лёд.

4. Так выглядит кристалл воды, прослушавшей «Пастораль» Бетховена.

5. Кристалл, образовавшийся после прослушивания тяжелого металлического рока.

6. Кристалл после воздействия слов «Ты - дурак» очень похож на кристалл после воздействия музыки “тяжелого рока”.

7. Слово «Ангел».

8. Слово «Дьявол».

9. Вода получила просьбу «Сделать это».

10. Вода получила приказ «Сделай это».

11. Слова «Ты надоел мне. Я убью тебя».

12. Вода получала электромагнитные излучения любви и благодарности

17. Слова «Любовь и благодарность», произнесенные на английском языке.

18. Слова «Любовь и благодарность», произнесенные на японском языке.

19. Слова «Любовь и благодарность», произнесенные на немецком языке











Амфифильные вещества:

Всем известно, что рыбы комфортно чувствуют себя только в воде, а большинство кошек относится к водным процедурам с явным недовольством, зато такие животные, как лягушка или тритон, вполне способны как плавать в реке или луже, так и свободно передвигаться по земле! Эти животные получили название земноводных или амфибий. Свои амфибии, способные растворяться как в гидрофильных, так и гидрофобных сами молекулы амфифильных соединений похожи на головастика: они состоят из длинного углеводородного хвоста (построенного обычно более чем из десяти СН 2 -групп), обеспечивающего растворимость в неполярных средах, и полярной головы, ответственной за гидрофильные свойства. Таким образом, амфифильные соединения одновременно «любят» и воду (то есть являются гидрофильными), и неполярные растворители (проявляют гидрофобные свойства).

В зависимости от типа гидрофильной группы выделяют амфифильные соединения, несущие заряженную катионную или анионную функциональную группу, и амфифильные соединения с незаряженной функциональной группой. Абсолютное большинство известных органических соединений несут более чем одну заряженную функциональную группу. Примером таких веществ являются макромолекулярные соединения - белки, липопротеиды, блок-сополимеры и т.д. Наличие у молекул белка третичной структуры, образующейся в результате внутримолекулярных взаимодействий функциональных групп (полярных или неполярных) между собой, само по себе демонстрирует амфифильную природу этих соединений.

Другим примером амфифильных соединений является большинство лекарственных средств, молекулы которых сочетают в себе набор определенных функциональных групп, необходимых для эффективного связывания с рецептором-мишенью.

Роль амфифильных соединений в получении наноматериалов и нанотехнологических продуктов сложно переоценить. Амфифильные соединения часто являются поверхностно-активными веществами. Их молекулы «самоорганизуются» (самособираются) на различных границах раздела, образуя тонкие пленки самособирающихся монослоев толщиной всего в одну молекулу, формируют «мицеллярные» системы.

Амфифильные соединения играют особую роль в живой природе. Ни одно животное или растение не может существовать без них! Именно из амфифильных молекул состоит мембрана клетки, которая отделяет живой организм от враждебной внешней среды. Именно такие молекулы составляют внутренние органнелы клетки, участвуют в процессе ее деления, задействованы в обмене веществ с окружающей средой. Амфифильные молекулы служат нам пищей и образуются в наших организмах, участвуют во внутренней регуляции и цикле желчных кислот. Наш организм содержит более 10% амфифильных молекул. Именно поэтому синтетические поверхностно-активные вещества могут быть опасны для живых организмов и, например, способны растворить мембрану клетки и привести к ее гибели.

Чистая вода представляет собой бесцветную прозрачную жидкость. Плотность воды при переходе ее из твердого состояния в жидкое не уменьшается, как почти у всех других веществ, а возрастает. При нагревании воды от 0 до 4°С плотность ее также увеличивается. При 4°С вода имеет максимальную плотность, и лишь при дальнейшем нагревании ее плотность уменьшается.


Если бы при понижении температуры и при переходе из жидкого состояния в твердое плотность воды изменялась так же, как это происходит у подавляющего большинства веществ, то при приближении зимы поверхностные слои природных вод охлаждались. бы до 0°С и опускались на дно, освобождая место более теплым слоям, и так продолжалось бы до тех пор, пока вся масса водоема не приобрела бы температуру 0°С. Далее вода начинала бы замерзать, образующиеся льдины погружались бы на дно и водоем промерзал бы на всю его глубину. При этом многие формы жизни в воде были бы невозможны. Но так как наибольшей плотность вода достигает при 4 °С, то перемещение ее слоев, вызываемое охлаждением, заканчивается при достижении этой температуры. При дальнейшем понижении температуры охлажденный слой, обладающий меньшей плотностью, остается на поверхности, замерзает и тем самым защищает лежащие ниже слои от дальнейшего охлаждения и замерзания.


Большое значение в жизни природы имеет и тот факт, что вода. обладает аномально высокой теплоемкостью , поэтому в ночное время, а также при переходе от лета к зиме вода остывает медленно, а днем или при переходе от зимы к лету так же медленно нагревается, являясь, таким образом, регулятором температуры на земном шаре.


В связи с тем, что при плавлении льда объем, занимаемый водой, уменьшается, давление понижает температуру плавления льда. Эта вытекает из принципа Ле Шателье. Действительно, пусть. лед и жидкая вода находятся в равновесии при О°С. При увеличении давления равновесие, согласно принципу Ле Шателье, сместится в сторону образования той фазы, которая при той же температуре занимает меньший объем. Этой фазой является в данном случае жидкость. Таким образом, возрастание давления при О°С вызывает превращение льда в жидкость, а это и означает, что температура плавления льда снижается.


Молекула воды имеет угловое строение; входящие в ее состав ядра образуют равнобедренный треугольник, в основании которого находятся два протона, а в вершине - ядро атома кислорода, Межъядерные расстояния О-Н близки к 0,1 нм, расстояние между ядрами атомов водорода равно примерно 0,15 нм. Из восьми электронов, составляющих внешний электронный слой атома кислорода в молекуле воды две электронные пары образуют ковалентные связи О-Н, а остальные четыре электрона представляют собой две неподеленных электронных пары.

Атом кислорода в молекуле воды находится в состоянии -aea?eaecaoee. Поэтому валентный угол НОН (104,3°) близок к тетраэдрическому (109,5°). Электроны, образующие связи О-Н, смещены к более электроотрицательному атому кислорода. В результате атомы водорода приобретают эффективные положительные заряды, так что на этих атомах создаются два положительных полюса. Центры отрицательных зарядов неподеленных электронных пар атома кислорода, находящиеся на гибридных - орбиталях, смещены относительно ядра атома и создают два отрицательных полюса.

Молекулярная масса парообразной воды равна 18 и отвечает ее простейшей формуле. Однако молекулярная масса жидкой воды, определяемая путем изучения ее растворов в других растворителях оказывается более, высокой. Это свидетельствует о том, что в жидкой воде происходит ассоциация молекул, т. е. соединение их в более сложные агрегаты. Такой вывод подтверждается и аномально высокими значениями температур плавления и кипения воды. Ассоциация молекул воды вызвана образованием между ними водородных связей.


В твердой воде (лед) атом кислорода каждой молекулы участвует в образовании двух водородных связей с соседними молекулами воды согласно схеме, в которой водородные связи показаны пунктиром. Схема объемной структуры льда изображена на рисунке. Образование водородных связей приводит к такому расположению молекул воды, при котором они соприкасаются друг с другом своими разноименными полюсами. Молекулы образуют слои, причем каждая из них связана с тремя молекулами, принадлежащими к тому же слою, и с одной - из соседнего слоя. Структура льда принадлежит к наименее плотным структурам, в ней существуют пустоты, размеры наименее плотным структурам, в ней существуют пустоты, размеры которых несколько превышают размеры молекулы.


При плавлении льда его структура разрушается. Но и в жидкой воде сохраняются водородные связи между молекулами: образуются ассоциаты - как бы обломки структуры льда, - состоящих из большего или меньшего числа молекул воды. Однако в отличит от льда каждый ассоциат существует очень короткое время: постоянно происходит разрушение одних и образование других агрегатов. В пустотах таких «ледяных» агрегатов могут размещаться одиночные молекулы воды; при этом упаковка молекул воды становится более плотной. Именно поэтому при плавлении льда объем, занимаемый водой, уменьшается, а ее плотность возрастает.


По мере нагревания воды обломков структуры льда в ней становится все меньше, что приводит к дальнейшему повышению плотности воды. В интервале температур от 0 до 4°С этот эффект преобладает над тепловым расширением, так что плотность воды продолжает возрастать. Однако при нагревании выше 4°С преобладает влияние усиления теплового движения молекул и плотность воды уменьшается. Поэтому при 4°С вода обладает максимальной плотностью.


При нагревании воды часть теплоты затрачивается на разрыв водородных связей (энергия разрыва водородной связи в воде составляет примерно 25 кДж/моль). Этим объясняется высокая теплоемкость воды.


Водородные связи между молекулами воды полностью разрываются только при переходе воды в пар.

Агрегатные состояния воды

Физические свойства воды аномальны, что объясняется приведёнными выше данными о взаимодействии между молекулами воды. Вода – единственное вещество на Земле, которое существует в природе во всех трёх агрегатных состояниях – жидком, твёрдом и газообразном.

Плотность воды в твёрдом и жидком состоянии

Плавление льда при атмосферном давлении сопровождается уменьшением объёма на 9%. Плотность жидкой воды при температуре, близкой к нулю, больше, чем у льда. При 00С 1 грамм льда занимает объём 1,0905 кубических сантиметров, а 1 грамм жидкой воды занимает объём 1,0001 кубических сантиметров. И лёд плавает, оттого и не промерзают обычно насквозь водоёмы, а лишь покрываются ледяным покровом.


Температурный коэффициент объёмного расширения льда и жидкой воды отрицателен при температурах соответственно ниже - 2100 С и + 3,980 С.

Теплоёмкость воды

Теплоёмкость при плавлении возрастает почти вдвое и в интервале от 00 С до 1000 С почти не зависит от температуры

Температуры плавления и кипения воды в сравнении с другими водородными соединениями элементов главной подгруппы YI группы таблицы Менделеева

Вода имеет незакономерно высокие температуры плавления и кипения в сравнении с другими водородными соединениями элементов главной подгруппы VI группы таблицы Менделеева.

Диаграмма состояния воды

Диаграмма состояния (или фазовая диаграмма) представляет собой графическое изображение зависимости между величинами, характеризующими состояние системы, и фазовыми превращениями в системе (переход из твердого состояния в жидкое, из жидкого в газообразной и т. д.). Диаграммы состояния широко применяются в химии. Для однокомпонентных систем обычно используются диаграммы состояния, показывающие зависимость фазовых превращений от температуры и давления; они называются диаграммами состояния в координатах Р-Т.


На рисунке приведена в схематической форме (без строгого соблюдения масштаба) диаграмма состояния воды. Любой точке на диаграмме отвечают определенные значения температуры и давления.


Диаграмма показывает те состояния воды, которые термодинамически устойчивы при определенных значениях температуры и давления. Она состоит из трех кривых, разграничивающих все возможные температуры и давления на три области, отвечающие льду, жидкости и пару.


Рассмотрим каждую из кривых более подробно. Начнем с кривой ОА (рис. 3), отделяющей область пара от области жидкого состояния. Представим себе цилиндр, из которого удален воздух, после чего в него введено некоторое количество чистой, свободной от растворенных веществ, в том числе от газов, воды; цилиндр снабжен поршнем, который закреплен в некотором положении. Через некоторое время часть воды испарится и над ее поверхностью будет находиться насыщенный пар. Можно измерить его давление и убедиться в том, что оно не изменяется с течением времени и не зависит от положения поршня. Если увеличить температуру всей системы и вновь измерить давление насыщенного пара, то окажется, что оно возросло. Повторяя такие измерения при различных температурах, найдем зависимость давления насыщенного водяного пара от температуры. Кривая ОА представляет собой график этой зависимости: точки кривой показывают те пары значений температуры и давления, при которых жидкая вода и водяной пар находятся в равновесии друг с другом - сосуществуют. Кривая ОА называется кривой равновесия жидкость-пар или кривой кипения. В таблице приведены значения давления насыщенного водяного пара при нескольких температурах.



рис.3(сверху)


Температура Давление насыщенного пара
кПа мм рт. ст.
0 0,61 4,6
10 1,23 9,2
20 2,34 17,5
30 4,24 31,8 40 7,37 55,3 50 12,3 92,5 60 19,9 149 70 31,2 234 80 47,4 355 100 101,3 760

Попытаемся осуществить в цилиндре давление, отличное от равновесного, например, меньшее, чем равновесное. Для этого освободим поршень и поднимем его. В первый момент давление в цилиндре, действительно, упадет, но вскоре равновесие восстановится: испарится добавочно некоторое количество воды и давление вновь достигнет равновесного значения. Только тогда, когда вся вода испарится, можно осуществить давление, меньшее, чем равновесное. Отсюда следует, что точкам, лежащим на диаграмме состояния ниже или правее кривой ОА, отвечает область пара. Если пытаться создать давление, превышающее равновесное, то этого можно достичь, лишь опустив поршень до поверхности воды. Иначе говоря, точкам диаграммы, лежащим выше или левее кривой ОА, отвечает область жидкого состояния.


До каких пор простираются влево области жидкого и парообразного состояния? Наметим по одной точке в обеих областях и будем двигаться от них горизонтально влево. Этому движению точек на диаграмме отвечает охлаждение жидкости или пара при постоянном давлении. Известно, что если охлаждать воду при нормальном атмосферном давлении, то при достижении 0°С вода начнет замерзать. Проводя аналогичные опыты при других давлениях, придем к кривой ОС, отделяющей область жидкой воды от области льда. Эта кривая - кривая равновесия твердое состояние - жидкость, или кривая плавления,- показывает те пары значений температуры и давления, при которых лед и жидкая вода находятся в равновесии.


Двигаясь по горизонтали влево в области пара (в нижнею части диаграммы), аналогичным образом придем к кривой 0В. Это-кривая равновесия твердое состояние-пар, или кривая сублимации. Ей отвечают те пары значений температуры к давления, при которых в равновесии находятся лед и водяной пар.


Все три кривые пересекаются в точке О. Координаты этой точки-это единственная пара значений температуры и давления,. при которых в равновесии могут находиться все три фазы: лед, жидкая вода и пар. Она носит название тройной точки.


Кривая плавления исследована до весьма высоких давлений, В этой области обнаружено несколько модификаций льда (на диаграмме не показаны).


Справа кривая кипения оканчивается в критической точке. При температуре, отвечающей этой точке,-критической температуре- величины, характеризующие физические свойства жидкости и пара, становятся одинаковыми, так что различие между жидким и парообразным состоянием исчезает.


Существование критической температуры установил в 1860 г. Д. И. Менделеев, изучая свойства жидкостей. Он показал, что при температурах, лежащих выше критической, вещество не может находиться в жидком состоянии. В 1869 г. Эндрьюс, изучая свойства газов, пришел к аналогичному выводу.


Критические температура и давление для различных веществ различны. Так, для водорода = -239,9 °N, = 1,30 МПа, для хлора =144°С, =7,71 МПа, для воды = 374,2 °С, =22,12 МПа.


Одной из особенностей воды, отличающих ее от других веществ, является понижение температуры плавления льда с ростом давления. Это обстоятельство отражается на диаграмме. Кривая плавления ОС на диаграмме состояния воды идет вверх влево, тогда как почти для всех других веществ она идет вверх вправо.


Превращения, происходящие с водой при атмосферном давлении, отражаются на диаграмме точками или отрезками, расположенными на горизонтали, отвечающей 101,3 кПа (760 мм рт. ст.). Так, плавление льда или кристаллизация воды отвечает точке D, кипение воды-точке Е, нагревание или охлаждение воды - отрезку DE и т. п.


Диаграммы состояния изучены для ряда веществ, имеющих научное или практическое значение. В принципе они подобны рассмотренной диаграмме состояния воды. Однако на диаграммах состояния различных веществ могут быть особенности. Так, известны вещества, тройная точка которых лежит при давлении, превышающем атмосферное. В этом случае нагревание кристаллов при атмосферном давлении приводит не к плавлению этого вещества, а к его сублимации - превращению твердой фазы непосредственно в газообразную.

Тяжелая вода

При электролизе обычной воды, содержащей наряду с молекулами Н О также незначительное количество молекул D O, образованных тяжелым изотопом водорода, разложению подвергаются преимущественно молекулы Н О. Поэтому при длительном электролизе воды остаток постепенно обогащается молекулами D O. Из такого остатка после многократного повторения электролиза в 1933 г. впервые удалось выделить небольшое количество воды состоящей почти на 100% из молекул D О и получившей название тяжелой воды.


По своим свойствам тяжелая вода заметно отличается от обычной воды (таблица). Реакции с тяжелой водой протекают медленнее, чем с обычной. Тяжелую воду применяют в качестве замедлителя нейтронов в ядерных реакторах.


Изотопный состав

Существуют девять устойчивых изотопных разновидностей воды. Содержание их в пресной воде в среднем следующее:


1Н216О – 99,73%, 1Н218О – 0,2%,


1Н217О – 0,04%, 1H2Н16О – 0,03%. Остальные пять изотопных разновидностей присутствуют в воде в ничтожно малых количествах.