Характеристики рассеяния

Меры разброса выборки.

Минимум и максимум выборки - это соответственно наименьшее и наибольшее значение изучаемой переменной. Разность между максимумом и минимумом называется размахом выборки. Все данные выборки расположены в промежутке между минимумом и максимумом. Эти показатели как бы очерчивают границы выборки.

R№1= 15,6-10=5,6

R №2 =0,85-0,6=0,25

Дисперсия выборки (англ. variance ) и среднее квадратическое отклонение выборки (англ. standard deviation ) являют собой меру изменчивости переменной и характеризуют степень разброса данных вокруг центра. При этом среднее квадратическое отклонение является более удобным показателем в силу того, что имеет ту же размерность, что и собственно исследуемые данные. Поэтому показатель среднего квадратического отклонения используется наряду со значением среднего арифметического выборки для короткого описания результатов анализа данных.

Выборочную дисперсию при целесообразнее считать по формуле:

Стандартное отклонение считается по формуле:

Коэффициент вариации является относительной мерой рассеяния признака.

Коэффициент вариации используется и как показатель однородности выборочных наблюдений. Считается, что если коэффициент вариации не превышает 10 %, то выборку можно считать однородной, т. е. полученной из одной генеральной совокупности.

Т. к. коэффициент вариации в обеих выборках, то они являются однородными.

Выборку можно представить аналитически в виде функции распределения, а так же в виде таблицы частот, состоящей из двух строк. В верхней строке- элементы выборки (варианты), расположенные в порядке возрастания; в нижней строке записываются частоты вариант.

Частота варианты - число, равное количеству повторений данной варианты в выборке.

Выборка №1 «Матери»

Вид кривой распределения

Асимметрия или коэффициент асимметрии (термин был впервые введен Пирсоном, 1895) является мерой несимметричности распределения. Если асимметрия отчетливо отличается от 0, распределение асимметричное, плотность нормального распределения симметрична относительно среднего.

Показатель асимметрии (англ. skewness ) используется для того, чтобы охарактеризовать степень симметричности распределения данных вокруг центра. Асимметрия может принимать как отрицательные, так и положительные значения. Положительное значение данного параметра указывает на то, что данные смещены влево от центра, отрицательное - вправо. Таким образом, знак показателя асимметрии указывает на направление смещения данных, тогда как величина - на степень этого смещения. Асимметрия равная нулю говорит о том, что данные симметрично сконцентрированы вокруг центра.

Т.к. асимметрия положительная, следовательно, вершина кривой сдвигается влево от центра.

Коэффициент эксцесса (англ. kurtosis ) является характеристикой того, насколько кучно основная масса данных группируется около центра.

При положительном эксцессе - кривая заостряется, при отрицательном - сглаживается.

Кривая сглаживается;

Кривая заостряется.

Одна из причин проведения статистического анализа заключается в необходимости учитывать влияние на исследуемый показатель случайных факторов (возмущений), которые приводят к разбросу (рассеянию) данных. Решение задач, в которых присутствует разброс данных, связано с риском, поскольку даже при использовании всей доступной информации нельзя точно предугадать, что же произойдет в будущем. Для адекватной работы в таких ситуациях целесообразно понимать природу риска и уметь определять степень рассеяния набора данных. Существуют три числовые характеристики, описывающие меру рассеяния: стандартное отклонение, размах и коэффициент вариации (изменчивости). В отличие от типических показателей (среднее, медиана, мода), характеризующих центр, характеристики рассеяния показывают, насколько близко к этому центру располагаются отдельные значения набора данных
Определение стандартного отклонения Стандартное отклонение (среднее квадратическое отклонение) является мерой случайных отклонений значений данных от среднего. В реальной жизни большинство данных характеризуется рассеянием, т.е. отдельные значения располагаются на некотором расстоянии от среднего.
Использовать стандартное отклонение как обобщающую характеристику рассеяния, просто усреднив отклонения данных нельзя, потому что часть отклонений окажется положительной, а другая часть – отрицательной, и, вследствие этого, результат усреднения может оказаться равным нулю. Чтобы избавиться от отрицательного знака, применяют стандартный прием: сначала вычисляют дисперсию как сумму квадратов отклонений, поделенную на (n –1), а затем из полученного значения извлекают квадратный корень. Формула для вычисления стандартного отклонения выглядит следующим образом: Замечание 1. Дисперсия не несет никакой дополнительной информации по сравнению со стандартным отклонением, однако ее сложнее интерпретировать, т. к. она выражается в «единицах в квадрате», в то время как стандартное отклонение выражено в привычных для нас единицах (например, в долларах). Замечание 2. Приведенная выше формула предназначена для расчета стандартного отклонения по выборке и более точно называется выборочное стандартное отклонение . При расчете стандартного отклонения генеральной совокупности (обозначается символом s) производят деление на n . Величина выборочного стандартного отклонения получается несколько больше (т. к. делят на n –1), что обеспечивает поправку на случайность самой выборки. В случае, когда набор данных имеет нормальное распределение, стандартное отклонение приобретает особый смысл. На рисунке, представленном ниже, по обе стороны от среднего сделаны отметки на расстоянии одного, двух и трех стандартных отклонений соответственно. Из рисунка видно, что примерно 66,7% (две трети) всех значений находятся в пределах одного стандартного отклонения по обе стороны от среднего значения, 95% значений окажутся в пределах двух стандартных отклонений от среднего и почти все данные (99,7%) будут находиться в пределах трех стандартных отклонений от среднего значения.
66,7%


Это свойство стандартного отклонения для нормально распределенных данных называется «правилом двух третей».

В некоторых ситуациях, например при анализе контроля качества продукции, часто устанавливают такие пределы, чтобы в качестве заслуживающей внимание проблемы рассматривались те результаты наблюдений (0,3%), которые отстоят от среднего на расстоянии большем, чем три стандартных отклонения.

К сожалению, если данные не подчиняются нормальному распределению, то описанное выше правило применять нельзя.

В настоящее время существует ограничение, называемое правилом Чебышева, которое можно применять к ассиметричным (скошенным) распределениям.

Сформировать исходные данные Совокупность СВ

В таблице 1 представлена динамика изменений дневной прибыли на бирже, зафиксированной в рабочие дни за период от 31 июля по 9 октября 1987 года.

Таблица 1. Динамика изменения дневной прибыли на бирже

Дата Дневная прибыль Дата Дневная прибыль Дата Дневная прибыль
-0,006 0,009 0,012
-0,004 -0,015 -0,004
0,008 -0,006 0,002
0,011 0,002 -0,008
-0,001 0,011 -0,010
0,017 0,013 -0,013
0,017 0,002 0,009
-0,004 -0,018 -0,020
0,008 -0,014 -0,003
-0,002 -0,001 -0,001
0,006 -0,001 0,017
-0,017 -0,013 0,001
0,004 0,030 -0,000
0,015 0,007 -0,035
0,001 -0,007 0,001
-0,005 0,001 -0,014
Запустить Excel
Создать файл Щелкните на кнопке Сохранить на панели инструментов Стандартная. откройте В появившемся диалоговом окне папку Статистика и задайте имя файлу Характеристики рассеяния.xls.
Задать метку 6. На Листе1 в ячейке A1 задайте метку Дневная прибыль, 7. а в диапазон A2:A49 введите данные из Таблицы 1.
Задать функцию СРЕДНЕЕ ЗНАЧЕНИЕ 8. В ячейку D1 введите метку Среднее. В ячейке D2 вычислите среднее, используя статистическую функцию СРЗНАЧ.
Задать функцию СТАНДОТКЛОН В ячейку D4 введите метку Стандартное отклонение. В ячейке D5 вычислите стандартное отклонение, используя статистическую функцию СТАНДОТКЛОН
Уменьшите разрядность полученного результата до четвертого знака после запятой.
Интерпретация результатов Снижение дневной прибыли в среднем составило 0,04% (значение средней дневной прибыли получилось равным –0,0004). Это означает, что средняя дневная прибыль за рассматриваемый период времени была приблизительно равна нулю, т.е. на рынке держался средний курс. Стандартное отклонение получилось равным 0,0118. Это означает, что вложенный в фондовый рынок один доллар ($1) за сутки изменялся в среднем на $0,0118, т.е. его вложение могло привести к прибыли или потере в размере $0,0118.
Проверим, соответствуют ли приведенные в Таблице 1 значения дневной прибыли правилам нормального распределения 1. Рассчитайте интервал, соответствующий одному стандартному отклонению по обе стороны от среднего. 2. В ячейках D7, D8 и F8 задайте соответственно метки: Одно стандартное отклонение, Нижняя граница, Верхняя граница. 3. В ячейку D9 введите формулу = -0,0004 – 0,0118, а в ячейку F9 введите формулу = -0,0004 + 0,0118. 4. Получите результат с точностью до четвертого знака после запятой.

5. Определите число значений дневной прибыли, находящихся в пределах одного стандартного отклонения. Сначала отфильтруйте данные, оставив значения дневной прибыли в интервале [-0,0121, 0,0114]. Для этого выделите любую ячейку в столбце A со значениями дневной прибыли и выполните команду:

Данные®Фильтр®Автофильтр

Откройте меню, щелкнув на стрелке в заголовке Дневная прибыль , и выберите (Условие…). В диалоговом окне Пользовательский автофильтр установите параметры как показано ниже. Щелкните на кнопке ОК.

Чтобы подсчитать число отфильтрованных данных, выделите диапазон значений дневной прибыли, щелкните правой кнопкой на свободном месте в строке состояния и в контекстном меню выберите команду Количество значений. Прочтите результат. Теперь отобразите все исходные данные, выполнив команду: Данные®Фильтр®Отобразить все и выключите автофильтр с помощью команды: Данные®Фильтр®Автофильтр.

6. Вычислите процент значений дневной прибыли, удаленных от среднего на расстоянии одного стандартного отклонения. Для этого в ячейку H8 занесите метку Процент , а в ячейке H9 запрограммируйте формулу вычисления процента и получите результат с точностью до одного знака после запятой.

7. Рассчитайте интервал значений дневной прибыли в пределах двух стандартных отклонений от среднего. В ячейках D11, D12 и F12 задайте соответственно метки: Два стандартных отклонения , Нижняя граница , Верхняя граница . В ячейки D13 и F13 введите расчетные формулы и получите результат с точностью до четвертого знака после запятой.

8. Определите число значений дневной прибыли, находящихся в пределах двух стандартных отклонений, предварительно отфильтровав данные.

9. Вычислите процент значений дневной прибыли, удаленных от среднего на расстоянии двух стандартных отклонений. Для этого в ячейку H12 занесите метку Процент , а в ячейке H13 запрограммируйте формулу вычисления процента и получите результат с точностью до одного знака после запятой.

10. Рассчитайте интервал значений дневной прибыли в пределах трех стандартных отклонений от среднего. В ячейках D15, D16 и F16 задайте соответственно метки: Три стандартных отклонения , Нижняя граница , Верхняя граница . В ячейки D17 и F17 введите расчетные формулы и получите результат с точностью до четвертого знака после запятой.

11. Определите число значений дневной прибыли, находящихся в пределах трех стандартных отклонений, предварительно отфильтровав данные. Вычислите процент значений дневной прибыли. Для этого в ячейку H16 занесите метку Процент , а в ячейке H17 запрограммируйте формулу вычисления процента и получите результат с точностью до одного знака после запятой.

13. Постройте гистограмму дневной прибыли акций на бирже и поместите ее вместе с таблицей распределения частот в области J1:S20. Покажите на гистограмме приблизительно среднее значение и интервалы, соответствующие одному, двум и трем стандартным отклонениям от среднего соответственно.

Вариационный ряд

В генеральной совокупности исследуется некоторый количественный признак. Из нее случайным образом извлекается выборка объема n , то есть число элементов выборки равно n . На первом этапе статистической обработки производят ранжирование выборки, т.е. упорядочивание чисел x1, x2, …, xn по возрастанию. Каждое наблюдаемое значение xi называется вариантой . Частота mi – это число наблюдений значения xi в выборке. Относительная частота (частость) wi – это отношение частоты mi к объему выборки n : wi=mi/n.

При изучении вариационного ряда также используют понятия накопленной частоты и накопленной частости. Пусть x некоторое число. Тогда количество вариантов, значения которых меньше x , называется накопленной частотой: miнак=mi для xi называется накопленной частостью: wiнак=miнак/n.

Признак называется дискретно варьируемым, если его отдельные значения (варианты) отличаются друг от друга на некоторую конечную величину (обычно целое число). Вариационный ряд такого признака называется дискретным вариационным рядом.

Числовые характеристики вариационного ряда

Числовые характеристики вариационных рядов вычисляют по данным, полученным в результате наблюдений (статистическим данным), поэтому их называют также статистическими характеристиками или оценками. На практике часто оказывается достаточным знание сводных характеристик вариационных рядов: средних или характеристик положения (центральной тенденции); характеристик рассеяния или вариации (изменчивости); характеристик формы (асимметрии и крутости распределения).

Средняя арифметическая характеризует значения признака, вокруг которого концентрируются наблюдения, т.е. центральную тенденцию распределения.

Достоинство медианы как меры центральной тенденции заключается в том, что на нее не влияет изменение крайних членов вариационного ряда, если любой из них, меньший медианы, остается меньше ее, а любой, больший медианы, продолжает быть большее ее. Медиана предпочтительнее средней арифметической для ряда, у которого крайние варианты по сравнению с остальными оказались чрезмерно большими или малыми. Особенность моды как меры центральной тенденции заключается в том, что она также не изменяется при изменении крайних членов ряда, т.е. обладает определенной

Характеристики поло

Среднее арифметическое (выборочное среднее)

xв=i=1nmixin

Мода

Mo = xj, если mj = mmax

Me = xk+1, если n = 2k+1;

Me = (xk + xk+1)/2, если n = 2k

Характеристики рассеяния

Выборочная дисперсия

Dв=i=1nmixixв2n

Выборочное среднее квадратичное отклонение

σв=Dв

Исправленная дисперсия

S2=nn1Dв

Исправленное среднее квадратичное отклонение

Коэффициент вариации

V=σвxв∙100%

Среднее абсолютное

отклонение

θ=i=1nmixixвn

Вариационный размах

R = xmax xmin

Квартильный размах

Rкв = Qв – Qн

Характеристики формы

Коэффициент асимметрии

As=i=1nmixixв3nσв3

Коэффициент эксцесса

Ek=i=1nmixixв4nσв43

устойчивостью к вариации признака. Но наибольший интерес представляют меры вариации (рассеяния) наблюдений вокруг средних величин, в частности, вокруг средней арифметической. К таким оценкам относятся выборочная дисперсия и среднее квадратичное отклонение . Выборочная дисперсия обладает одним существенным недостатком: если среднее арифметическое выражается в тех же единицах, что и значения случайной величины, то, согласно определению, дисперсия выражается уже в квадратных единицах. Этого недостатка можно избежать, если использовать в качестве меры вариации признака среднее квадратичное отклонение. При малых объемах выборки дисперсия является смещенной оценкой, поэтому при объемах n 30 используют исправленную дисперсию и исправленное среднее квадратичное отклонение . Другой часто используемой характеристикой меры рассеяния признака является коэффициент вариации . Достоинством коэффициента вариации является то, что это безразмерная характеристика, позволяющая сравнивать варьирование несоизмеримых

вариационных рядов. Кроме того, чем меньше значение коэффициента вариации, тем однороднее совокупность по изучаемому признаку и типичнее средняя. Совокупности с коэффициентом вариации V > 3035% принято считать неоднородными.

Наряду с дисперсией используют и среднее абсолютное отклонение . Достоинством среднего линейного отклонения является его размерность, т.к. выражается в тех же единицах, что и значения случайной величины. Дополнительным и простым показателем рассеяния значений признака является квартильный размах. Квартильный размах включает в себя медиану и 50% наблюдений, отражающих центральную тенденцию признака, исключая наименьшие и наибольшие значения.

К характеристикам формы относят коэффициент асимметрии и эксцесс. Если коэффициент асимметрии равен нулю, то распределение имеет симметричную форму. Если распределение асимметрично, одна из ветвей полигона частот имеет более пологий спуск, чем другая. Если асимметрия правосторонняя, то справедливо неравенство: xв>Me>Mo, что означает преимущественное появление в распределении более высоких значений признака. Если асимметрия левосторонняя, то выполняется неравенство: , означающее, что в распределении чаще встречаются более низкие значения. Чем больше значение коэффициента асимметрии, тем более асимметрично распределение (до 0,25 асимметрия незначительная; от 0,25 до 0,5 умеренная; свыше 0,5 – существенная).

Эксцесс является показателем крутости (островершинности) вариационного ряда по сравнению с нормальным распределением. Если эксцесс положителен, то полигон вариационного ряда имеет более крутую вершину. Это говорит о скоплении значений признака в центральной зоне ряда распределения, т.е. о преимущественном появлении в данных значений, близких к средней величине. Если эксцесс отрицателен то полигон имеет более пологую вершину по сравнению с нормальной кривой. Это означает, что значения признака не концентрируются в центральной части ряда, а достаточно равномерно рассеяны по всему диапазону от минимального до максимального значения. Чем больше абсолютная величина эксцесса, тем существеннее распределение отличается от нормального.

У нас самая большая информационная база в рунете, поэтому Вы всегда можете найти походите запросы

Эта тема принадлежит разделу:

Поверхностное пластическое деформирование (ППД)

Шпаргалки на экзамен. Детали машин, методы поверхностного пластического деформирования (ППД). Ответы

К данному материалу относятся разделы:

Явления, происходящие в поверхностном слое детали при обработке ППД, механизм упрочнения

Качество поверхности, получаемое при обкатывании роликовым инструментом. Схема процесса, величина давления, кратность приложения деформирующей силы, технологическая оснастка в процессах обкатывания шаровым инструментом.

Качество поверхности, получаемое при обкатывании шаровым инструментом. Схема процесса, величина давления, кратность приложения деформирующей силы, технологическая оснастка в процессах обкатывания шаровым инструментом.

Формообразование микропрофиля поверхности при обработке скользящим индентором, его назначение, технологическая оснастка в процессах вибрациионной упрочняющей обработки, область применения.

Формообразование микропрофиля поверхности при обработке вращающимся индентором, его назначение, технологическая оснастка в процессах вибрационной упрочняющей обработки, область применения.

Какое влияние оказывает угол сетки рисок абразивных зерен бруска на производительность процесса и качество обрабатываемой поверхности при суперфинишировании? Как настроить технологическую оснастку на получение определенного угла сетки рисок?

Как обеспечить получение системы параллельных каналов и правильную сетку каналов при обработке скользящим индентором в процессах ППД? Сравнительная характеристика этих сеток каналов и их влияние на эксплуатационные свойства поверхностей деталей машин.

Какими технологическими методами обеспечивается качество поверхностного слоя детали на отделочном этапе обработки? Приведите их сравнительную характеристику. Критерии выбора определенного метода для решения конкретной технической задачи.

Виброударная обработка, сущность процесса, область применения, технологическое оснащение.

Суперфиниширование, сущность процесса, область применения. Выбор размеров, способа крепления брусков и их правки в процессах суперфиниширования.

Классификация методов поверхностного пластического деформирования (ППД), сравнительная характеристика и особенности их применения. Технологическое оснащение процессов ППД.

Объясните термины: опорная длина профиля, опорная кривая профиля поверхности, приведите примеры микрогеометрии поверхностей, полученные различными технологическими методами и методику оценки их несущей способности.

Жесткий и упругий контакт в процессах ППД, и его технологическое обеспечение. Влияние вида контакта на качество поверхностного слоя.

Почему для повышения эксплуатационных параметров деталей применяют вибрационное пластическое деформирование? Сравните его с традиционными методами обкатывания и выглаживания без вибраций. Характеристика технологического оснащения этих сравниваемых методов

Явления, происходящие в поверхностном слое детали при обработке ППД, механизм формирования остаточных напряжений.

Поверхностное и объемное дорнование отверстий, сущность процесса,область применения, технологическое обеспечение дорнования.

Сравнительная характеристика методов шлифования: скоростное; силовое; совмещенное; интегральное; упрочняющее.

Понятие эксперимента. Ошибки измерений: промахи, систематические, случайные. Похожие материалы:

Особенности изучения темы «Алгоритмы» в начальной школе с применение компьютерных обучающих программ

Курсовая работа направление подготовки Педагогическое образование. Цель данной работы состоит в том, чтобы выявить и доказать необходимость и эффективность изучения алгоритмизации в начальной школе с применением компьютерных обучающих программ.

Топографічні карти універсального призначення

Реферат. Топографічні фотокарти суші та акваторії. Зарубіжні топографічні карти

Эстетика (Аристотель и Платон)

Аристотель, теории мимезиса, принцип соразмерности человека и прекрасного. Музыкальная эстетика, пифагорейская эстетика, Музыкально-математическая гармония. Идеалистическая эстетика Платона

Система применения удобрения в севообороте

Курсовой проект агрономического факультета. Кафедра агрохимии и почвоведения

Энергоэффективность в строительстве. Тепловая сушка

Часть курсового проекта. Тепловая экономичность сушильных установок. Воздушные завесы.

Главная характеристика рассеивания вариационного ряда называется дисперсией

Главная характеристика рассеивания вариационного ряда называется дисперсией . Выборочная дисперсия D в рассчитывается по следующей формуле:

где x i – i -ая величина из выборки, встречающаяся m i раз; n – объём выборки; – выборочная средняя; k – количество различных значений в выборке. В рассматриваемом примере: x 1 =72, m 1 =50; x 2 =85, m 2 =44; x 3 =69, m 3 =61; n =155; k =3; . Тогда:

Заметим, что чем больше значение дисперсии, тем сильнее отличие значений измеряемой величины друг от друга. Если в выборке все значения измеряемой величины равны между собой, то дисперсия такой выборки равна нулю.

Дисперсия обладает особыми свойствами.

Свойство 1. Значение дисперсии любой выборки неотрицательно, т.е. .

Свойство 2. Если измеряемая величина постоянна X=c, то дисперсия для такой величины равна нулю: D [ c ]= 0.

Свойство 3. Если все значения измеряемой величины x в выборке увеличить в c раз, то дисперсия данной выборки увеличится в c 2 раз: D [ cx ]= c 2 D [ x ], где c = const .

Иногда вместо дисперсии используют выборочное среднее квадратическое отклонение , которое равно арифметическому квадратному корню из выборочной дисперсии: .

Для рассмотренного примера выборочное среднее квадратическое отклонение равно .

Дисперсия позволяет оценить не только степень различия измеряемых показателей внутри одной группы, но может быть использована и для определения отклонения данных между разными группами. Для этого используется несколько видов дисперсии.

Если в качестве выборки берётся какая-либо группа, то дисперсия данной группы называется групповой дисперсией . Чтобы выразить численно различия между дисперсиями нескольких групп, существует понятие межгрупповой дисперсии . Межгрупповой дисперсией называется дисперсия групповых средних относительно общей средней:

где k – число групп в общей выборке, - выборочная средняя для i -ой группы, n i – объём выборки i -ой группы, - выборочная средняя для всех групп.

Рассмотрим пример.

Средняя оценка за контрольную работу по математике в 10 «А» классе составила 3.64, а в 10 «Б» классе 3.52. В 10 «А» учится 22 человека, а в 10 «Б» - 21. Найдём межгрупповую дисперсию.

В данной задаче выборка разбивается на две группы (два класса). Выборочная средняя для всех групп равна:

.

В таком случае межгрупповая дисперсия равна:

Поскольку межгрупповая дисперсия близка к нулю, то мы можем сделать вывод, что оценки одной группы (10 «А» класса) в малой степени отличаются от оценок второй группы (10 «Б» класса). Иными словами, с точки зрения межгрупповой дисперсии рассмотренные группы в незначительной степени отличаются по заданному признаку.

Если общая выборка (например, класс учеников) разбита на несколько групп, то помимо межгрупповой дисперсии можно рассчитать ещё внутригрупповую дисперсию . Такая дисперсия является средней величиной для всех групповых дисперсий.

Внутригрупповая дисперсия D внгр рассчитывается по формуле:

где k – количество групп в общей выборке, D i – дисперсия i -ой группы объёма n i .

Существует взаимосвязь между общей (D в ), внутригрупповой (D внгр ) и межгрупповой (D межгр ) дисперсиями:

D в = D внгр + D межгр .

Характеристики положения описывают центр распределения. В то же время значения вариант могут группироваться вокруг него как в широкой, так и в узкой полосе. Поэтому для описания распределения необходимо охарактеризовать диапазон изменения значений признака. Для описания диапазона варьирования признака используются характеристики рассеяния. Наиболее широкое применение нашли размах вариации, дисперсия, стандартное отклонение и коэффициент вариации.

Размах вариации определяется как разность между максимальным и минимальным значением признака в изучаемой совокупности:

R =x max -x min .

Очевидным достоинством рассматриваемого показателя является простота расчета. Однако поскольку размах вариации зависит от величин только крайних значений признака, то область его применения ограничена достаточно однородными распределениями. В остальных случаях информативность этого показателя весьма невелика, поскольку существует очень много распределений, сильно отличающихся по форме, но имеющих одинаковый размах. В практических исследованиях размах вариации используется иногда при малых (не более 10) объемах выборки. Так, например, по размаху вариации легко оценить, насколько различаются лучший и худший результаты в группе спортсменов.

В рассматриваемом примере:

R =16,36 – 13,04=3,32 (м).

Второй характеристикой рассеяния является дисперсия. Дисперсия представляет собой средний квадрат отклонения значения случайной величины от ее среднего значения. Дисперсия есть характеристика рассеяния, разбросанности значений величины около ее среднего значения. Само слово «дисперсия» означает «рассеяние».

При проведении выборочных исследований необходимо установить оценку для дисперсии. Дисперсия, вычисляемая по выборочным данным, называется выборочной дисперсией и обозначается S 2 .

На первый взгляд наиболее естественной оценкой для дисперсии является статистическая дисперсия, вычисленная, исходя из определения, по формуле:

В этой формуле - сумма квадратов отклонений значений признака х i от среднего арифметиче­ского . Для получения среднего квадрата отклонений эта сумма поделена на объем выборки п .

Однако такая оценка не является несмещенной. Можно показать, что сумма квадратов отклонений значений признака для выборочного среднего арифметического меньше, чем сумма квадратов отклонений от любой другой величины, в том числе от истинного среднего (математического ожидания). Поэтому результат, получаемый по приведенной выше формуле, будет содержать систематическую ошибку, и оценочное значение дисперсии окажется заниженным. Для ликвидации смещения достаточно ввести поправочный коэффициент . В результате получается следующее соотношение для оценочной дисперсии:

При больших значениях n , естественно, обе оценки - смещенная и несмещенная – будут различаться очень мало и введение поправочного множителя теряет смысл. Как правило, уточнение формулы для оценки дисперсии следует производить при n <30.

В случае сгруппированных данных последнюю формулу для упрощения вычислений можно привести к следующему виду:

где k - число интервалов группировки;

n i - частота интервала c номером i ;

x i - срединное значение интервала c номером i .

В качестве примера проведем вычисление дисперсии для сгруппированных данных разбираемого нами примера (см. табл. 4.):

S 2 =/ 28=0,5473 (м 2).

Дисперсия случайной величины имеет размерность квадрата размерности случайной величины, что затрудняет ее интерпретацию и делает не очень наглядной. Для более наглядного описания рассеяния удобнее пользоваться характеристикой, размерность которой совпадает с размерностью исследуемого признака. С этой целью вводится понятие стандартного отклонения (или среднего квадратического отклонения ).

Стандартным отклонением называется положительный корень квадратный из дисперсии:

В разбираемом нами примере стандартное отклонение равно

Стандартное отклонение имеет те же единицы измерения, что и результаты измерения исследуемого признака и, таким образом, оно характеризует степень отклонения признака от среднего арифметического. Иными словами, оно показывает, как расположена основная часть вариант относительно среднего арифметического.

Стандартное отклонение и дисперсия являются наиболее широко применяемыми показателями вариации. Связано это с тем, что они входят в значительную часть теорем теории вероятностей, служащей фундаментом математической статистики. Помимо этого, дисперсия может быть разложена на составные элементы, позволяющие оценить влияние различных факторов на вариацию исследуемого признака.

Помимо абсолютных показателей вариации, которыми являются дисперсия и стандартное отклонение, в статистике вводятся относительные. Наиболее часто применяется коэффициент вариации. Коэффициент вариации равен отношению стандартного отклонения к среднему арифметическому, выраженному в процентах:

Из определения ясно, что по своему смыслу коэффициент вариации представляет собой относительную меру рассеяния признака.

Для рассматриваемого примера:

Коэффициент вариации широко используется при проведении статистических исследований. Будучи величиной относительной, он позволяет сравнивать колеблемости как признаков, имеющих различные единицы измерения, так одного и того же признака в нескольких разных совокупностях с различными значениями среднего арифметического.

Коэффициент вариации используется для характеристики однородности полученных экспериментальных данных. В практике физической культуры и спорта разброс результатов измерений в зависимости от значения коэффициента вариации принято считать небольшим (V<10%), средним (11-20%) и большим (V> 20%).

Ограничения на использование коэффициента вариации связаны с его относительным характером – определение содержит нормировку на среднее арифметическое. В связи с этим при малых абсолютных значениях среднего арифметического коэффициент вариации может потерять свою информативность. Чем ближе значение среднего арифметического к нулю, тем менее информативным становится этот показатель. В предельном случае среднее арифметическое обращается в ноль (например, температура) и коэффициент вариации обращается в бесконечность независимо от разброса признака. По аналогии со случаем погрешности можно сформулировать следующее правило. Если значение среднего арифметического в выборке больше единицы, то использование коэффициента вариации правомерно, в противном случае для описания разброса опытных данных следует использовать дисперсию и стандартное отклонение.

В заключение этой части рассмотрим оценку варьирования значений оценочных характеристик. Как уже было отмечено, значения характеристик распределения, рассчитанные по данным эксперимента, не совпадают с их истинными значениями для генеральной совокупности. Точно установить последние не представляется возможным, поскольку, как правило, невозможно обследовать всю генеральную совокупность. Если использовать для оценки параметров распределения результаты разных выборок из одной и той же генеральной совокупности, то окажется, что эти оценки для разных выборок отличаются друг от друга. Оценочные значения флуктуируют около своих истинных значений.

Отклонения оценок генеральных параметров от истинных значений этих параметров называются статистическими ошибками. Причиной их возникновения является ограниченный объем выборки - не все объекты генеральной совокупности входят в нее. Для оценки величины статистических ошибок используется стандартное отклонение выборочных характеристик.

В качестве примера рассмотрим наиболее важную характеристику положения - среднее арифметическое. Можно показать, что стандартное отклонение среднего арифметического определяется соотношением:

где σ - стандартное отклонение для генеральной совокупности.

Поскольку истинное значение стандартного отклонения не известно, то для оценки стандартного отклонения выборочного среднего используется величина, называемая стандартной ошибкой среднего арифметического и равная:

Величина характеризует ошибку, которая в среднем допускается при замене генерального среднего его выборочной оценкой. Согласно формуле, увеличение объема выборки при проведении исследования приводит к уменьшению стандартной ошибки пропорционально корню квадратному из объема выборки.

Для рассматриваемого примера значение стандартной ошибки среднего арифметического равно . В нашем случае она оказалась в 5,4 раза меньше значения стандартного отклонения.