Основным свойством жидкости, отличающим её от других агрегатных состояний, является способность неограниченно менять форму под действием касательных механических напряжений, даже сколь угодно малых, практически сохраняя при этом объём. Вещество в жидком состоянии существует в определённом интервале температур, ниже которого переходит в твердое состояние(происходит кристаллизация либо превращение в твердотельное аморфное состояние - стекло), выше - в газообразное(происходит испарение). Границы этого интервала зависят от давления.

3.1Физич.св-ва жидкостей:

ü Текучесть (Основным свойство.В отличие от пластичных твёрдых тел, жидкость не имеет предела текучести: достаточно приложить сколь угодно малую внешнюю силу, чтобы жидкость потекла.

ü Сохранение объёма. Одним из характерных свойств жидкости является то, что она имеет определённый объём (при неизменных внешних условиях). Жидкость чрезвычайно трудно сжать механически, поскольку, в отличие от газа, между молекулами очень мало свободного пространства. Жидкости обычно увеличивают объём (расширяются) при нагревании и уменьшают объём (сжимаются) при охлаждении.

ü Вязкость. Кроме того, жидкости (как и газы) характеризуются вязкостью. Она определяется как способность оказывать сопротивление перемещению одной из частей относительно другой - то есть как внутреннее трение.Когда соседние слои жидкости движутся относительно друг друга, неизбежно происходит столкновение молекул дополнительно к тому, которое обусловлено тепловым движением. Жидкость в сосуде, приведённая в движение и предоставленная самой себе, постепенно остановится, но её температура повысится.

ü Образование свободной поверхности и поверхностное натяжение .Из-за сохранения объёма жидкость способна образовывать свободную поверхность. Такая поверхность является поверхностью раздела фаз данного вещества: по одну сторону находится жидкая фаза, по другую - газообразная (пар),.Если жидкая и газообразная фазы одного и того же вещества соприкасаются, возникают силы, которые стремятся уменьшить площадь поверхности раздела - силы поверхностного натяжения. Поверхность раздела ведёт себя как упругая мембрана, которая стремится стянуться.

ü Испарение и конденсация

ü Кипение

ü Смачивание - поверхностное явление, возникающее при контакте жидкости с твёрдой поверхностью в присутствии пара, то есть на границах раздела трёх фаз.

ü Смешиваемость - способность жидкостей растворяться друг в друге. Пример смешиваемых жидкостей: вода и этиловый спирт, пример несмешиваемых: вода и жидкое масло.

ü Диффузия. При нахождении в сосуде двух смешиваемых жидкостей молекулы в результате теплового движения начинают постепенно проходить через поверхность раздела, и таким образом жидкости постепенно смешиваются. Это явление называется диффузией (происходит также и в веществах, находящихся в других агрегатных состояниях).

ü Перегрев и переохлаждение. Жидкость можно нагреть выше точки кипения таким образом, что кипения не происходит. Для этого необходим равномерный нагрев, без значительных перепадов температуры в пределах объёма и без механических воздействий, таких, как вибрация. Если в перегретую жидкость бросить что-либо, она мгновенно вскипает. Перегретую воду легко получить в микроволновой печи.Переохлаждение - охлаждение жидкости ниже точки замерзания без превращения в твёрдое агрегатное состояние.

В отличие от газов между молекулами жидкости действуют достаточно большие силы взаимного притяжения, что определяет своеобразный характер молекулярного движения. Тепловое движение молекулы жидкости включает колебательное и поступательное движения. Каждая молекула в течение какого-то времени колеблется около определенной точки равновесия, затем перемещается и снова занимает новое равновесное положение. Это определяет ее текучесть. Силы межмолекулярного притяжения не дают молекулам при их движении далеко отходить друг от друга. Суммарный эффект притяжения молекул можно представить, как внутреннее давление жидкостей, которое достигает очень больших значений. Этим и объясняются постоянство объема и практическая несжимаемость жидкостей, хотя они легко принимают любую форму.

Свойства жидкостей зависят также от объема молекул, формы и полярности их. Если молекулы жидкости полярны, то происходит объединение (ассоциация) двух и более молекул в сложный комплекс. Такие жидкости называют ассоциированными жидкостями. Ассоциированные жидкости (вода, ацетон, спирты) имеют более высокие температуры кипения, обладают меньшей летучестью, более высокой диэлектрической проницаемостью. Например, этиловый спирт и диметиловый эфир имеют одинаковую молекулярную формулу (С 2 Н 6 О). Спирт является ассоциированной жидкостью и кипит при более высокой температуре, чем диметиловый эфир, который относится к неассоциированным жидкостям.

Жидкое состояние характеризуют такие физические свойства, как плотность, вязкость, поверхностное натяжение.

Поверхностное натяжение.

Состояние молекул, находящихся в поверхностном слое, существенно отличается от состояния молекул в глубине жидкости. Рассмотрим простой случай – жидкость – пар (рис. 2).

Рис. 2. Действие межмолекулярных сил на поверхности раздела и внутри жидкости

На рис. 2 молекула (а) находится внутри жидкости, молекула (б) – в поверхностном слое. Сферы вокруг них – расстояния, на которые распространяются силы межмолекулярного притяжения окружающих молекул.

На молекулу (а) равномерно действуют межмолекулярные силы со стороны окружающих молекул, поэтому силы межмолекулярного взаимодействия компенсируются, равнодействующая этих сил равна нулю (f=0).

Плотность пара значительно меньше плотности жидкости, так как молекулы удалены друг от друга на большие расстояния. Поэтому молекулы, находящиеся в поверхностном слое, почти не испытывают силы притяжения со стороны этих молекул. Равнодействующая всех этих сил будет направлена внутрь жидкости перпендикулярно ее поверхности. Таким образом, поверхностные молекулы жидкости всегда находятся под действием силы, стремящейся втянуть их внутрь и, тем самым, сократить поверхность жидкости.

Чтобы увеличить поверхность раздела жидкости, необходимо затратить работу А (Дж). Работа, необходимая для увеличения поверхности раздела S на 1 м 2 , является мерой поверхностной энергии или поверхностным натяжением .

Таким образом, поверхностное натяжение д (Дж/м 2 = Нм/м 2 = Н/м) – результат некомпенсированности межмолекулярных сил в поверхностном слое:

д = F/S (F – поверхностная энергия) (2.3)

Существует большое число методов определения поверхностного натяжения. Наиболее распространены сталагмометрический метод (метод счета капель) и метод наибольшего давления газовых пузырьков.

При помощи методов рентгеноструктурного анализа было установлено, что в жидкостях есть некоторая упорядоченность пространствен-ного расположения молекул в отдельных микрообъемах. Вблизи каждой молекулы наблюдается так называемый ближний порядок. При удалении от нее на некоторое расстояние эта закономерность нарушается. И во всем объеме жидкости порядка в расположении частиц нет.

Рис. 3. Сталагмометр Рис. 4. Вискозиметр

Вязкость з (Па·с) – свойство оказывать сопротивление перемещению одной части жидкости относительно другой. В практической жизни человек сталкивается с большим множеством жидких систем, вязкость которых различна, – вода, молоко, растительные масла, сметана, мед, соки, патока и т.д.

Вязкость жидкостей обусловлена межмолекулярным воздействием, ограничивающим подвижность молекул. Она зависит от природы жидкости, температуры, давления.

Для измерения вязкости служат приборы, называемые вискозиметрами. Выбор вискозиметра и метода определения вязкости зависит от состояния исследуемой системы и ее концентрации.

Для жидкостей с малой величиной вязкости или небольшой концентрацией широко используют вискозиметры капиллярного типа.

2.1 Закон Бернулли.

2.2 Закон Паскаля.

2.3 Ламинарное течение жидкостей.

2.4 Закон Пуайзеля.

2.5 Турбулентное течение жидкостей.

3.1 Измерение вязкости жидкости.

3.2 Измерение объёма и расхода жидкости

1. Жидкое состояние вещества и его свойства.

Жидкости занимают промежуточное положение между газо­образными и твердыми веществами. При температурах, близких к температурам кипения, свойства жидкостей приближаются к свойствам газов; при температурах, близких к температурам плавления, свойства жидкостей приближаются к свойствам твер­дых веществ. Если для твердых веществ характерна строгая упо­рядоченность частиц, распространяющаяся на расстояния до со­тен тысяч межатомных или межмолекулярных радиусов, то в жидком веществе обычно бывает не более нескольких десятков упорядоченных частиц - объясняется это тем, что упорядоченность между частицами в разных местах жидкого вещества так же быстро возникает, как и вновь «размывается» тепловым колебанием частиц. Вместе с тем общая плотность упаковки частиц жидкого вещества мало отличается от твердого вещества - поэтому их плотность близка к плотности твердых тел, а сжимаемость очень мала. Например, чтобы уменьшить объем, занимаемый жидкой водой, на 1%, требуется приложить давление ~ в 200 атм, тогда как для такого же уменьшения объема газов требуется давление порядка 0,01 атм. Следовательно, сжимаемость жид­костей примерно в 200: 0,01 = 20000 раз меньше сжимаемости газов.

Выше отмечалось, что жидкости имеют определенный собственный объем и принимают форму сосуда, в котором находятся; эти их свойства значительно ближе к свойствам твердого, чем газообразного вещества. Большая близость жидкого состояния к твердому подтверждается также данными по стандартным энтальпиям испарения ∆Н° исп и стандартным энтальпиям плавления ∆Н° пл. Стандартной энтальпией испарения называют количество теплоты, необходимое для превращения 1 моль жидкости в пар при 1 атм (101,3 кПа). То же количество теплоты выделяется при конденсации 1 моль пара в жидкость при 1 атм. Количество теплоты, расходуемое на превращение 1 моль твердого тела в жидкость при 1 атм, называют стандартной энтальпией плавления (то же количество теплоты высвобождается при «замерзании» («отвердевании») 1 моль жидкости при 1 атм). Известно, что ∆Н° пл намного меньше соответствующих значений ∆Н° исп, что легко понять, поскольку переход из твердого состояния в жидкое сопровождается меньшим нарушением межмолекулярного притя­жения, чем переход из жидкого в газообразное состояние.

Ряд других важных свойств жидкостей больше напоминает свойства газов. Так, подобно газам жидкости могут течь - это их свойство называется текучестью. Сопротивляемость течению определяется вязкостью. На текучесть и вязкость влияют силы притяжения между молекулами жидкости, их относительная мо­лекулярная масса, а также целый ряд других факторов. Вязкость жидкостей ~ в 100 раз больше, чем у газов. Так же, как и газы, жидкости способны диффундировать, хотя и гораздо медленнее, поскольку частицы жидкости упакованы гораздо плотнее, чем частицы газа.

Одно из важнейших свойств именно жидкости - ее поверхностное натяжение (это свойство не присуще ни газам, ни твер­дым веществам). На молекулу, находящуюся в жидкости, со всех сторон равномерно действуют межмолекулярные силы. Однако на поверхности жидкости баланс этих сил нарушается, и вследст­вие этого «поверхностные» молекулы оказываются под действием некой результирующей силы, направленной внутрь жидкости. По этой причине поверхность жидкости оказывается в состоянии натяжения. Поверхностное натяжение - это минимальная сила, сдерживающая движение частиц жидкости в глубину жидкости и тем самым удерживающая поверхность жидкости от сокращения. Именно поверхностным натяжением объясняется «каплевидная» форма свободно падающих частиц жидкости.

Из-за сохранения объёма жидкость способна образовывать свободную поверхность. Такая поверхность является поверхностью раздела фаз данного вещества: по одну сторону находится жидкая фаза, по другую - газообразная (пар), и, возможно, другие газы, например, воздух. Если жидкая и газообразная фазы одного и того же вещества соприкасаются, возникают силы, которые стремятся уменьшить площадь поверхности раздела - силы поверхностного натяжения. Поверхность раздела ведёт себя как упругая мембрана, которая стремится стянуться.

Поверхностное натяжение может быть объяснено притяжением между молекулами жидкости. Каждая молекула притягивает другие молекулы, стремится «окружить» себя ими, а значит, уйти с поверхности. Соответственно, поверхность стремится уменьшиться. Поэтому мыльные пузыри и пузыри при кипении стремятся принять сферическую форму: при данном объёме минимальной поверхностью обладает шар. Если на жидкость действуют только силы поверхностного натяжения, она обязательно примет сферическую форму - например, капли воды в невесомости.

Маленькие объекты с плотностью, большей плотности жидкости, способны «плавать» на поверхности жидкости, так как сила тяготения меньше силы, препятствующей увеличению площади поверхности.

Смачивание - поверхностное явление, возникающее при контакте жидкости с твёрдой поверхностью в присутствии пара, то есть на границах раздела трёх фаз. Смачивание характеризует «прилипание» жидкости к поверхности и растекание по ней (или, наоборот, отталкивание и нерастекание). Различают три случая: несмачивание, ограниченное смачивание и полное смачивание.

Смешиваемость - способность жидкостей растворяться друг в друге. Пример смешиваемых жидкостей: вода и этиловый спирт, пример несмешиваемых: вода и жидкое масло.

При нахождении в сосуде двух смешиваемых жидкостей молекулы в результате теплового движения начинают постепенно проходить через поверхность раздела, и таким образом жидкости постепенно смешиваются. Это явление называется диффузией (происходит также и в веществах, находящихся в других агрегатных состояниях).

Жидкость можно нагреть выше точки кипения таким образом, что кипения не происходит. Для этого необходим равномерный нагрев, без значительных перепадов температуры в пределах объёма и без механических воздействий, таких, как вибрация. Если в перегретую жидкость бросить что-либо, она мгновенно вскипает. Перегретую воду легко получить в микроволновой печи.

Переохлаждение - охлаждение жидкости ниже точки замерзания без превращения в твёрдое агрегатное состояние. Как и для перегрева, для переохлаждения необходимо отсутствие вибрации и значительных перепадов температуры.

Если сместить участок поверхность жидкости от положения равновесия, то под действием возвращающих сил поверхность начинает двигаться обратно к равновесному положению. Это движение, однако, не останавливается, а превращается в колебательное движение около равновесного положения и распространяется на другие участки. Так возникают волны на поверхности жидкости.

Если возвращающая сила - это преимущественно силы тяжести, то такие волны называются гравитационными волнами. Гравитационные волны на воде можно видеть повсеместно.

Если возвращающая сила - это преимущественно сила поверхностного натяжения, то такие волны называются капиллярными. Если эти силы сопоставимы, такие волны называются капиллярно-гравитационными. Волны на поверхности жидкости затухают под действием вязкости и других факторов.

Формально говоря, для равновесного сосуществования жидкой фазы с другими фазами того же вещества - газообразной или кристаллической - нужны строго определённые условия. Так, при данном давлении нужна строго определённая температура. Тем не менее, в природе и в технике повсеместно жидкость сосуществует с паром, или также и с твёрдым агрегатным состоянием - например, вода с водяным паром и часто со льдом (если считать пар отдельной фазой, присутствующей наряду с воздухом). Это объясняется следующими причинами.

Неравновесное состояние. Для испарения жидкости нужно время, пока жидкость не испарилась полностью, она сосуществует с паром. В природе постоянно происходит испарение воды, также как и обратный процесс - конденсация.

Замкнутый объём. Жидкость в закрытом сосуде начинает испаряться, но поскольку объём ограничен, давление пара повышается, он становится насыщенным ещё до полного испарения жидкости, если её количество было достаточно велико. При достижении состояния насыщения количество испаряемой жидкости равно количеству конденсируемой жидкости, система приходит в равновесие. Таким образом, в ограниченном объёме могут установиться условия, необходимые для равновесного сосуществования жидкости и пара.

Присутствие атмосферы в условиях земной гравитации. На жидкость действует атмосферное давление (воздух и пар), тогда как для пара должно учитываться практически только его парциальное давление. Поэтому жидкости и пару над её поверхностью соответствуют разные точки на фазовой диаграмме, в области существования жидкой фазы и в области существования газообразной соответственно. Это не отменяет испарения, но на испарение нужно время, в течение которого обе фазы сосуществуют. Без этого условия жидкости вскипали бы и испарялись очень быстро.

2.1 Закон Бернулли - является следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости:

- плотность жидкости, - скорость потока, - высота, на которой находится рассматриваемый элемент жидкости, - давление в точке пространства, где расположен центр массы рассматриваемого элемента жидкости, - ускорение свободного падения.

Константа в правой части обычно называется напором , или полным давлением, а также интегралом Бернулли . Размерность всех слагаемых - единица энергии, приходящейся на единицу объёма жидкости.

Это соотношение, выведенное Даниилом Бернулли в 1738 г., было названо в его честь уравнением Бернулли . Для горизонтальной трубы h = 0 и уравнение Бернулли принимает вид:

.

Эта форма уравнения Бернулли может быть получена путём интегрирования уравнения Эйлера для стационарного одномерного потока жидкости, при постоянной плотности ρ:

.

Согласно закону Бернулли полное давление в установившемся потоке жидкости остается постоянным вдоль этого потока.

Полное давление состоит из весового (ρgh ), статического (p) и динамического (ρν 2 /2) давлений.

Из закона Бернулли следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает. Это является основной причиной эффекта Магнуса. Закон Бернулли справедлив и для ламинарных потоков газа. Явление понижения давления при увеличении скорости потока лежит в основе работы различного рода расходомеров (например труба Вентури), водо- и пароструйных насосов. А последовательное применение закона Бернулли привело к появлению технической гидромеханической дисциплины - гидравлики.

Закон Бернулли справедлив в чистом виде только для жидкостей, вязкость которых равна нулю, то есть таких жидкостей, которые не прилипают к поверхности трубы. На самом деле экспериментально установлено, что скорость жидкости на поверхности твердого тела почти всегда в точности равна нулю (кроме случаев отрыва струй при некоторых редких условиях).

2.2 Закон Паскаля формулируется так:

Давление, оказываемое на жидкость(или газ) в каком-либо одном месте на ее границе, например, поршнем, передается без изменения во все точки жидкости(или газа).

Основное свойство жидкостей и газов - передавать давление без изменения по всем направлениям - лежит в основе конструкции гидравлических и пневматических устройств и машин.

Во сколько раз площадь одного поршня больше площади другого, во столько же раз гидравлическая машина дает выигрыш в силе.

2.3 Ламина́рное тече́ние (лат. lamina - пластинка, полоска) - течение, при котором жидкость или газ перемещается слоями без перемешивания и пульсаций (то есть беспорядочных быстрых изменений скорости и давления).

Ламинарное течение возможно только до некоторого критического значения числа Рейнольдса, после которого оно переходит в турбулентное. Критическое значение числа Рейнольдса зависит от конкретного вида течения (течение в круглой трубе, обтекание шара и т. п.). Например, для течения в круглой трубе

Число Рейнольдса определяется следующим соотношением:

ρ - плотность среды, кг/м 3 ;

v - характерная скорость, м/с;

L - характерный размер, м;

η - динамическая вязкость среды, Н*с/м 2 ;

ν - кинематическая вязкость среды, м 2 /с() ;

Q - объёмная скорость потока;

A - площадь сечения трубы.

Число Рейнольдса как критерий перехода от ламинарного к турбулентному режиму течения и обратно относительно хорошо действует для напорных потоков. При переходе к безнапорным потокам переходная зона между ламинарным и турбулентным режимами возрастает, и использование числа Рейнольдса как критерия не всегда правомерно. Например, в водохранилищах формально вычисленные значения числа Рейнольдса очень велики, хотя там наблюдается ламинарное течение.

2.4 Уравнение или закон Пуазейля - закон, определяющий расход жидкости при установившемся течении вязкой несжимаемой жидкости в тонкой цилиндрической трубе круглого сечения.

Согласно закону, секундный объёмный расход жидкости пропорционален перепаду давления на единицу длины трубки (градиенту давления в трубе) и четвёртой степени радиуса (диаметра) трубы:

  • Q - расход жидкости в трубопроводе;
  • D - диаметр трубопровода;
  • v - скорость жидкости вдоль трубопровода;
  • r - расстояние от оси трубопровода;
  • R - радиус трубопровода;
  • p 1 − p 2 - разность давлений на входе и на выходе из трубы;
  • η - вязкость жидкости;
  • L - длина трубы.

Закон Пуазёйля работает только при ламинарном течении и при условии, что длина трубки превышает так называемую длину начального участка, необходимую для развития ламинарного течения в трубке.

Течение Пуазёйля характеризуется параболическим распределением скорости по радиусу трубки. В каждом поперечном сечении трубки средняя скорость вдвое меньше максимальной скорости в этом сечении.

2.5 Т урбулентное т ечение (от лат. turbulentus - бурный, беспорядочный), форма течения жидкости или газа, при к-рой их элементы совершают неупорядоченные, неустановившиеся движения по сложным траекториям, что приводит к интенсивному перемешиванию между слоями движущихся жидкости или газа (см. Турбулентность). Наиболее детально изучены Т. т. в трубах, каналах, пограничных слоях около обтекаемых жидкостью или газом твёрдых тел, а также т. н. свободные Т. т.- струи, следы за движущимися относительно жидкости или газа твёрдыми телами и зоны перемешивания между потоками разной скорости, не разделёнными к.-л. твёрдыми стенками. Т. т. отличаются от соответствующих ламинарных течений как своей сложной внутренней структурой (рис. 1), так и распределением осреднённой скорости по сечению потока и интегральными характеристиками - зависимостью средней по сечению или макс. скорости, расхода, а также коэфф. сопротивления от Рей-нольдса числа Re. Профиль осреднённой скорости Т. т. в трубах или каналах отличается от параболич. профиля соответствующего ламинарного течения более быстрым возрастанием скорости у стенок и меньшей кривизной в центр. части течения (рис. 2). За исключением тонкого слоя около стенки профиль скорости описывается логарифмическим законом (т. е. скорость линейно зависит от логарифма расстояния до стенки). Коэффициент сопротивления:

- напряжение трения на стенке,
- плотность жидкости,
- её скорость, средняя по сечению потока) связан с Re соотношением

Профиль осреднённой скорости: а - при ламинарном, 6 - при турбулентном течении.

3.1 Измерение вязкости жидкости .

Кинематическая вязкость - мера потока имеющей сопротивление жидкости под влиянием силы тяжести. Когда две жидкости равного объема помещены в идентичные капиллярные вискозиметры и двигаются самотеком, вязкой жидкости требуется больше времени для протекания через капилляр. Если одной жидкости требуется для вытекания 200 секунд,а другой - 400 секунд, вторая жидкость в два раза более вязкая, чем первая по шкале кинематической вязкости.

Абсолютная вязкость, иногда называемая динамической или простой вязкость, является произведением кинематической вязкости и плотности жидкости:
Абсолютная вязкость = Кинематическая вязкость * Плотность
Размерность кинематической вязкости - L 2 /T, где L - длина, и T - время). ЕДИНИЦА СИ кинематической вязкости - 1 cSt (сантиСтокс)=mm 2 /s. Абсолютная вязкость выражается в сантипуазах (сПуаз). ЕДИНИЦА СИ абсолютной вязкости - миллипаскаль-секунда 1 мПа*s =1 сПуаз.

Прибор для измерения вязкости называется вискозиметр. Вискозиметры можно классифицировать по трем главным типам:

А . Капиллярные вискозиметры измеряют расход фиксированного объема жидкости через малое отверстие при контролируемой температуре. Скорость сдвига можно измерить примерно от нуля до 106 с -1 , заменяя капиллярный диаметр и приложенное давление. Типы капиллярных вискозиметров и их режимы работы:
Стеклянный капиллярный вискозиметр (ASTM D 445) - Жидкость проходит через отверстие устанавливаемого - диаметра под влиянием силы тяжести. Скорость сдвига - меньше чем 10 с -1 . Кинематическая вязкость всех автомобильных масел измеряется капиллярными вискозиметрами.
Капиллярный вискозиметр высокого давления (ASTM D 4624 и D 5481) -Фиксированный объем жидкости выдавливается через стеклянный капилляр диаметра под действием приложенного давления газа. Скорость сдвига может быть изменена до 106 с -1 . Эта методика обычно используется, чтобы моделировать вязкость моторных масел в рабочих коренных подшипниках. Эта вязкость называется, вязкостью при высокой температуре и высоком сдвиге (HTHS) и измеряется при 150°C и 106 с -1 . HTHS вязкость измеряется также имитатором конического подшипника, ASTM D 4683 (см. ниже).

Б . Ротационные вискозиметры используют для измерения сопротивления жидкости течению вращающий момент на вращающемся вале. К ротационным вискозиметрам относятся имитатор холодной прокрутки двигателя (CCS), миниротационный вискозиметр (MRV), вискозиметр Брукфильда и имитатор конического подшипника (TBS). Скорость сдвига может быть изменена за счет изменения габаритов ротора, зазора между ротором и стенкой статора и частоты вращения.
Имитатор холодной прокрутки (ASTM D 5293) - CCS измеряет кажущуюся вязкость в диапазоне от 500 до 200000 сПуаз. Скорость сдвига располагается между 104 и 105 c -1 . Нормальный диапазон рабочей температуры - от 0 до -40°C. CCS показал превосходную корреляцию с пуском двигателя при низких температурах. Классификация вязкости SAE J300 определяет низкотемпературную вязкостную эффективность моторных масел пределами по CCS и MRV.

Минироторный вискозиметр (ASTM D 4684) - тест MRV, который связан с механизмом прокачиваемости масла, является измерением при низкой скорости сдвига. Главная особенность метода - медленная скорость охлаждения образца. Образец подготавливается так, чтобы иметь определенную тепловую предысторию, которая включает нагревание, медленно охлаждение, и циклы пропитки. MRV измеряет кажущееся остаточное напряжение, которое, если большее чем пороговое значение, указывает на потенциальную проблему отказа прокачивания, связанную с проникновением воздуха. Выше некоторой вязкости (в настоящее время определенной как 60000 сПуаз по SAE J 300), масло может быть вызвать отказ прокачиваемости по механизму, называемому "эффект ограниченного потока". Масло SAE 10W, например, должно иметь максимальную вязкость 60000 сПуаз при -30°C без остаточного напряжения. С помощью этого метода измеряют также кажущуюся вязкость при скоростях сдвига от 1 до 50 c -1 .
Вискозиметр Брукфильда - определяет вязкость в широких пределах (от 1 до 105 Пуаз) при низкой скорости сдвига (до 102 c -1).
ASTM D 2983 используется прежде всего для определения низкотемпературной вязкости автомобильных трансмиссионных масел, масел для автоматических трансмиссий гидравлических и тракторных масел. Температура - испытаний находится в диапазоне от -5 до -40°C.
ASTM D 5133, метод сканирования Брукфильда, измеряет вязкость образца по Брукфильду, при охлаждении с постоянной скоростью 1°C/час. Подобно MRV, метод ASTM D 5133 предназначен для определения прокачиваемости масла при низких температурах. С помощью этого испытания определяется точка структурообразования, определенная как температура, при которой образец достигает вязкости 30,000 сПуаз. Определяется также индекс(показатель) структурообразования как самая большая скорость увеличения вязкости от -5°C к самой низкой испытательной температуре. Этот метод находит применение для моторных масел, и требуется согласно ILSAC GF-2. Имитатор конического подшипника (ASTM D 4683) - эта методика также позволяет измерять вязкость моторных масел при высокой температуре и высокой скорости сдвига (см. Капиллярный Вискозиметр высокого давления). Очень высокие скорости сдвига получаются за счет чрезвычайно малого зазора между ротором и стенкой статора.

Индекс вязкости (ИВ) - эмпирическое число, указывающее степень изменения в вязкости масла в пределах данного диапазона температур. Высокий ИВ означает относительно небольшое изменение вязкости с температурой, а низкий ИВ означает большое изменение вязкости с температурой. Большинство минеральных основных масел имеет ИВ между 0 и 110, но ИВ полимерсодержащего масла (multigrage) часто превышает 110.
Для определения индекса вязкости требуется определить кинематическую вязкость при 40°C и 100°C. После этого ИВ определяют из таблиц по ASTM D 2270 или ASTM D 39B. Так как ИВ определяется из вязкости при 40°C и 100°C, он не связан с низкотемпературной или HTHS вязкостью. Эти значения получают с помощью CCS, MRV, низкотемпературного вискозиметра Брукфильда и вискозиметров высокой скорости сдвига.
SAE не использует ИВ, для классификации моторных масел начиная с 1967, потому что этот термин технически устарел. Однако, методика Американского нефтяного института API 1509 описывает систему классификации основных масел, используя ИВ как один из нескольких параметров, чтобы обеспечить принципы взаимозаменяемости масел и универсализацию шкалы вязкости.

3.2.Измерение объёма и расхода жидкости.

Для измерения расхода жидкостей применяют расходомеры, основанные на различных принципах действия: расходомеры переменного и постоянного перепада давлений, переменного уровня, электромагнитные, ультразвуковые, вихревые, тепловые и турбинные.

Для измерения количества вещества применяют расходомеры с интеграторами или счетчики. Интегратор непрерывно суммирует показания прибора, а количество вещества определяют по разности его показаний за требуемый промежуток времени.

Измерение расхода и количества является сложной задачей, поскольку на показания приборов влияют физические свойства измеряемых потоков: плотность, вязкость, соотношение фаз в потоке и т. п. Физические свойства измеряемых потоков, в свою очередь, зависят от условий эксплуатации, главным образом от температуры и давления.

Если условия эксплуатации расходомера отличаются от условий, при которых производилась его градуировка, то ошибка в показаниях прибора может значительно превысить допустимое значение. Поэтому для серийно выпускаемых приборов установлены ограничения области их применения: по свойствам измеряемого потока, максимальной температуре и давлению, содержанию твердых частиц или газов в жидкости и т. п.

Расходомеры переменного перепада давлений

Действие этих расходомеров основано на возникновении перепада давлений на сужающем устройстве в трубопроводе при движении через него потока жидкости или газа. При изменении расхода Q величина этого перепада давлений?р также изменяется.

Для некоторых сужающих устройств как преобразователей расхода в перепад давлений коэффициент передачи определен экспериментально и его значения сведены в специальные таблицы. Такие сужающие устройства называются стандартными.

Наиболее простым и распространенным сужающим устройством является диафрагма Стандартная диафрагма представляет собой тонкий диск с круглым отверстием в центре. От стойкости диафрагмы и особенно входной кромки отверстия существенно зависит ее коэффициент передачи. Поэтому диафрагмы изготовляют из материалов, химически стойких к измеряемой среде и устойчивых против механического износа. Кроме диафрагмы в качестве стандартных сужающих устройств применяют также сопло Вентури, трубу Вентури, которые создают меньшее гидравлическое сопротивление в трубопроводе.

Сужающее устройство расходомера переменного перепада давлений является первичным преобразователем, в котором расход преобразуется в перепад давлений.

Промежуточными преобразователями для расходомеров переменного перепада давлений служат дифманометры. Дифманометры связаны с сужающим устройством импульсными трубками и устанавливаются в непосредственной близости от него. Поэтому в расходомерах переменного перепада давлений обычно используют дифманометры, снабженные промежуточным преобразователем для передачи результатов измерений на щит оператора (например, мембранные дифманометры ДМ).

Так же как при измерении давления и уровня, для защиты дифманометров от агрессивного воздействия измеряемой среды применяют разделительные сосуды и мембранные разделители.

Особенностью первичных преобразователей расходомеров переменного перепада давлений является квадратичная зависимость перепада давлений от величины расхода. Чтобы показания измерительного прибора расходомера линейно зависели от расхода, в измерительную цепь расходомеров переменного перепада давлений вводят линеаризующий преобразователь. Таким преобразователем служит, например, блок линеаризации в промежуточном преобразователе НП-ПЗ. При непосредственной связи дифманометра с измерительным прибором (например, КСД) линеаризация производится в самом приборе с помощью лекала с квадратичной характеристикой.

Расходомеры постоянного перепада давлений

Расход жидкости или газа можно измерять и при постоянном перепаде давлений. Для сохранения постоянного перепада давлений при изменении расхода через сужающее устройство необходимо автоматически изменять площадь его проходного сечения. Наиболее простой способ - автоматическое изменение площади проходного сечения в ротаметре.

Ротаметр представляет собой вертикальную конусную трубку, в которой находится поплавок. Измеряемый поток Q проходя через ротаметр снизу вверх, создает перепад давлений до и после поплавка. Этот перепад давлений, в свою очередь создает подъемную силу, которая уравновешивает вес поплавка.

Если расход через ротаметр изменится, то изменится и перепад давлений. Это приведет к изменению подъемной силы и, следовательно, к нарушению равновесия поплавка. Поплавок начнет перемешаться. А так как трубка ротаметра конусная, то при этом будет изменяться площадь проходного сечения в зазоре между поплавком и трубкой, в результате произойдет изменение перепада давлений, а следовательно, и подъемной силы. Когда перепад давлений и подъемная сила снова вернутся к прежним значениям, поплавок уравновесится и остановится.

Таким образом, каждому значению расхода через ротаметр Q соответствует определенное положение поплавка. Так как для конусной трубки площадь кольцевого зазора между ней и поплавком пропорциональна высоте его подъема, то шкала ротаметра получается равномерной.

Промышленность выпускает ротаметры со стеклянными и металлическими трубками. У ротаметров со стеклянной трубкой шкала нанесена прямо на поверхности трубки. Для дистанционного измерения положения поплавка в металлической трубке используют промежуточные преобразователи линейного перемещения в унифицированный электрический или пневматический сигнал.

В ротаметрах с электрическим выходным сигналом вместе с поплавком перемещается плунжер дифференциально-трансформаторного преобразователя. В ротаметрах с пневматическим выходным сигналом для передачи положения поплавка преобразователю используется магнитная муфта. Она состоит из двух постоянных магнитов. Один - сдвоенный - перемещается вместе с поплавком, другой, укрепленный на рычаге преобразователя перемещения в давление сжатого воздуха, двигается вместе с рычагом вслед за первым магнитом.

Выпускаются также ротаметры для измерения расхода сильноагрессивных сред. Ротаметры снабжены рубашкой для парового обогрева. Они предназначены для измерения расхода кристаллизующихся сред.

Расходомеры переменного уровня

Из гидравлики известно, что если жидкость свободно вытекает через отверстие в дне бака, то ее расход Q и уровень в баке Н связаны между собой. Следовательно, по уровню в баке можно судить о расходе из него.

На этом принципе основано действие расходомеров переменного уровня. Очевидно, что роль первичного преобразователя здесь выполняет сам бак с отверстием в дне. Выходной сигнал такого преобразователя - уровень в баке. Поэтому промежуточным преобразователем измерительной цепи расходомера переменного уровня может служить любой из рассмотренных уровнемеров.

Расходомеры переменного уровня обычно используют для измерения расхода агрессивных и загрязненных жидкостей при сливе их в емкости, находящиеся под атмосферным давлением.

Электромагнитные расходомеры

Действие электромагнитных расходомеров основано на законе электромагнитной индукции, согласно которому в проводнике, движущемся в магнитном поле, будет наводиться э. д. с, пропорциональная скорости движения проводника. В электромагнитных расходомерах роль проводника выполняет электропроводная жидкость, протекающая по трубопроводу 1 и пересекающая магнитное поле 3 электромагнита 2. При этом в жидкости будет наводиться э. д. с. U, пропорциональная скорости ее движения, т. е. расходу жидкости.

Выходной сигнал такого первичного преобразователя снимается двумя изолированными электродами 4 и 6, установленными в стенке трубопровода. Участок трубопровода по обе стороны от электродов покрывают электроизоляцией 7, чтобы исключить шунтирование наводимой э. д. с. через жидкость и стенку трубопровода.

Степень агрессивности измеряемых сред для электромагнитных расходомеров определяется материалом изоляции трубы и электродов первичного преобразователя. В расходомерах для этой цели используют резину, кислотостойкую эмаль и фторопласт. Наиболее стойким к воздействию агрессивных сред является расходомер с фторопластовым изоляционным покрытием и электродами из графитизированного фторопласта.

В процессе эксплуатации расходомеров периодически, не реже одного раза в неделю должны проверяться нуль и градуировка прибора. Для проверки первичный преобразователь заполняют измеряемой жидкостью. После этого переключатель режима работы на передней панели измерительного блока переводят в положение «Измерение» и потенциометром «Нуль» стрелку измерительного прибора устанавливают на нулевую отметку. При переводе переключателя в положение «Калибровка» стрелка прибора должна остановиться на отметке 100%. В противном случае стрелку выводят на эту отметку потенциометром «Калибровка».

Отличительная особенность электромагнитных расходомеров- отсутствие дополнительных потерь давления на участке. измерения. Это объясняется отсутствием деталей, выступающих внутрь трубы. Особенно ценным свойством таких расходомеров в отличие от расходомеров других типов является возможность измерения расхода агрессивных, абразивных и вязких жидкостей и пульп.

Ультразвуковые расходомеры

Действие этих расходомеров основано на сложении скорости распространения ультразвука в жидкости и скорости самого потока жидкости. Излучатель и приемник ультразвуковых импульсов расходомера располагают на торцах измерительного участка трубопровода. Электронный блок содержит генератор импульсов и измеритель времени прохождения импульсом расстояния между излучателем и приемником.

Перед началом эксплуатации расходомер заполняют жидкостью, расход которой будут измерять, и определяют время прохождения импульсом этого расстояния в стоячей среде. При движении потока его скорость будет складываться со скоростью ультразвука, что приведет к уменьшению времени пробега импульса. Это время, преобразуемое в блоке в унифицированный токовый сигнал, будет тем меньше, чем больше скорость потока, т. е, чем больше его расход Q.

Ультразвуковые расходомеры обладают теми же достоинствами, что и электромагнитные, и, кроме того, могут измерять расход неэлектропроводных жидкостей.

Вихревые расходомеры

Действие таких расходомеров основано на явлении возникновения вихрей при встрече потока с телом необтекаемой формы. При работе расходомера вихри отрываются поочередно от противоположных сторон тела, расположенного поперек движения потока. Частота отрыва вихрей прямо пропорциональна скорости потока, т. е. его объемному расходу Q. В месте завихрения скорость потока увеличивается, давление уменьшается. Поэтому частоту образования вихрей можно измерять, например, манометром, электрический выходной сигнал которого подают на частотомер.

Тепловые расходомеры

Тепловой расходомер состоит из нагревателя 1 и двух датчиков температуры 2 и 3, которые устанавливаются снаружи трубки 4 с измеряемым потоком. При постоянной мощности нагревателя количество тепла, забираемое от него потоком, будет также постоянным. Поэтому с увеличением расхода Q нагрев потока будет уменьшаться, что определяется по разности температур, измеряемой термодатчиками 3 и 2. Для измерения больших расходов измеряют не весь поток Q, а лишь его часть Q1, которую пропускают по трубке 4. Эта трубка шунтирует участок трубопровода 5, снабженный дросселем 6. Проходное сечение дросселя определяет верхнюю границу диапазона измеряемых расходов: чем больше это сечение, тем большие расходы можно измерять (при той же мощности нагревателя).

Турбинные расходомеры

В таких расходомерах измеряемый поток приводит в движение турбинку, вращающуюся в подшипниках. Скорость вращения турбинки пропорциональна скорости потока, т. е. расходу Q. Для измерения скорости вращения турбинки ее корпус изготавливают из немагнитного материала. Снаружи корпуса устанавливают дифференциально-трансформаторный преобразователь, а у одной из лопастей турбинки делают кромку из ферромагнитного материала. При прохождении этой лопасти мимо преобразователя меняется его индуктивное сопротивление и с частотой пропорциональной расходу Q изменяется напряжение на вторичных обмотках U вых. Измерительным прибором такого расходомера является частотомер, измеряющий частоту изменения напряжения.

Скоростные счетчики

Эти счетчики аналогичны по устройству турбинным расходомерам. Разница между ними заключается в том, что в расходомерах измеряется скорость вращения турбинки, а в счетчиках - число ее оборотов, которое затем пересчитывается на количество жидкости, прошедшее через счетчик за интересующий нас интервал времени, например, за месяц.


Жидкости занимают промежуточное положение между газообразными и твердыми веществами. При температурах, близких к температурам кипения, свойства жидкостей приближаются к свойствам газов; при температурах, близких к температурам плавления, свойства жидкостей приближаются к свойствам твердых веществ.


Физические свойства жидкостей Текучесть Сохранение объёма Испарение (постепенный переход вещества из жидкости в газообразную фазу) и конденсация (переход вещества из газообразного состояния в жидкое) Кипение(При достаточно высокой температуре давление пара становится выше давления внутри жидкости, и там начинают образовываться пузырьки пара) Смешиваемость(способность жидкостей растворяться друг в друге) Диффузия (взаимное проникновение соприкасающихся веществ друг в друга вследствие теплового движения частиц вещества.)
















Химические свойства воды Вода реагирует со многими оксидами неметаллов. В отличие от предыдущих, эти реакции не окислительно- восстановительные, а реакции соединения: (сернистая кислота) Некоторые оксиды металлов также могут вступать в реакции соединения с водой: CaO+H2O=Ca(OH)2(гидроксид кальция (гашеная известь))


Химические свойства воды Вода образует многочисленные соединения, в которых ее молекула полностью сохраняется (гидраты, кристаллогидраты): (гидрат серной кислоты) Синтез растениями крахмала и других подобных соединений (углеводов), происходящая с выделением кислорода: (при действии света)








Значение воды для человека Вода - важнейшая составляющая среды нашего обитания. Содержание воды в различных органах составляет %. С возрастом количество воды в организме меняется. Трехмесячный плод содержит 90% воды, новорожденный 80%, взрослый человек - 70%. Вода переносит отходы нашего тела, доставляет смазку к суставам, стабилизирует нашу температуру и является жизненной основой клетки. Вода является теплоносителем и терморегулятором. Количество воды, требуемое для поддержания водного баланса, зависит от возраста, физической активности, окружающей температуры и влажности. Суточная потребность взрослого человека составляет около 2.5 л.




Жидкость, занимая промежуточное положение между газами и кристаллами, сочетает в себе свойства обоих видов этих тел .

1. Как и твёрдое тело, жидкость малосжимаема из-за плотного расположения молекул. (Однако если бы вода могла полностью освободиться от сжатия, то уровень воды в мировом океане поднялся бы на 35 м и вода затопила бы 5 000 000 км 2 суши.)

2. Как и твёрдое тело, жидкость сохраняет объём , но подобно газу принимает форму сосуда .

3. Для кристаллов характерен дальний порядок в расположении атомов (кристаллическая решетка), для газов – полный хаос . Для жидкости существует промежуточное состояние – ближний порядок , т.е. расположение только ближайших молекул упорядоченно. При удалении от данной молекулы на расстояние 3–4 эффективных диаметра молекулы упорядоченность размывается. Поэтому жидкости близки к поликристаллическим телам, состоящим из очень мелких кристаллов (размерами около 10 9 м), произвольно ориентированных друг относительно друга. Благодаря этому свойства большинства жидкостей одинаковы по всем направлениям (и нет анизотропии, как в кристаллах).

4. Большинство жидкостей , как и твёрдые тела, при увеличении температуры увеличивают свой объём , уменьшая при этом свою плотность (при критической температуре плотность жидкости равна плотности её пара). Вода отличается известной аномалией , состоящей в том, что при +4 С вода обладает макси­мальной плотностью. Эта аномалия объясняется тем, что молекулы воды частично собираются в группы из нескольких молекул (кластеры), образуя своеобразные большие молекулы Н 2 О , (Н 2 О ) 2 , (Н 2 О ) 3 … с разной плотностью. При различных температурах соотношение концентраций этих групп молекул разное.

Существуют аморфные тела (стекло, янтарь, смолы, битумы...), которые принято рассматривать как переохлажденные жидкости с очень высоким коэффициентом вязкости. Они имеют одинаковые свойства по всем направлениям (изотропны), ближний порядок в расположении частиц, у них нет температуры плавления (при нагреве вещество постепенно размягчается и переходит в жидкое состояние).

В технике применяются магнитные жидкости – это обычные жидкости (вода, керосин, различные масла), в которые введены (до 50%) мельчайшие частицы (размером в несколько микрон) твердого ферромагнитного материала (например, Fe 2 O 3). Перемещением магнитной жидкости и её вязкостью можно управлять магнитным полем. В сильных магнитных полях магнитная жидкость мгновенно твердеет.

Некоторые органические вещества, молекулы которых имеют нитевидную форму или форму плоских пластин, могут находиться в особом состоянии, обладая одновременно свойствами анизотропии и текучести. Они называются жидкими кристаллами . Для изменения ориентации молекул жидкого кристалла (при этом изменяется его прозрачность) требуется напряжение около 1 В и мощность порядка микроватт, что можно обеспечить непосредственной подачей сигналов с интегральных схем без дополнительного усиления. Поэтому жидкие кристаллы широко применяются в индикаторах электронных часов, калькуляторах, дисплеях.

При замерзании вода увеличивается в объеме на 11%, и если вода замерзает в замкнутом пространстве, может достигаться давление 2500 атмосфер (разрушаются водопроводные трубы, горные породы...).

Уводыодна из самых больших : 1) диэлектрическая проницаемость (поэтому вода является хорошим растворителем, особенно солей с ионными связями – в Мировом океане содержится вся таблица Менделеева); 2) теплота плавления (медленное таяние снега весной); 3) теплота парообразования ; 4) поверхностное натяжение ; 5) теплоёмкость (мягкий климат прибрежных районов).

Существует легкая (1 г/см 3) и тяжелая (1,106 г/см 3) вода . Легкая вода («живая») – биологически активна – это окись протия Н 2 О . Тяжелая вода («мертвая») – подавляет жизнедеятельность организмов – это окись дейтерия D 2 O . Протий (1 а.е.м.), дейтерий (2 а.е.м.) и тритий (3 а.е.м.) – это изотопы водорода. Существуют также и 6 изотопов кислорода: от 14 О до 19 О , которые могут находиться в молекуле воды.

При обработке воды магнитным полем изменяются её свойства: изменяется смачиваемость твердых тел, ускоряется их растворение, изменяется концентрация растворенных газов, предотвращается образование накипи в паровых котлах, ускоряется в 4 раза затвердевание бетона и повышается его прочность на 45%, оказывается биологическое воздействие на человека (магнитные браслеты и серьги, магнитофоры и т.п.) и растения (повышается всхожесть и урожайность сельскохозяйственных культур).

Серебряная вода может долго храниться (около полугода), так как происходит обезвреживание воды от микробов и бактерий ионами серебра (применяется в космонавтике, для консервирования продуктов, обеззараживания воды в бассейнах, в лечебных целях для профилактики и борьбы с желудочно-кишечными заболеваниями и воспалительными процессами).

Обеззараживание питьевой воды в городских водопроводах осуществляется хлорированием и озонированием воды. Существуют и физические методы обеззараживания при помощи ультрафиолетового излучения и ультразвука.

Растворимость газов в воде зависит от температуры, давления, минерализации, присутствия в водном растворе других газов. В 1 л воды при 0 С может быть растворено: гелия – 10 мл, углекислого газа – 1713 мл, сероводорода – 4630 мл, аммиака – 1300000 мл (нашатырный спирт). Аквалангисты при погружении на большие глубины используют специальные дыхательные смеси, чтобы при всплытии не получилась «газированная кровь» из-за растворения в ней азота.

Все живые организмы на 60–80% состоят из воды. Кровь человека и животных по составу солей близка к океанической воде. Человек и животные могут в своих организмах синтезировать воду, образовывать её при сгорании пищевых продуктов и самих тканей. У верблюда, например, жир, содержащийся в горбу, может в результате окисления дать 40 л воды.

При электролизе воды можно получить два её вида: 1) кислую воду («мертвую»), которая действует как антисептическое средство (аналогично тому, как в кислом желудочном соке погибают многие болезнетворные микробы); 2) щелочную воду («живую»), которая активизирует биологические процессы (повышает урожайность, быстрее заживляет раны и т.п.).

О других особенностях воды (структурированной, энергоинформационной и др.) можно узнать из Интернета.

ТРИЗ-задание 27. Вода-работница

Чаще всего различные механизмы имеют «твёрдотельные» рабочие органы . Приведите примеры технических устройств, в которых рабочим органом является вода (жидкость). Каким законам развития технических систем соответствует такой рабочий орган?

ТРИЗ-задание 28. Вода в решете

В известной задаче «Как носить воду в решете ?» имеется явное физическое противоречие : в решете должны быть отверстия, чтобы через него можно было просеивать сыпучие вещества, и не должно быть отверстий, чтобы вода не выливалась. Одно из возможных решений этой задачи можно найти у Я.И. Перельмана в «Занимательной физике», где предложено опустить решето в расплавленный парафин, чтобы сетка решета не смачивалась водой. На основе приёмов устранения технических и физических противоречий предложите ещё 10–20 других способов решения этой задачи.