Tables of values ​​of sines (sin), cosines (cos), tangents (tg), cotangents (ctg) are a powerful and useful tool that helps to solve many problems, both theoretical and applied. In this article, we will provide a table of the main trigonometric functions(sines, cosines, tangents and cotangents) for angles 0, 30, 45, 60, 90, ..., 360 degrees (0, π 6, π 3, π 2, . . . , 2 π radians). Separate Bradis tables for sines and cosines, tangents and cotangents will also be shown, with an explanation of how to use them to find the values ​​of basic trigonometric functions.

Table of basic trigonometric functions for angles 0, 30, 45, 60, 90, ..., 360 degrees

Based on the definitions of sine, cosine, tangent and cotangent, you can find the values ​​of these functions for angles of 0 and 90 degrees

sin 0 = 0 , cos 0 = 1 , t g 0 = 0 , cotangent of zero - not defined,

sin 90 ° = 1 , cos 90 ° = 0 , with t g 90 ° = 0 , ninety degrees tangent not defined.

The values ​​of sines, cosines, tangents and cotangents in the course of geometry are defined as the ratio of the sides of a right triangle, the angles of which are 30, 60 and 90 degrees, and also 45, 45 and 90 degrees.

Definition of trigonometric functions for acute angle in a right triangle

Sinus is the ratio of the opposite leg to the hypotenuse.

Cosine is the ratio of the adjacent leg to the hypotenuse.

Tangent- the ratio of the opposite leg to the adjacent one.

Cotangent- the ratio of the adjacent leg to the opposite.

In accordance with the definitions, the values ​​of the functions are found:

sin 30 ° = 1 2 , cos 30 ° = 3 2 , t g 30 ° = 3 3 , c t g 30 ° = 3 , sin 45 ° = 2 2 , cos 45 ° = 2 2 , t g 45 ° = 1 , c t g 45 ° = 1 , sin 60 ° = 3 2 , cos 45 ° = 1 2 , t g 45 ° = 3 , c t g 45 ° = 3 3 .

Let's summarize these values ​​in a table and call it a table of basic values ​​of sine, cosine, tangent and cotangent.

Table of basic values ​​of sines, cosines, tangents and cotangents

α ° 0 30 45 60 90
sinα 0 1 2 2 2 3 2 1
cosα 1 3 2 2 2 1 2 0
tgα 0 3 3 1 3 not determined
c t g not determined 3 1 3 3 0
α , r a d i a n 0 π6 π 4 π 3 π 2

One of the important properties of trigonometric functions is periodicity. Based on this property, this table can be expanded using cast formulas. Below we present an extended table of values ​​of the main trigonometric functions for angles 0, 30, 60, ..., 120, 135, 150, 180, ... , 360 degrees (0, π 6 , π 3 , π 2 , . . . , 2 pi radians).

Table of sines, cosines, tangents and cotangents

α ° 0 30 45 60 90 120 135 150 180 210 225 240 270 300 315 330 360
sinα 0 1 2 2 2 3 2 1 3 2 2 2 1 2 0 - 1 2 - 2 2 - 3 2 - 1 - 3 2 - 2 2 - 1 2 0
cosα 1 3 2 2 2 1 2 0 - 1 2 - 2 2 - 3 2 - 1 - 3 2 - 2 2 - 1 2 0 1 2 2 2 3 2 1
tgα 0 3 3 1 3 - - 1 - 3 3 0 0 3 3 1 3 - - 3 - 1 0
c t g - 3 1 3 3 0 - 3 3 - 1 - 3 - 3 1 3 3 0 - 3 3 - 1 - 3 -
α , r a d i a n 0 π6 π 4 π 3 π 2 2 π 3 3 π 4 5 pi 6 π 7 pi 6 5 π 4 4 π 3 3 π 2 5 π 3 7 π 4 11 pi 6 2 pi

The periodicity of the sine, cosine, tangent and cotangent allows you to expand this table to arbitrarily large angles. The values ​​collected in the table are used most often in solving problems, so it is recommended to learn them by heart.

How to use the table of basic values ​​​​of trigonometric functions

The principle of using the table of values ​​of sines, cosines, tangents and cotangents is clear on an intuitive level. The intersection of a row and a column gives the function value for a particular angle.

Example. How to use the table of sines, cosines, tangents and cotangents

You need to find out what sin 7 π 6 is equal to

We find a column in the table, the value of the last cell of which is 7 π 6 radians - the same as 210 degrees. Then we select the term of the table in which the values ​​of the sines are presented. At the intersection of a row and a column, we find the desired value:

sin 7 π 6 \u003d - 1 2

Bradis tables

The Bradis table allows you to calculate the value of the sine, cosine, tangent or cotangent with an accuracy of up to 4 decimal places without the use of computer technology. This is a kind of replacement for an engineering calculator.

Reference

Vladimir Modestovich Bradis (1890 - 1975) - Soviet mathematician and teacher, since 1954 a corresponding member of the USSR APN. Tables of four-digit logarithms and natural trigonometric quantities, developed by Bradis, first appeared in 1921.

First, we give the Bradys table for sines and cosines. It allows one to accurately calculate the approximate values ​​of these functions for angles containing an integer number of degrees and minutes. The leftmost column of the table shows degrees, while the top row shows minutes. Note that all values ​​of the Bradys table angles are multiples of six minutes.

Bradis table for sines and cosines

sin 0" 6" 12" 18" 24" 30" 36" 42" 48" 54" 60" cos 1" 2" 3"
0.0000 90°
0.0000 0017 0035 0052 0070 0087 0105 0122 0140 0157 0175 89° 3 6 9
0175 0192 0209 0227 0244 0262 0279 0297 0314 0332 0349 88° 3 6 9
0349 0366 0384 0401 0419 0436 0454 0471 0488 0506 0523 87° 3 6 9
0523 0541 0558 0576 0593 0610 0628 0645 0663 0680 0698 86° 3 6 9
0698 0715 0732 0750 0767 0785 0802 0819 0837 0854 0.0872 85° 3 6 9
0.0872 0889 0906 0924 0941 0958 0976 0993 1011 1028 1045 84° 3 6 9
1045 1063 1080 1097 1115 1132 1149 1167 1184 1201 1219 83° 3 6 9
1219 1236 1253 1271 1288 1305 1323 1340 1357 1374 1392 82° 3 6 9
1392 1409 1426 1444 1461 1478 1495 1513 1530 1547 1564 81° 3 6 9
1564 1582 1599 1616 1633 1650 1668 1685 1702 1719 0.1736 80° 3 6 9
10° 0.1736 1754 1771 1788 1805 1822 1840 1857 1874 1891 1908 79° 3 6 9
11° 1908 1925 1942 1959 1977 1994 2011 2028 2045 2062 2079 78° 3 6 9
12° 2079 2096 2113 2130 2147 2164 2181 2198 2215 2233 2250 77° 3 6 9
13° 2250 2267 2284 2300 2317 2334 2351 2368 2385 2402 2419 76° 3 6 8
14° 2419 2436 2453 2470 2487 2504 2521 2538 2554 2571 0.2588 75° 3 6 8
15° 0.2588 2605 2622 2639 2656 2672 2689 2706 2723 2740 2756 74° 3 6 8
16° 2756 2773 2790 2807 2823 2840 2857 2874 2890 2907 2924 73° 3 6 8
17° 2924 2940 2957 2974 2990 3007 3024 3040 3057 3074 3090 72° 3 6 8
18° 3090 3107 3123 3140 3156 3173 3190 3206 3223 3239 3256 71° 3 6 8
19° 3256 3272 3289 3305 3322 3338 3355 3371 3387 3404 0.3420 70° 3 5 8
20° 0.3420 3437 3453 3469 3486 3502 3518 3535 3551 3567 3584 69° 3 5 8
21° 3584 3600 3616 3633 3649 3665 3681 3697 3714 3730 3746 68° 3 5 8
22° 3746 3762 3778 3795 3811 3827 3843 3859 3875 3891 3907 67° 3 5 8
23° 3907 3923 3939 3955 3971 3987 4003 4019 4035 4051 4067 66° 3 5 8
24° 4067 4083 4099 4115 4131 4147 4163 4179 4195 4210 0.4226 65° 3 5 8
25° 0.4226 4242 4258 4274 4289 4305 4321 4337 4352 4368 4384 64° 3 5 8
26° 4384 4399 4415 4431 4446 4462 4478 4493 4509 4524 4540 63° 3 5 8
27° 4540 4555 4571 4586 4602 4617 4633 4648 4664 4679 4695 62° 3 5 8
28° 4695 4710 4726 4741 4756 4772 4787 4802 4818 4833 4848 61° 3 5 8
29° 4848 4863 4879 4894 4909 4924 4939 4955 4970 4985 0.5000 60° 3 5 8
30° 0.5000 5015 5030 5045 5060 5075 5090 5105 5120 5135 5150 59° 3 5 8
31° 5150 5165 5180 5195 5210 5225 5240 5255 5270 5284 5299 58° 2 5 7
32° 5299 5314 5329 5344 5358 5373 5388 5402 5417 5432 5446 57° 2 5 7
33° 5446 5461 5476 5490 5505 5519 5534 5548 5563 5577 5592 56° 2 5 7
34° 5592 5606 5621 5635 5650 5664 5678 5693 5707 5721 0.5736 55° 2 5 7
35° 0.5736 5750 5764 5779 5793 5807 5821 5835 5850 5864 0.5878 54° 2 5 7
36° 5878 5892 5906 5920 5934 5948 5962 5976 5990 6004 6018 53° 2 5 7
37° 6018 6032 6046 6060 6074 6088 6101 6115 6129 6143 6157 52° 2 5 7
38° 6157 6170 6184 6198 6211 6225 6239 6252 6266 6280 6293 51° 2 5 7
39° 6293 6307 6320 6334 6347 6361 6374 6388 6401 6414 0.6428 50° 2 4 7
40° 0.6428 6441 6455 6468 6481 6494 6508 6521 6534 6547 6561 49° 2 4 7
41° 6561 6574 6587 6600 6613 6626 6639 6652 6665 6678 6691 48° 2 4 7
42° 6691 6704 6717 6730 6743 6756 6769 6782 6794 6807 6820 47° 2 4 6
43° 6820 6833 6845 6858 6871 6884 6896 8909 6921 6934 6947 46° 2 4 6
44° 6947 6959 6972 6984 6997 7009 7022 7034 7046 7059 0.7071 45° 2 4 6
45° 0.7071 7083 7096 7108 7120 7133 7145 7157 7169 7181 7193 44° 2 4 6
46° 7193 7206 7218 7230 7242 7254 7266 7278 7290 7302 7314 43° 2 4 6
47° 7314 7325 7337 7349 7361 7373 7385 7396 7408 7420 7431 42° 2 4 6
48° 7431 7443 7455 7466 7478 7490 7501 7513 7524 7536 7547 41° 2 4 6
49° 7547 7559 7570 7581 7593 7604 7615 7627 7638 7649 0.7660 40° 2 4 6
50° 0.7660 7672 7683 7694 7705 7716 7727 7738 7749 7760 7771 39° 2 4 6
51° 7771 7782 7793 7804 7815 7826 7837 7848 7859 7869 7880 38° 2 4 5
52° 7880 7891 7902 7912 7923 7934 7944 7955 7965 7976 7986 37° 2 4 5
53° 7986 7997 8007 8018 8028 8039 8049 8059 8070 8080 8090 36° 2 3 5
54° 8090 8100 8111 8121 8131 8141 8151 8161 8171 8181 0.8192 35° 2 3 5
55° 0.8192 8202 8211 8221 8231 8241 8251 8261 8271 8281 8290 34° 2 3 5
56° 8290 8300 8310 8320 8329 8339 8348 8358 8368 8377 8387 33° 2 3 5
57° 8387 8396 8406 8415 8425 8434 8443 8453 8462 8471 8480 32° 2 3 5
58° 8480 8490 8499 8508 8517 8526 8536 8545 8554 8563 8572 31° 2 3 5
59° 8572 8581 8590 8599 8607 8616 8625 8634 8643 8652 0.8660 30° 1 3 4
60° 0.8660 8669 8678 8686 8695 8704 8712 8721 8729 8738 8746 29° 1 3 4
61° 8746 8755 8763 8771 8780 8788 8796 8805 8813 8821 8829 28° 1 3 4
62° 8829 8838 8846 8854 8862 8870 8878 8886 8894 8902 8910 27° 1 3 4
63° 8910 8918 8926 8934 8942 8949 8957 8965 8973 8980 8988 26° 1 3 4
64° 8988 8996 9003 9011 9018 9026 9033 9041 9048 9056 0.9063 25° 1 3 4
65° 0.9063 9070 9078 9085 9092 9100 9107 9114 9121 9128 9135 24° 1 2 4
66° 9135 9143 9150 9157 9164 9171 9178 9184 9191 9198 9205 23° 1 2 3
67° 9205 9212 9219 9225 9232 9239 9245 9252 9259 9256 9272 22° 1 2 3
68° 9272 9278 9285 9291 9298 9304 9311 9317 9323 9330 9336 21° 1 2 3
69° 9336 9342 9348 9354 9361 9367 9373 9379 9383 9391 0.9397 20° 1 2 3
70° 9397 9403 9409 9415 9421 9426 9432 9438 9444 9449 0.9455 19° 1 2 3
71° 9455 9461 9466 9472 9478 9483 9489 9494 9500 9505 9511 18° 1 2 3
72° 9511 9516 9521 9527 9532 9537 9542 9548 9553 9558 9563 17° 1 2 3
73° 9563 9568 9573 9578 9583 9588 9593 9598 9603 9608 9613 16° 1 2 2
74° 9613 9617 9622 9627 9632 9636 9641 9646 9650 9655 0.9659 15° 1 2 2
75° 9659 9664 9668 9673 9677 9681 9686 9690 9694 9699 9703 14° 1 1 2
76° 9703 9707 9711 9715 9720 9724 9728 9732 9736 9740 9744 13° 1 1 2
77° 9744 9748 9751 9755 9759 9763 9767 9770 9774 9778 9781 12° 1 1 2
78° 9781 9785 9789 9792 9796 9799 9803 9806 9810 9813 9816 11° 1 1 2
79° 9816 9820 9823 9826 9829 9833 9836 9839 9842 9845 0.9848 10° 1 1 2
80° 0.9848 9851 9854 9857 9860 9863 9866 9869 9871 9874 9877 0 1 1
81° 9877 9880 9882 9885 9888 9890 9893 9895 9898 9900 9903 0 1 1
82° 9903 9905 9907 9910 9912 9914 9917 9919 9921 9923 9925 0 1 1
83° 9925 9928 9930 9932 9934 9936 9938 9940 9942 9943 9945 0 1 1
84° 9945 9947 9949 9951 9952 9954 9956 9957 9959 9960 9962 0 1 1
85° 9962 9963 9965 9966 9968 9969 9971 9972 9973 9974 9976 0 0 1
86° 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 0 0 0
87° 9986 9987 9988 9989 9990 9990 9991 9992 9993 9993 9994 0 0 0
88° 9994 9995 9995 9996 9996 9997 9997 9997 9998 9998 0.9998 0 0 0
89° 9998 9999 9999 9999 9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0 0 0
90° 1.0000
sin 60" 54" 48" 42" 36" 30" 24" 18" 12" 6" 0" cos 1" 2" 3"

To find the values ​​of the sines and cosines of angles that are not presented in the table, it is necessary to use corrections.

Now we give the Bradys table for tangents and cotangents. It contains the values ​​of the tangents of angles from 0 to 76 degrees, and the cotangents of angles from 14 to 90 degrees.

Bradis table for tangent and cotangent

tg 0" 6" 12" 18" 24" 30" 36" 42" 48" 54" 60" ctg 1" 2" 3"
0 90°
0,000 0017 0035 0052 0070 0087 0105 0122 0140 0157 0175 89° 3 6 9
0175 0192 0209 0227 0244 0262 0279 0297 0314 0332 0349 88° 3 6 9
0349 0367 0384 0402 0419 0437 0454 0472 0489 0507 0524 87° 3 6 9
0524 0542 0559 0577 0594 0612 0629 0647 0664 0682 0699 86° 3 6 9
0699 0717 0734 0752 0769 0787 0805 0822 0840 0857 0,0875 85° 3 6 9
0,0875 0892 0910 0928 0945 0963 0981 0998 1016 1033 1051 84° 3 6 9
1051 1069 1086 1104 1122 1139 1157 1175 1192 1210 1228 83° 3 6 9
1228 1246 1263 1281 1299 1317 1334 1352 1370 1388 1405 82° 3 6 9
1405 1423 1441 1459 1477 1495 1512 1530 1548 1566 1584 81° 3 6 9
1584 1602 1620 1638 1655 1673 1691 1709 1727 1745 0,1763 80° 3 6 9
10° 0,1763 1781 1799 1817 1835 1853 1871 1890 1908 1926 1944 79° 3 6 9
11° 1944 1962 1980 1998 2016 2035 2053 2071 2089 2107 2126 78° 3 6 9
12° 2126 2144 2162 2180 2199 2217 2235 2254 2272 2290 2309 77° 3 6 9
13° 2309 2327 2345 2364 2382 2401 2419 2438 2456 2475 2493 76° 3 6 9
14° 2493 2512 2530 2549 2568 2586 2605 2623 2642 2661 0,2679 75° 3 6 9
15° 0,2679 2698 2717 2736 2754 2773 2792 2811 2830 2849 2867 74° 3 6 9
16° 2867 2886 2905 2924 2943 2962 2981 3000 3019 3038 3057 73° 3 6 9
17° 3057 3076 3096 3115 3134 3153 3172 3191 3211 3230 3249 72° 3 6 10
18° 3249 3269 3288 3307 3327 3346 3365 3385 3404 3424 3443 71° 3 6 10
19° 3443 3463 3482 3502 3522 3541 3561 3581 3600 3620 0,3640 70° 3 7 10
20° 0,3640 3659 3679 3699 3719 3739 3759 3779 3799 3819 3839 69° 3 7 10
21° 3839 3859 3879 3899 3919 3939 3959 3979 4000 4020 4040 68° 3 7 10
22° 4040 4061 4081 4101 4122 4142 4163 4183 4204 4224 4245 67° 3 7 10
23° 4245 4265 4286 4307 4327 4348 4369 4390 4411 4431 4452 66° 3 7 10
24° 4452 4473 4494 4515 4536 4557 4578 4599 4621 4642 0,4663 65° 4 7 11
25° 0,4663 4684 4706 4727 4748 4770 4791 4813 4834 4856 4877 64° 4 7 11
26° 4877 4899 4921 4942 4964 4986 5008 5029 5051 5073 5095 63° 4 7 11
27° 5095 5117 5139 5161 5184 5206 5228 5250 5272 5295 5317 62° 4 7 11
28° 5317 5340 5362 5384 5407 5430 5452 5475 5498 5520 5543 61° 4 8 11
29° 5543 5566 5589 5612 5635 5658 5681 5704 5727 5750 0,5774 60° 4 8 12
30° 0,5774 5797 5820 5844 5867 5890 5914 5938 5961 5985 6009 59° 4 8 12
31° 6009 6032 6056 6080 6104 6128 6152 6176 6200 6224 6249 58° 4 8 12
32° 6249 6273 6297 6322 6346 6371 6395 6420 6445 6469 6494 57° 4 8 12
33° 6494 6519 6544 6569 6594 6619 6644 6669 6694 6720 6745 56° 4 8 13
34° 6745 6771 6796 6822 6847 6873 6899 6924 6950 6976 0,7002 55° 4 9 13
35° 0,7002 7028 7054 7080 7107 7133 7159 7186 7212 7239 7265 54° 4 8 13
36° 7265 7292 7319 7346 7373 7400 7427 7454 7481 7508 7536 53° 5 9 14°
37° 7536 7563 7590 7618 7646 7673 7701 7729 7757 7785 7813 52° 5 9 14
38° 7813 7841 7869 7898 7926 7954 7983 8012 8040 8069 8098 51° 5 9 14
39° 8098 8127 8156 8185 8214 8243 8273 8302 8332 8361 0,8391 50° 5 10 15
40° 0,8391 8421 8451 8481 8511 8541 8571 8601 8632 8662 0,8693 49° 5 10 15
41° 8693 8724 8754 8785 8816 8847 8878 8910 8941 8972 9004 48° 5 10 16
42° 9004 9036 9067 9099 9131 9163 9195 9228 9260 9293 9325 47° 6 11 16
43° 9325 9358 9391 9424 9457 9490 9523 9556 9590 9623 0,9657 46° 6 11 17
44° 9657 9691 9725 9759 9793 9827 9861 9896 9930 9965 1,0000 45° 6 11 17
45° 1,0000 0035 0070 0105 0141 0176 0212 0247 0283 0319 0355 44° 6 12 18
46° 0355 0392 0428 0464 0501 0538 0575 0612 0649 0686 0724 43° 6 12 18
47° 0724 0761 0799 0837 0875 0913 0951 0990 1028 1067 1106 42° 6 13 19
48° 1106 1145 1184 1224 1263 1303 1343 1383 1423 1463 1504 41° 7 13 20
49° 1504 1544 1585 1626 1667 1708 1750 1792 1833 1875 1,1918 40° 7 14 21
50° 1,1918 1960 2002 2045 2088 2131 2174 2218 2261 2305 2349 39° 7 14 22
51° 2349 2393 2437 2482 2527 2572 2617 2662 2708 2753 2799 38° 8 15 23
52° 2799 2846 2892 2938 2985 3032 3079 3127 3175 3222 3270 37° 8 16 24
53° 3270 3319 3367 3416 3465 3514 3564 3613 3663 3713 3764 36° 8 16 25
54° 3764 3814 3865 3916 3968 4019 4071 4124 4176 4229 1,4281 35° 9 17 26
55° 1,4281 4335 4388 4442 4496 4550 4605 4659 4715 4770 4826 34° 9 18 27
56° 4826 4882 4938 4994 5051 5108 5166 5224 5282 5340 5399 33° 10 19 29
57° 5399 5458 5517 5577 5637 5697 5757 5818 5880 5941 6003 32° 10 20 30
58° 6003 6066 6128 6191 6255 6319 6383 6447 6512 6577 6643 31° 11 21 32
59° 6643 6709 6775 6842 6909 6977 7045 7113 7182 7251 1,7321 30° 11 23 34
60° 1,732 1,739 1,746 1,753 1,760 1,767 1,775 1,782 1,789 1,797 1,804 29° 1 2 4
61° 1,804 1,811 1,819 1,827 1,834 1,842 1,849 1,857 1,865 1,873 1,881 28° 1 3 4
62° 1,881 1,889 1,897 1,905 1,913 1,921 1,929 1,937 1,946 1,954 1,963 27° 1 3 4
63° 1,963 1,971 1,980 1,988 1,997 2,006 2,014 2,023 2,032 2,041 2,05 26° 1 3 4
64° 2,050 2,059 2,069 2,078 2,087 2,097 2,106 2,116 2,125 2,135 2,145 25° 2 3 5
65° 2,145 2,154 2,164 2,174 2,184 2,194 2,204 2,215 2,225 2,236 2,246 24° 2 3 5
66° 2,246 2,257 2,267 2,278 2,289 2,3 2,311 2,322 2,333 2,344 2,356 23° 2 4 5
67° 2,356 2,367 2,379 2,391 2,402 2,414 2,426 2,438 2,450 2,463 2,475 22° 2 4 6
68° 2,475 2,488 2,5 2,513 2,526 2,539 2,552 2,565 2,578 2,592 2,605 21° 2 4 6
69° 2,605 2,619 2,633 2,646 2,66 2,675 2,689 2,703 2,718 2,733 2,747 20° 2 5 7
70° 2,747 2,762 2,778 2,793 2,808 2,824 2,840 2,856 2,872 2,888 2,904 19° 3 5 8
71° 2,904 2,921 2,937 2,954 2,971 2,989 3,006 3,024 3,042 3,06 3,078 18° 3 6 9
72° 3,078 3,096 3,115 3,133 3,152 3,172 3,191 3,211 3,230 3,251 3,271 17° 3 6 10
73° 3,271 3,291 3,312 3,333 3,354 3,376 3 7 10
3,398 3,42 3,442 3,465 3,487 16° 4 7 11
74° 3,487 3,511 3,534 3,558 3,582 3,606 4 8 12
3,630 3,655 3,681 3,706 3,732 15° 4 8 13
75° 3,732 3,758 3,785 3,812 3,839 3,867 4 9 13
3,895 3,923 3,952 3,981 4,011 14° 5 10 14
tg 60" 54" 48" 42" 36" 30" 24" 18" 12" 6" 0" ctg 1" 2" 3"

How to use Bradys tables

Consider the Bradys table for sines and cosines. Everything related to the sinuses is at the top and left. If we need cosines, we look at the right side at the bottom of the table.

To find the values ​​of the sine of the angle, you need to find the intersection of the row containing the required number of degrees in the leftmost cell and the column containing the required number of minutes in the upper cell.

If the exact value of the angle is not in the Bradis table, we resort to the help of corrections. Corrections for one, two and three minutes are given in the rightmost columns of the table. To find the value of the sine of an angle that is not in the table, we find the closest value to it. After that, we add or subtract the correction corresponding to the difference between the angles.

If we are looking for the sine of an angle that is greater than 90 degrees, we first need to use the reduction formulas, and only then - the Bradis table.

Example. How to use the Bradis table

Let it be necessary to find the sine of the angle 17 ° 44 ". According to the table, we find what the sine is 17 ° 42" and add an amendment to its value for two minutes:

17° 44" - 17° 42" = 2" (correct ion needed) sin 17° 44" = 0. 3040 + 0 . 0006 = 0 . 3046

The principle of working with cosines, tangents and cotangents is similar. However, it is important to remember the sign of the corrections.

Important!

When calculating the values ​​of sines, the correction has a positive sign, and when calculating cosines, the correction must be taken with a negative sign.

If you notice a mistake in the text, please highlight it and press Ctrl+Enter

Table of basic trigonometric functions for angles 0, 30, 45, 60, 90, ... degrees

From the trigonometric definitions of the functions $\sin$, $\cos$, $\tan$, and $\cot$, one can find their values ​​for angles $0$ and $90$ degrees:

$\sin⁡0°=0$, $\cos0°=1$, $\tan 0°=0$, $\cot 0°$ not defined;

$\sin90°=1$, $\cos90°=0$, $\cot90°=0$, $\tan 90°$ is not defined.

AT school course geometries in the study of right triangles find the trigonometric functions of the angles $0°$, $30°$, $45°$, $60°$ and $90°$.

The found values ​​of trigonometric functions for the specified angles in degrees and radians respectively ($0$, $\frac(\pi)(6)$, $\frac(\pi)(4)$, $\frac(\pi)(3) $, $\frac(\pi)(2)$) for ease of memorization and use are entered in a table called trigonometric table, table of basic values ​​of trigonometric functions etc.

When using reduction formulas, the trigonometric table can be expanded to an angle of $360°$ and $2\pi$ radians respectively:

Applying the periodicity properties of trigonometric functions, each angle that differs from the already known by $360°$ can be calculated and recorded in a table. For example, the trigonometric function for the angle $0°$ will have the same value for the angle $0°+360°$, and for the angle $0°+2 \cdot 360°$, and for the angle $0°+3 \cdot 360°$ and etc.

Using a trigonometric table, you can determine the values ​​​​of all angles of a unit circle.

In the school geometry course, it is supposed to memorize the basic values ​​​​of trigonometric functions collected in a trigonometric table for the convenience of solving trigonometric problems.

Using a table

In the table, it is enough to find the necessary trigonometric function and the value of the angle or radian for which this function needs to be calculated. At the intersection of the row with the function and the column with the value, we get the desired value of the trigonometric function of the given argument.

In the figure you can see how to find the value $\cos⁡60°$ which is equal to $\frac(1)(2)$.

The extended trigonometric table is used similarly. The advantage of using it is, as already mentioned, the calculation of the trigonometric function of almost any angle. For example, you can easily find the value $\tan 1 380°=\tan (1 380°-360°)=\tan(1 020°-360°)=\tan(660°-360°)=\tan300°$:

Bradis tables of basic trigonometric functions

The ability to calculate the trigonometric function of absolutely any angle value for an integer value of degrees and an integer value of minutes gives the use of Bradis tables. For example, find the value $\cos⁡34°7"$. The tables are divided into 2 parts: the table of $\sin$ and $\cos$ values ​​and the table of $\tan$ and $\cot$ values.

Bradys tables make it possible to obtain an approximate value of trigonometric functions with an accuracy of up to 4 decimal places.

Using Bradis Tables

Using the Bradis tables for sines, we find $\sin⁡17°42"$. To do this, in the column on the left of the table of sines and cosines we find the value of degrees - $17°$, and in the top line we find the value of minutes - $42"$. At their intersection, we get the desired value:

$\sin17°42"=0.304$.

To find the value of $\sin17°44"$, you need to use the correction on the right side of the table. In this case, to the value of $42"$, which is in the table, you need to add a correction for $2"$, which is equal to $0.0006$. We get:

$\sin17°44"=0.304+0.0006=0.3046$.

To find the value of $\sin17°47"$, we also use the correction on the right side of the table, only in this case we take the value of $\sin17°48"$ as a basis and subtract the correction for $1"$:

$\sin17°47"=0.3057-0.0003=0.3054$.

When calculating the cosines, we perform similar actions, but we look at the degrees in the right column, and the minutes in the bottom column of the table. For example, $\cos20°=0.9397$.

There are no corrections for tangent values ​​up to $90°$ and small angle cotangent. For example, let's find $\tan 78°37"$, which according to the table is $4,967$.

Table of values ​​of trigonometric functions

Note. This table of values ​​of trigonometric functions uses the sign √ to denote square root. To denote a fraction - the symbol "/".

see also useful materials:

For determining the value of a trigonometric function, find it at the intersection of the line indicating the trigonometric function. For example, a sine of 30 degrees - we are looking for a column with the heading sin (sine) and find the intersection of this column of the table with the line "30 degrees", at their intersection we read the result - one second. Similarly, we find cosine 60 degrees, sine 60 degrees (once again, at the intersection of the sin (sine) column and the 60 degree row, we find the value sin 60 = √3/2), etc. In the same way, the values ​​of sines, cosines and tangents of other "popular" angles are found.

Sine of pi, cosine of pi, tangent of pi and other angles in radians

The table of cosines, sines and tangents below is also suitable for finding the value of trigonometric functions whose argument is given in radians. To do this, use the second column of angle values. Thanks to this, you can convert the value of popular angles from degrees to radians. For example, let's find the 60 degree angle in the first line and read its value in radians under it. 60 degrees is equal to π/3 radians.

The number pi uniquely expresses the dependence of the circumference of a circle on the degree measure of the angle. So pi radians equals 180 degrees.

Any number expressed in terms of pi (radian) can be easily converted to degrees by replacing the number pi (π) with 180.

Examples:
1. sine pi.
sin π = sin 180 = 0
thus, the sine of pi is the same as the sine of 180 degrees and is equal to zero.

2. cosine pi.
cos π = cos 180 = -1
thus, the cosine of pi is the same as the cosine of 180 degrees and is equal to minus one.

3. Tangent pi
tg π = tg 180 = 0
thus, the tangent of pi is the same as the tangent of 180 degrees and is equal to zero.

Table of sine, cosine, tangent values ​​for angles 0 - 360 degrees (frequent values)

angle α
(degrees)

angle α
in radians

(via pi)

sin
(sinus)
cos
(cosine)
tg
(tangent)
ctg
(cotangent)
sec
(secant)
cause
(cosecant)
0 0 0 1 0 - 1 -
15 π/12 2 - √3 2 + √3
30 π/6 1/2 √3/2 1/√3 √3 2/√3 2
45 π/4 √2/2 √2/2 1 1 √2 √2
60 π/3 √3/2 1/2 √3 1/√3 2 2/√3
75 5π/12 2 + √3 2 - √3
90 π/2 1 0 - 0 - 1
105 7π/12 -
- 2 - √3 √3 - 2
120 2π/3 √3/2 -1/2 -√3 -√3/3
135 3π/4 √2/2 -√2/2 -1 -1 -√2 √2
150 5π/6 1/2 -√3/2 -√3/3 -√3
180 π 0 -1 0 - -1 -
210 7π/6 -1/2 -√3/2 √3/3 √3
240 4π/3 -√3/2 -1/2 √3 √3/3
270 3π/2 -1 0 - 0 - -1
360 0 1 0 - 1 -

If in the table of values ​​of trigonometric functions, instead of the value of the function, a dash is indicated (tangent (tg) 90 degrees, cotangent (ctg) 180 degrees), then for a given value of the degree measure of the angle, the function does not have a definite value. If there is no dash, the cell is empty, so we have not yet entered the desired value. We are interested in what requests users come to us for and supplement the table with new values, despite the fact that the current data on the values ​​of cosines, sines and tangents of the most common angle values ​​is enough to solve most problems.

Table of values ​​of trigonometric functions sin, cos, tg for the most popular angles
0, 15, 30, 45, 60, 90 ... 360 degrees
(numerical values ​​"as per Bradis tables")

angle value α (degrees) value of angle α in radians sin (sine) cos (cosine) tg (tangent) ctg (cotangent)
0 0
15

0,2588

0,9659

0,2679

30

0,5000

0,5774

45

0,7071

0,7660

60

0,8660

0,5000

1,7321

7π/18

In the article, we will fully understand what it looks like table of trigonometric values, sine, cosine, tangent and cotangent. Consider the basic value of trigonometric functions, from an angle of 0,30,45,60,90,...,360 degrees. And let's see how to use these tables in calculating the value of trigonometric functions.
First consider table of cosine, sine, tangent and cotangent from an angle of 0, 30, 45, 60, 90,.. degrees. The definition of these quantities makes it possible to determine the value of the functions of angles of 0 and 90 degrees:

sin 0 0 \u003d 0, cos 0 0 \u003d 1. tg 0 0 \u003d 0, the cotangent of 0 0 will be indefinite
sin 90 0 = 1, cos 90 0 =0, ctg90 0 = 0, the tangent of 90 0 will be undefined

If we take right-angled triangles whose angles are from 30 to 90 degrees. We get:

sin 30 0 = 1/2, cos 30 0 = √3/2, tg 30 0 = √3/3, ctg 30 0 = √3
sin 45 0 = √2/2, cos 45 0 = √2/2, tg 45 0 = 1, ctg 45 0 = 1
sin 60 0 = √3/2, cos 60 0 = 1/2, tg 60 0 =√3, ctg 60 0 = √3/3

We represent all the obtained values ​​in the form trigonometric table:

Table of sines, cosines, tangents and cotangents!

If we use the cast formula, our table will increase, values ​​for angles up to 360 degrees will be added. It will look like:

Also, based on the properties of periodicity, the table can be increased if we replace the angles by 0 0 +360 0 *z .... 330 0 +360 0 *z, in which z is an integer. In this table, it is possible to calculate the value of all angles corresponding to points in a single circle.

Let's see clearly how to use the table in the solution.
Everything is very simple. Since the value we need lies at the intersection point of the cells we need. For example, let's take cos of an angle of 60 degrees, in the table it will look like this:

In the final table of the main values ​​of trigonometric functions, we act in the same way. But in this table it is possible to find out how much the tangent from an angle of 1020 degrees will be, it = -√3 Let's check 1020 0 = 300 0 +360 0 *2. Let's find the table.

For a more search for trigonometric angle values ​​accurate to minutes, are used. Detailed instructions on how to use them on the page

Bradis table. For sine, cosine, tangent and cotangent.

The tables of Bradys are divided into several parts, they consist of tables of cosine and sine, tangent and cotangent - which is divided into two parts (tg of an angle up to 90 degrees and ctg of small angles).

Sine and cosine

tg angle starting from 0 0 ending 76 0 , ctg angle starting from 14 0 ending 90 0 .

tg up to 90 0 and ctg small angles.

Let's figure out how to use Bradis tables in solving problems.

Let's find the designation sin (the designation in the column from the left edge) 42 minutes (the designation is on the top line). By crossing we are looking for a designation, it is = 0.3040.

The values ​​of the minutes are indicated with an interval of six minutes, what if the value we need falls within this interval. Let's take 44 minutes, and there are only 42 in the table. We take 42 as a basis and use the additional columns on the right side, take the 2nd correction and add to 0.3040 + 0.0006 we get 0.3046.

With sin 47 min, we take 48 min as a basis and subtract 1 correction from it, i.e. 0.3057 - 0.0003 = 0.3054

When calculating cos, we work similarly to sin, only we take the bottom row of the table as a basis. For example cos 20 0 = 0.9397

Values ​​tg of an angle up to 90 0 and cot of a small angle are correct and there are no corrections in them. For example, find tg 78 0 37min = 4.967


and ctg 20 0 13 min = 25.83

Well, here we have considered the main trigonometric tables. We hope this information was extremely useful for you. Your questions on the tables, if any, be sure to write in the comments!

Note: Wall bumpers - a bumper board for protecting walls (http://www.spi-polymer.ru/otboyniki/)

TABLE OF VALUES OF TRIGONOMETRIC FUNCTIONS

The table of values ​​of trigonometric functions is compiled for angles of 0, 30, 45, 60, 90, 180, 270 and 360 degrees and their corresponding angles in radians. Of the trigonometric functions, the table shows the sine, cosine, tangent, cotangent, secant and cosecant. For the convenience of solving school examples, the values ​​\u200b\u200bof trigonometric functions in the table are written as a fraction with the preservation of the signs of extracting the square root from numbers, which very often helps to reduce complex mathematical expressions. For tangent and cotangent, the values ​​of some angles cannot be determined. For the values ​​of the tangent and cotangent of such angles, there is a dash in the table of values ​​of trigonometric functions. It is generally accepted that the tangent and cotangent of such angles is equal to infinity. On a separate page are formulas for reducing trigonometric functions.

The table of values ​​for the trigonometric function sine shows the values ​​\u200b\u200bfor the following angles: sin 0, sin 30, sin 45, sin 60, sin 90, sin 180, sin 270, sin 360 in degree measure, which corresponds to sin 0 pi, sin pi / 6 , sin pi / 4, sin pi / 3, sin pi / 2, sin pi, sin 3 pi / 2, sin 2 pi in radian measure of angles. School table of sines.

For the trigonometric cosine function, the table shows the values ​​​​for the following angles: cos 0, cos 30, cos 45, cos 60, cos 90, cos 180, cos 270, cos 360 in degree measure, which corresponds to cos 0 pi, cos pi to 6, cos pi by 4, cos pi by 3, cos pi by 2, cos pi, cos 3 pi by 2, cos 2 pi in radian measure of angles. School table of cosines.

The trigonometric table for the trigonometric function tangent gives values ​​​​for the following angles: tg 0, tg 30, tg 45, tg 60, tg 180, tg 360 in degree measure, which corresponds to tg 0 pi, tg pi / 6, tg pi / 4, tg pi/3, tg pi, tg 2 pi in radian measure of angles. The following values ​​of the trigonometric functions of the tangent are not defined tg 90, tg 270, tg pi/2, tg 3 pi/2 and are considered equal to infinity.

For the trigonometric function cotangent in the trigonometric table, the values ​​​​of the following angles are given: ctg 30, ctg 45, ctg 60, ctg 90, ctg 270 in degree measure, which corresponds to ctg pi / 6, ctg pi / 4, ctg pi / 3, tg pi / 2, tg 3 pi/2 in radian measure of angles. The following values ​​of trigonometric cotangent functions are not defined ctg 0, ctg 180, ctg 360, ctg 0 pi, ctg pi, ctg 2 pi and are considered equal to infinity.

The values ​​of the trigonometric functions secant and cosecant are given for the same angles in degrees and radians as sine, cosine, tangent, cotangent.

The table of values ​​of trigonometric functions of non-standard angles shows the values ​​of sine, cosine, tangent and cotangent for angles in degrees 15, 18, 22.5, 36, 54, 67.5 72 degrees and in radians pi/12, pi/10, pi/ 8, pi/5, 3pi/8, 2pi/5 radians. The values ​​of trigonometric functions are expressed in terms of fractions and square roots to simplify the reduction of fractions in school examples.

Three more monsters of trigonometry. The first is the tangent of 1.5 degrees and a half, or pi divided by 120. The second is the cosine of pi divided by 240, pi/240. The longest is the cosine of pi divided by 17, pi/17.

The trigonometric circle of the values ​​of the sine and cosine functions visually represents the signs of the sine and cosine depending on the magnitude of the angle. Especially for blondes, the cosine values ​​​​are underlined with a green dash to be less confused. The conversion of degrees to radians is also very clearly presented, when radians are expressed through pi.

This trigonometric table presents the values ​​of sine, cosine, tangent and cotangent for angles from 0 zero to 90 ninety degrees in one degree intervals. For the first forty-five degrees, the names of trigonometric functions must be looked at at the top of the table. The first column contains degrees, the values ​​of sines, cosines, tangents and cotangents are written in the next four columns.

For angles from forty-five degrees to ninety degrees, the names of the trigonometric functions are written at the bottom of the table. The last column contains degrees, the values ​​of cosines, sines, cotangents and tangents are written in the previous four columns. You should be careful, because the names of trigonometric functions in the lower part of the trigonometric table are different from the names in the upper part of the table. Sines and cosines are interchanged, just like tangent and cotangent. This is due to the symmetry of the values ​​of trigonometric functions.

The signs of trigonometric functions are shown in the figure above. The sine has positive values ​​from 0 to 180 degrees or from 0 to pi. The negative values ​​of the sine are from 180 to 360 degrees or from pi to 2 pi. Cosine values ​​are positive from 0 to 90 and 270 to 360 degrees, or 0 to 1/2 pi and 3/2 to 2 pi. Tangent and cotangent have positive values ​​from 0 to 90 degrees and from 180 to 270 degrees, corresponding to values ​​from 0 to 1/2 pi and from pi to 3/2 pi. Negative tangent and cotangent values ​​are 90 to 180 degrees and 270 to 360 degrees, or 1/2 pi to pi and 3/2 pi to 2 pi. When determining the signs of trigonometric functions for angles greater than 360 degrees or 2 pi, the periodicity properties of these functions should be used.

The trigonometric functions sine, tangent and cotangent are odd functions. The values ​​of these functions for negative angles will be negative. Cosine is an even trigonometric function - the cosine value for negative angle will be positive. When multiplying and dividing trigonometric functions, you must follow the rules of signs.

  1. The table of values ​​for the trigonometric function sine shows the values ​​\u200b\u200bfor the following angles

    Document

    A separate page contains casting formulas trigonometricfunctions. AT tablevaluesfortrigonometricfunctionssinusgivenvaluesfornextcorners: sin 0, sin 30, sin 45 ...

  2. The proposed mathematical apparatus is a complete analogue of the complex calculus for n-dimensional hypercomplex numbers with any number of degrees of freedom n and is intended for mathematical modeling of nonlinear

    Document

    ... functions equals functions Images. From this theorem should, what for finding the coordinates U, V, it is enough to calculate function... geometry; polynar functions(multidimensional analogues of two-dimensional trigonometricfunctions), their properties, tables and application; ...