1. Твердое состояние
  2. Жидкое состояние
  3. Газообразное состояние
  4. Изменение состояния вещества

Химия изучает вещество. Что же такое "вещество"? Вещество - это все то, что имеет массу и объем. Вещество может находиться в одном из трех агрегатных состояний: твердом, жидком, газообразном .

1. Твердое состояние

Частицы (молекулы) в твердом теле объединены в жесткую повторяющуюся конструкцию - кристаллическую решетку . Частицы в кристаллической решетке совершают небольшие колебания около центров равновесия. Твердое тело имеет форму и объем .

2. Жидкое состояние

В отличие от твердых тел, жидкость не имеет определенной формы, но имеет объем. Это объясняется тем, что в жидкостях частицы находятся на большем расстоянии друг от друга, чем в твердых телах и двигаются активнее.

Поскольку частицы в жидкостях располагаются менее плотно, чем в твердых телах, то они не могут образовать кристаллическую решетку, следовательно жидкости не имеют определенной формы.

3. Газообразное состояние

В газе частицы находятся еще на больших расстояниях, чем в жидкостях. Мало того - частицы постоянно находятся в хаотическом (беспорядочном) движении. Поэтому газы стремятся равномерно заполнить, предоставленный им, объем (отсюда следует тот факт, что у газов нет определенной формы).

4. Изменение состояния вещества

Возьмем банальный пример и проследим за процессом изменения состояния воды.

В твердом состоянии вода - это лед. Температура льда меньше 0 о С. При нагревании лед начинает плавиться и превращаться в воду. Это объясняется тем, что частицы льда, находящиеся в кристаллической решетке, при нагревании начинают двигаться, вследствие этого решетка разрушается. Температура, при которой происходит плавление вещества, называется "точкой плавления" вещества. Точка плавления воды равна 0 о С.

Следует заметить, что до тех пор пока лед полностью не расплавится, температура льда будет 0 о С.

Во время фазовых изменений вещества температура остается постоянной

После того, как лед полностью превратился в воду, мы продолжим нагрев. Температура воды будет повышаться, а движение частиц под действием тепла все более ускоряться. Это происходит до тех пор, пока вода не достигнет следующей своей точки изменения состояния - кипения .

Этот момент наступает когда связи частиц воды полностью разрываются и их движение становится свободным: вода превращается в пар.

Процесс перехода вещества из жидкого состояния в газообразное называется кипением

Температура, при которой жидкость закипает, называют "точкой кипения" .

Следует обратить внимание, что температура кипения зависит от давления. При нормальном давлении (760 мм. рт. ст.) температура кипения воды составляет 100 о С.

По аналогии с плавлением: пока вода полностью не превратится в пар - температура будет постоянной.

Подведем итог. В результате нагревания мы получили разные фазовые состояния воды:

Лед → вода → пар или Н 2 0 (т) → Н 2 0 (ж) → Н 2 0 (г)

Что же произойдет, если мы начнем охлаждать водяной пар? Не надо быть "семи пядей во лбу", чтобы догадаться - пойдет обратный процесс фазовых изменений воды:

Пар → вода → лед

Существуют некоторые вещества, которые из твердого состояния переходят сразу в газообразное, минуя жидкую фазу. Такой процесс называется сублимацией или возгонкой . Так, например, ведет себя "сухой лед" (двуокись азота СО 2). При его нагревании вы не увидите ни капли воды, - "сухой лед" будет как бы испаряться на глазах.

Процесс, обратный сублимации (переход вещества из газа в твердое состояние), называется десублимация .

Cтраница 1


Газообразное состояние вещества характеризуется главным образом весьма малыми молекулярными силами сцепления, вследствие чего газ стремится занять максимальный объем.  

Газообразное состояние вещества наиболее доступно для понимания; жидкое состояние уже значительно менее понятно, а твердое вещество может, по-видимому, считаться наиболее сложным. Порошки часто называют четвертым состоянием вещества. Кроме того, явления на границах раздела твердое тело - твердое тело и твердое тело - газ относятся к наименее изученным аспектам твердого состояния.  

Газообразное состояние вещества в основном характеризуется весьма малыми межмолекулярными силами сцепления.  

Газообразное состояние вещества характеризуется тем, что мельчайшие частицы вещества - атомы или молекулы - большую часть времени пребывают сравнительно далеко друг от друга. Силы взаимодействия между ними оказывают заметное действие только в течение весьма коротких промежутков времени, когда частицы газа сталкиваются между собой. Поэтому действие молекулярных сил выражается только в обмене энергиями при столкновениях. Чем меньше плотность газа, тем больше свободный пробег его молекул и, следовательно, тем меньше влияния оказывают молекулярные силы на общее поведение газа при тех или иных изменениях его состояния.  

Газообразное состояние вещества очень распространено. Газы участвуют в важнейших химических реакциях, являются теплоносителями и источниками энергии. Он распространил закон сохранения энергии на тепловые явления, полагая, что частицы газов находятся в непрерывном хаотическом движении, сталкиваются и отталкиваются друг от друга в беспорядочной взаимности. Позже была развита теория газов на основе следующих положений: 1) газ соетоит из огромного числа молекул, находящихся в непрерывном тепловом движении; 2) молекулы подчиняются законам механики, между ними отсутствует взаимодействие; 3) постоянно происходящие между молекулами столкновения подобны столкновениям между абсолютно упругими шарами и происходят без потери скоростей. Молекулы лишь меняют направление движения, а их общая кинетическая энергия остается постоянной.  

Газообразное состояние вещества характеризуется малым взаимодействием между его частицами и большими расстояниями между ними. Поэтому газы смешиваются в любых отношениях. При очень высоких давлениях, когда плотность газа приближается к плотности жидкости и газ нельзя считать идеальным даже приближенно, может наблюдаться ограниченная растворимость.  

Газообразное состояние вещества (газ) - агрегатное состояние вещества, в котором его частицы не связаны или весьма слабо связаны силами взаимодействия и движутся свободно, равномерно заполняя в отсутствие внешних полей весь предоставленный им объем.  

Газообразное состояние вещества характеризуется беспорядочным тепловым движением молекул. Последние соударяются друг с другом и со стенками сосуда, в котором находится газ. Удары молекул о стенки сосуда создают давление, которое численно равно силе ударов, приходящихся на единицу поверхности стенок.  

Газообразное состояние вещества является наиболее простым по своим свойствам, особенно при не слишком больших давлениях и не слишком низких температурах. Если, например, при больших давлениях (больше 100 атм) такие газы, как О2, N2 и Н2, взятые при одинаковых начальных температурах и давлениях, будут иметь заметные оттичия по сжимаемости и тепловому расширению, то при давлениях, близких к одной атмосфере, индивидуальные различия указанных и других газов сглаживаются.  

Газообразное состояние вещества характеризуется тем, что мельчайшие частицы вещества - атомы или молекулы - большую часть времени пребывают сравнительно далеко друг от друга. Силы взаимодействия между ними оказывают заметное действие только в течение весьма коротких промежутков времени, когда частицы газа сталкиваются между собой. Поэтому действие молекулярных сил выражается только в обмене энергиями при столкновениях. Чем меньше плотность газа, тем больше свободный пробег его молекул и, следовательно, тем меньше влияния оказывают молекулярные силы па общее поведение газа при тех или иных изменениях его состояния.  

Газообразное состояние вещества характеризуется тем, что мельчайшие частицы вещества - - атомы или молекулы - большую часть времени пребывают сравнительно далеко друг от друга. Силы взаимодействия между ними оказывают свое действие только в течение весьма коротких промежутков времени, когда частицы газа сталкиваются между собой. Поэтому действие молекулярных сил выражается только в обмене энергиями при столкновениях. Чем меньше плотность газа, тем больше свободный пробег его молекул и, следовательно, тем меньше влияния оказывают молекулярные силы на общее поведение газа при тех или иных изменениях его состояния.  

Газообразное состояние вещества характеризуется ничтожно малыми силами, действующими между молекулами этого вещества, причем размеры самих молекул по сравнению со средними расстояниями между ними также малы. Движение молекул газа в межмолекулярных пространствах до их столкновения совершается равномерно, прямолинейно и беспорядочно.  

Газообразному состоянию вещества соответствует полный молекулярный беспорядок.  

Газообразному состоянию вещества соответствует полный молекулярный беспорядок. Такому распределению молекул (или атомов) соответствует очень большое число всевозможных перегруппировок молекул в пространстве. Однако физические свойства вещества при всех этих перегруппировках остаются неизменными. Поэтому им всем соответствует одно газообразное состояние.  

Различают капельно-жидкое и газообразное состояние вещества.  

К основному газовому закону относится уравнение состояния газа Менделеева-Клайперона pV = nRT , где n – число молей газа, R – постоянная, равная 8,314 Дж/(К×моль) или (л×кПа)/(К×моль). Газ, который подчиняется этому закону, называется идеальным.

Закон Авогадро гласит: в равных объемах всех газов при одинаковых давлении и температуре содержится одинаковое число молекул. В одном моле содержится 6,022×10 23 молекул. При стандартных условиях моль газа занимает объем 22,4 л.

Предполагается, что существование идеального газа возможно при следующих условиях: газ состоит из большого числа молекул, находящихся в непрерывном движении; молекулы газа не притягиваются друг к другу; время столкновения молекул друг с другом очень мало по сравнению со временем между столкновениями; средняя кинетическая энергия газа пропорциональна абсолютной температуре.

Вследствие непрерывного движения молекулы газа стремятся распространиться по всему объему. Такое распространение называется диффузией, скорость этого процесса обратно пропорциональна корню квадратному из плотности газа.

Поведение реальных газов отклоняется от законов, определенных для идеальных газов. Причиной таких отклонений является межмолекулярное взаимодействие, а также то, что каждая молекула имеет свой собственный объем. Ван-дер-Ваальсом было предложено уравнение состояния газа, учитывающее эти факторы: (p + an 2 / V 2)×(V – nb) = nRT .

Здесь постоянная а учитывает межмолекулярные взаимодействия, и ее значение растет с увеличением энергии ван-дер-ваальсовского взаимодействия, а постоянная в учитывает объем молекул, и ее значение увеличивается с увеличением размера молекул.

Жидкое состояние вещества

При повышении давления расстояние между частицами газа уменьшается и все больше проявляются силы притяжения молекул. При некотором давлении, зависящем от природы вещества и температуры, происходит превращение газа в жидкость – конденсация газа.

Согласно молекулярно-кинетической теории расстояния между частицами жидкости намного меньше, чем в газах, поэтому между ними возникают ван-дер-ваальсовы взаимодействия: дисперсионные, диполь-дипольные и индукционные. Эти взаимодействия удерживают молекулы друг около друга и приводят к их некоторому упорядочиванию или объединению частиц. Небольшие группы частиц, объединенных теми или иными силами, получили название кластеров. В случае одинаковых частиц кластеры в жидкости называются ассоциатами.



Степень упорядоченности повышается с увеличением полярности молекул, так как при этом растут ван-дер-ваальсовы силы. Особенно значительно упорядочение при образовании водородных связей между молекулами. Однако даже водородные связи, и тем более ван-дер-ваальсовы силы, относительно непрочны, поэтому молекулы в жидком состоянии находятся в непрерывном движении, получившем название броуновского движения.

Вследствие непрерывного движения отдельные молекулы могут вырываться из жидкости и переходить в газообразное состояние. Этот процесс называется испарением жидкости. Склонность жидкости к испарению называется летучестью. Вследствие испарения растет парциальное давление пара данной жидкости в газовой фазе над жидкостью, т.е. конденсация пара. При некотором парциальном давлении скорости испарения и конденсации пара становятся равными, и такое давление называется давлением насыщенных паров жидкости.

При парциальном давлении насыщенных паров жидкости, равном атмосферному давлению, образуются пузырьки газа жидкости, и начинается кипение. Температура, при которой достигается это состояние, называется температурой кипения жидкости.

Жидкости обладают текучестью. Сопротивление жидкости текучести носит название вязкости. Вязкость растет с увеличением энергии взаимодействия частиц и зависит от структуры молекул. С увеличением температуры вязкость уменьшается.

Силы молекулярного взаимодействия молекул, находящихся на поверхности, не уравновешены, поэтому результирующая сила направлена в глубь жидкости. Под действием этой силы жидкость стремится к сокращению своей поверхности. Наименьшую поверхность при одинаковом объеме имеет сфера, поэтому капля жидкости принимает форму сферы.

Для образования новой поверхности требуется дополнительная энергия, которая получила название поверхностного натяжения s, Дж/м 2 .

Твердые вещества

При охлаждении жидкости происходит дальнейшее снижение кинетической энергии частиц. При некоторой температуре или интервале температур жидкость переходит в твердое состояние, в котором частицы практически утрачивают поступательное движение и сохраняют в основном колебания около своего положения. В отличие от газов носителями свойств жидкости являются молекулы, носителем свойств твердого тела является фаза. Твердые вещества могут находиться в аморфном или кристаллическом состояниях.

Подавляющее большинство твердых тел (в том числе все без исключения металлы) находятся в кристаллическом состоянии, поэтому характеризуются дальним порядком, т.е. трехмерной периодичностью по всему объему твердого тела. Регулярное расположение частиц в твердом теле изображается в виде решетки, в узлах которой находятся те или иные частицы.

Монокристаллы характеризуются анизотропностью, т.е. зависимостью свойств от направления в пространстве. Однако следует заметить, что реальные твердые вещества (металлы в том числе) поликристаллические, т.е. состоят из множества кристаллов, ориентированных по разным осям координат, поэтому в поликристаллических телах анизотропия не проявляется.

Кристаллические тела плавятся при определенной температуре, называемой температурой плавления. Кристаллы характеризуются энергией постоянной кристаллической решетки и координационным числом (числом частиц, непосредственно примыкающих к данной частице в кристалле). Постоянная решетки характеризует расстояния между центрами частиц, занимающих узлы в кристалле в направлении осей, совпадающих с направлениями основных граней. Энергией кристаллической решетки называют энергию, необходимую для разрушения одного моля кристалла и удаления частиц за пределы их взаимодействия. Основной вклад в энергию вносит энергия химической связи между частицами в решетке, кДж/моль.

Наименьшей структурной единицей кристалла, которая выражает все свойства его симметрии, является элементарная ячейка. При многократном повторении ячейки по трем измерениям получают всю кристаллическую решетку. Для металлов характерны два типа кристаллической решетки – кубическая и гексагональная (рис. 2.2).

Рис. 2.2. Типы элементарных ячеек

кристаллической решетки металлов:

а – гексагональная; б – кубическая;

в – кубическая центрированная

Многие вещества могут существовать в двух и более кристаллических структурах. Такое явление называется полиформизмом. Так, а -железо имеет объемноцентрированную кубическую ячейку, а g-железо – гранецентрированную и т.д.

По природе частиц в узлах кристаллической решетки и химических связей между ними все кристаллы можно разделить на молекулярные, атомно-ковалентные, ионные и металлические. Кроме того, существуют кристаллы со смешанными химическими связями.

В молекулярных кристаллах в узлах решеток находятся молекулы, между которыми действуют ван-дер-ваальсовы силы, имеющие высокую энергию и определяющие свойства этих кристаллов. Вещества с молекулами сферической формы имеют структуру плотной упаковки. Кристаллы с полярными молекулами в узлах имеют более высокую прочность и температуру плавления, чем кристаллы с неполярными молекулами. Значительное упрочнение кристаллов обусловливают водородные связи.

В атомно-ковалентных кристаллах в узлах располагаются атомы, образующие друг с другом прочные ковалентные связи. Это обусловливает высокую энергию решетки и соответственно физические свойства веществ. Из-за направленности ковалентных связей координационные числа и плотность упаковки в атомно-ковалентных кристаллах невелики.

В ионных кристаллах структурными единицами являются положительно и отрицательно заряженные ионы, между которыми происходит электростатическое взаимодействие, характеризуемое достаточно высокой энергией. Этим объясняются свойства веществ с ионными кристаллами. Из-за ненаправленности и ненасыщенности связей и сферической формы частиц координационные числа у ионов могут быть высокими. У соединений со сложными ионами форма кристаллической решетки искажается.

Металлические кристаллы характеризуются рядом особых свойств: высокими электрической проводимостью, теплопроводностью, ковкостью, пластичностью, металлическим блеском и высокой отражательной способностью. Эти специфические свойства металлов объясняются особым типом химической связи, получившей название металлической.

У большинства металлов на внешней электронной оболочке имеется значительное число вакантных орбиталей и малое число электронов, поэтому энергетически более выгодно, чтобы электроны не были локализованы, а принадлежали всему металлу. Между положительно заряженными ионами металла и нелокализованными электронами существует электростатическое взаимодействие, обеспечивающее устойчивость вещества. Энергия этого взаимодействия является промежуточной между энергиями ковалентных и молекулярных кристаллов. Наличие электронов, которые могут свободно перемещаться по объему кристалла, обеспечивает высокие электрическую проводимость и теплопроводность, а также ковкость и пластичность металлов.

Тот или иной вид химической связи или взаимодействия в чистом виде в кристаллах встречается редко. Обычно между частицами существуют сложные взаимодействия, которые описываются наложением двух или более видов связей друг на друга. Это так называемые кристаллы со смешанными связями. Так, в некоторых кристаллах наряду с ван-дер-ваальсовыми силами возникают водородные связи, значительно упрочняющие кристаллы. Ионная связь в чистом виде практически отсутствует, так как между частицами в ионных кристаллах также действует ковалентная связь. У a- или f -металлов наряду с нелокализованной металлической связью могут действовать ковалентные связи между соседними атомами. В атомных кристаллах наряду с ковалентной связью могут существовать ван-дер-ваальсовы силы с образованием двумерных плоских (слоистых) структур. Такие соединения называют интеркалятами. Особенно это характерно для кристаллов с включением графита.

Слоистые соединения являются разновидностью особого класса соединений, называемых клатратами или соединениями включения, которые образованы включением молекул «гостей» в полости кристаллического каркаса, состоящего из частиц другого вида – «хозяев».

При перекачке углеводородных газов под давлением образуются твердые газовые клатраты, которые, осаждаясь на внутренних поверхностях трубопроводов и арматуры, забивают их и тем самым нарушают процесс перекачки.