Все сказанное до сих пор о развитии науки представляет собой лишь предысторию современной науки. А. Эйнштейн и Л. Инфельд пишут: «Попытки прочитать великую повесть о тайнах природы так же стары, как и само человеческое мышление. Однако лишь немногим болзе трех столетий назад ученые начали понимать язык этой повести. С того времени, т. е. со времени Галилея и Ньютона, чтение продвигалось быстро». И далее: «Самая фундаментальная проблема, остававшаяся в течение тысячи лет неразрешенной из-за сложности,- это проблема движения» (Цит. но: Эйнштейн А., Пнфельд Л. Эволюция физики. М., 1965, с. 8. ).

Первая руководящая идея современной науки, современного естествознания принадлежит Галилею и касается она проблемы движения.

До Галилея в науке общепринятой была точка зрения, что скорость движения тела тем больше, чем больше толкающая его сила, а если действие этой силы прекращается, тело остановится. Это положение было четко сформулировано Аристотелем, и па первый взгляд оно отвечает опыту.

Галилей показал, что эта точка зрения ошибочна. Рассмотрим пример с тачкой, толкаемой человеком по горизонтальному пути. Если человек перестает толкать тачку, она прокатится некоторое расстояние и остановится. Казалось бы, Аристотель прав. Не будем, однако, торопиться с выводами. Ну, а если мы сделаем путь, по которому катится тачка, более ровным и уменьшим трение между осями и втулками колес тачки, например за счет лучшей смазки. Очевидно, свободное движение тачки после снятия толкающего ее усилия будет продолжаться дольше, тачка прокатится большее расстояние.

Допустим, что мы сумели сделать путь совершенно ровным и, конечно, абсолютно горизонтальным, трение в колесах тачки упразднили вовсе и даже уничтожили трение между окружающим воздухом и стенками тачки. На самом деле сделать все это невозможно, но предположить можно. Что было бы тогда? Ответим на этот вопрос словами Галилея: «...скорость, однажды сообщенная движущемуся телу, будет строго сохраняться, поскольку устранены внешние причины ускорения или замедления,- условие, которое обнаруживается только на горизонтальной плоскости, ибо в случае движения по наклонной плоскости вниз уже существует причина ускорения, в то время как при движении по наклонной плоскости вверх налицо замедление; из этого следует, что движение по горизонтальной плоскости вечно, ибо, если скорость будет постоянной, движение не может быть уменьшено или ослаблено, а тем более уничтожено» (Цит. по: Эйнштейн Л., Инфельд Л. Там же, с. 12. )

Следовательно, вместо аристотелевской точки зрения: тело движется только при наличии внешнего на него воздействия - Галилей ввел новый, совершенно другой принцип: если на тело не производится никакого внешнего воздействия, то оно либо находится в состоянии покоя, либо движется прямолинейно с неизменной скоростью. Вот как оценили А. Эйнштейн и Л. Инфельд это открытие Галилея: «Открытие, сделанное Галилеем, и применение им методов научного рассуждения были одним из самых важных достижений в истории человеческой мысли, и оно отмечает действительное начало физики. Это открытие учит нас тому, что интуитивным выводам, базирующимся на непосредственном наблюдении, не всегда можно доверять, так как они иногда ведут по ложному следу» (Эйнштейн А., Инфельд Л. Там же, с. 10. ) .

Прежде чем продолжить рассказ о том, что сделал Галилей в науке, мы хотим познакомить читателя с биографией и некоторыми чертами характера этого гениального человека.

Галилео Галилей родился 15 февраля 1564 г. (в том же году, что и У. Шекспир) в г. Пизе. Его отец, Винченцо, был музыкантом. Семья была аристократической, но небогатой. В 1574 г. семья переехала из Пизы во Флоренцию. Здесь Галилей был принят в монашеский орден послушником, учился в монастыре; главное, что он узнал за это время и что в дальнейшем было для него весьма полезно,- произведения греческих и латинских писателей. По настоянию отца Галилей покинул монастырь (по причине якобы тяжелой болезни глаз), а в 1581 г. опять-таки под влиянием отца поступил в Пизанский университет для изучения медицины.

Однако к медицине Галилей большого интереса но проявил. Зато он увлекся математикой, механикой, физикой и астрономией. В этом главную роль сыграл друг отца Остилио Риччи, по его совету Галилей читал труды Евклида и Аристотеля. Но, чем ближе Галилей знакомился с трудами Аристотеля, прежде всего механикой и физикой, тем больше сомнений и возражений они у него вызывали.

Научные интересы Галилея окончательно определились. Он целиком посвятил себя занятиям математикой, геометрией, механикой и физикой, оставил Пизанский университет и переселился во Флоренцию.

Имя Галилея стало известно среди итальянских математиков после того, как им были написаны сочинения, в которых приведен способ определения состава сплавов металлов на основе использования гидростатических весов и даны методы вычисления центра тяжести тел различной формы (это было продолжение работ Архимеда).

С 1589 г. Галилей занимал кафедру математики Пизанского университета, а с 1592 г.- Падуанского. По мнению биографов, преподавательскую работу Галилей за время пребывания в Пизанском университете вынужден был вести общепринятым тогда методом, т. о. «по Аристотелю». Что касается его научной деятельности, то дело обстояло иначе. В Пизе Галилеем было написано сохранившееся в рукописи сочинение «О движении», в котором, в частности, рассмотрен вопрос о вращении Земли вокруг собственной оси: не называя имени Коперника, которое он тогда, несомненно, знал, Галилей отстаивал его позицию.

В Падуе Галилей прожил около 18 лет (1592 - 1610 гг.). Его преподавательская работа в Падуанском университете по-прежнему строилась на установленных и строго поддерживаемых в то время позициях. Галилей вынужден был, например, рассказывать в лекциях о системе Птолемея и доказывать якобы несостоятельность взглядов Коперника. Не будем забывать при этом, что именно в падуанский период жизни Галилея был казнен Джордано Бруно. За эти 18 лет Галилей опубликовал, кроме «Звездного Вестника», только одну научную статью - описание так называемого пропорционального циркуля (Пропорциональный циркуль - простой, остроумный инструмент, позволяющий изменять масштаб снимаемых размеров. Достигается это тем, что ось вращения ножек циркуля относительно друг друга является подвижной (устанавливается в соответствии с желаемым изменением масштаба и закрепляется), а измерение размера и нанесение его в измененном масштабе ведутся противоположными концами ножек циркуля. Если ось вращения ножек циркуля находится точно в среднем положении, т. е. длина всех четырех частей ножек циркуля одинакова, изменения масштаба не будет. Если переместить центр вращения, например, так, что две части ножек циркуля будут в 3 раза длиннее двух других, то соотношение масштабов будет 1:3. ) (рис. 1), пользование которым облегчает геометрические построения и решение многих задач.

Годы, проведенные Галилеем в Падуе, оказались для него наиболее творческими. Именно в это время Галилей пришел к своим законам падения и окончательно убедился в правильности коперниканской теории, т. е. занимался теми самыми проблемами, которым в дальнейшем были посвящены его главные сочинения.

Большое значение в жизни Галилея имели последние годы его жизни в Падуе. В это время он построил свой первый оптический телескоп, дававший трехкратное увеличение, а затем телескоп с 32-кратным увеличением, провел наблюдения ночного неба. Результаты этих наблюдений (о них сказано ниже) имели огромное значение.

Авторитет Галилея намного вырос в результате его астрономических исследований. Он принял предложение великого герцога Тосканского, переехал во Флоренцию и занял пост придворного философа и придворного математика, а также профессора математики Пизанского университета (должность, не обязывавшая читать лекции). Это дало Галилею возможность завершить преподавательскую работу и все своз время отдать научным исследованиям.

В 1615 г. Галилей был вызван инквизицией в Рим для объяснений по поводу его работ, имевших явный прокоперниковский и антиаристотелевский характер. 3 1616 г. конгрегация индекса (Конгрегации - религиозные организации, состоящие как из духовных, так и из светских лиц, руководимые монашескими орденами; проводили политическую линию католической церкви. Конгрегация индекса - одна из них, она ведала цензурой и составляла «Список запрещенных книг» - по латыни «Index librorum prohibitorum», откуда и название. ) приняла решение о запрещении книги Коперника «Об обращениях небесных сфер» и отнесении его учения к числу еретических. Хотя Галилей в этом решении упомянут не был, но оно непосредственно его касалось - он был вынужден отказаться от печатной и публичной поддержки учения Коперника.

Тем не менее Галилей продолжал свои научные исследования. Им были написаны две основные работы: «Диалог о двух системах мира- Птолемеевой и Коперни-ковой» (коротко «Диалог») и «Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящейся к механике и местному движению» (коротко «Беседы»). Оба сочинения, «Диалог» и «Беседы», написаны в форме разговора между тремя лицами - Сальвиати, Сагредо и Симпличио. Все они не вымышленные лица: Сальвиати и Сагредо - друзья Галилея, его последователи, Симпличио - один из комментаторов Аристотеля, перипатетик, схоласт.

Сам Галилей характеризует этих людей следующими словами: «Тому уже много лет я не раз посещал удивительный город Венецию, где вел беседы с синьором Джиован Франческо Сагредо, человеком высокого происхождения и весьма острого ума. Одновременно находился там и приехавший из Флоренции синьор Филиппе Сальвиати, наименьшим украшением которого являлись чистота крови и блестящее состояние,- благородный ум, не знавший наслаждения более высокого, чем исследование и размышление. С этими двумя лицами я часто имел случай обсуждать упомянутые выше вопросы (Галилей имеет в виду главным образом вопросы систем мира Птолемея и Коперника. )в присутствии одного философа перипатетика, которому, как кажется, ничто так не препятствовало в познании истины, как слава, приобретенная им в истолковании Аристотеля» (Галилео Галилей. Избр. тр. М.: Наука, т. 1, с. 103. ) .

О содержании этих двух замечательных книг Галилея говорится ниже. Одна из них, «Диалог», была даже издана в 1632 г. на итальянском языке во Флоренции. Однако выход в свет «Диалога» был началом тяжелых испытании для Галилея. Несмотря на возраст и поддержку влиятельных друзей, ему пришлось ехать в Рим и предстать перед судом инквизиции. После длительных допросов Галилей вынужден был отречься от учения Коперника, а 22 июня 1633 г. принести публичное, покаяние. На «Диалог» был наложен запрет, а сам Галилей почти до самой смерти, последовавшей 8 января 1642 г. (в 1637 г. он ослеп), был вынужден вести уединенный образ жизни на вилле в Лрчетри, недалеко от Флоренции.

Латинский перевод «Диалога» был издан в ряде стран (главным образом протестантских), а в 1638 г. в Голландии вышли в свет «Беседы». Книги Галилея были встречены с огромным интересом.

Говоря о личности Галилея, о его человеческих чертах, необходимо отметить нетерпимость в отношении схоластики и бездумного поклонения научным авторитетам. Покажем это па примере трех отрывков из сочинения Галилея «Диалог». Устами Сагредо Галилей говорит: «Как-то был я в доме одного весьма уважаемого в Венеции врача, куда иногда собирались - одни, чтобы поучиться, а другие из любопытства - посмотреть на рассечение трупа, производимое рукою этого не только ученого, но искусного и опытного анатома. Как раз в тот день ему случилось заняться изысканием происхождения и зарождения нервов, по каковому вопросу существует известное разногласие между врачами-галенистами (Галей - римский врач и естествоиспытатель. ) и врачами-перипатетиками. Анатом показал, как нервы выходят из мозга, проходят в виде мощного ствола через затылок, затем тянутся вдоль позвоночника, разветвляются по всему телу и в виде только одной тончайшей нити достигают сердца. Тут он обернулся к одному дворянину, которого знал как философа-перипатетика и в присутствии которого он с исключительной тщательностью раскрыл и показал все это, и спросил его, удовлетворен ли он теперь и убедился ли, что нервы идут от мозга, а не от сердца. И этот философ, задумавшись на некоторое время, ответил: «Вы мне показали все это так ясно и ощутимо, что если бы текст Аристотеля не говорил обратного, а там прямо сказано, что нервы зарождаются в сердце,- то необходимо было бы признать это истиной!»» (Галилео Галилей. Избр. тр., т. 1, с. 206. ).

В адрес людей, слепо верящих в авторитет Аристотеля, Галилей говорит также словами Сальвиати: «Я много раз удивлялся, как могло получиться, что эти люди, стремящиеся поддерживать буквально каждое слово Аристотеля, не замечают того врэда, который они наносят репутации Аристотеля, и как они, вместо того чтобы увеличивать его авторитет, подрывают к нему доверие. Ибо, когда я вижу, как они упорно стараются поддержать те положения, ложность которых, на мой взгляд, совершенно очевидна, как они стремятся убедить меня в том, что именно так и надлежит поступать истинному философу и что именно так поступил бы и сам Аристотель, то у меня сильно уменьшается уверенность в том, что он правильно рассуждал и в других областях, для меня более далеких» (Галилео Галилей. Избр. тр., т. 1, с. 209. ).

И наконец, приведем еще одну выдержку из «Диалога» Галилея, касающуюся отношения к научным авторитетам. Дискуссия ведется между философом-перипатетиком Симпличио, уже исчерпавшим свои доказательства в защиту позиции Аристотеля, и сторонником Галилея Сальвиати:

«Симпличио . Но если мы оставим Аристотеля, то кто же будет служить нам проводником в философии? Назовите какого-нибудь автора.

Сальвиати. Проводник нужен в странах неизвестных и диких, а на открытом и гладком месте поводырь необходим лишь слепому. А слепой хорошо сделает, если останется дома. Тот же, у кого есть глаза во лбу и разум, должен ими пользоваться в качестве проводников. Однако я не говорю, что не следует слушать Аристотеля, наоборот, я хвалю тех, кто всматривается в него и прилежно его изучает. Я порицаю только склонность настолько отдаваться во власть Аристотеля, чтобы вслепую подписываться под каждым его словом и, не надеясь найти других оснований, считать его слова нерушимым законом. Это - злоупотребление, и оно влечет за собой большое зло, заключающееся в том, что другие ужа больше и не пытаются понять силу доказательств Аристотеля» (Галилео Галилей. Избр. тр., т. 1, с. 210. ).

Галилей считал, и в этом был важнейший источник его успеха, что исходным пунктом познания природы служит наблюдение, опыт. По этому поводу Эйнштейн и Инфельд пишут (Эйнштейн Л., Инфельд Л. Эволюция физики, с. 48. ): «Законы природы, устанавливающие связь следующих друг за другом событий, были неизвестны грекам. Наука, связывающая теорию и эксперимент, фактически началась с работ Галилея».

Огромна заслуга Галилея в астрономии, в обосновании и утверждении гелиоцентрической системы Коперника. С помощью построенных им телескопов, о которых сказано выше, Галилей открыл, что Солнце вращается вокруг своей оси, а на его поверхности имеются пятна; у самой большой планеты солнечной системы - Юпитера имеются подобные Луне спутники (Галилей обнаружил 4 самых крупных спутника из 13 известных в настоящее время); поверхность Луны гористого строения, а сама Луна имеет либрацию, т. е. видимые периодические колебания маятникового характера вокруг центра; фазы Венеры, которые, впрочем, люди с острым зрением могут заметить невооруженным глазом; необычный вид планеты Сатурн, создаваемый (как теперь известно) его кольцами, представляющими совокупность твердых тел. Галилей обнаружил огромное количество звезд, невидимых невооруженным глазом и с помощью недостаточно мощных инструментов (зрительных труб); увидел, что кажущийся туманностью Млечный Путь состоит из отдельных звезд.

Эти наблюдения, имеющие огромное значение и вызвавшие небывалый интерес, Галилей описал в сочинении «Звездный вестник». Интересно отметить, что с поступившим в Прагу «Звездным вестником» ознакомился Кеплер - один из крупнейших математиков и астрономов XVI-XVII вв. Кеплер очень высоко оцепил наблюдения Галилея; это видно из его сочинения «Рассуждение о «Звездном вестнике»».

Доказательство справедливости гелиоцентрической системы Коперника имело во время Галилея очень большое значение. Дело в том, что концепция Коперника подвергалась нападкам. С одной стороны, это были церковные, главным образом католические, круги, догмы которых никак не уживались со взглядами Коперника. С другой же стороны, это были сомнения в верности гелиоцентрической системы мира, высказываемые рядом ученых. Сомнения сводились главным образом к тому, что в случае вращения Земли вокруг своей оси или движения по орбите вокруг Солнца на поверхности Земли должен был бы, по мнению этих ученых, возникнуть очень сильный (ураганный) ветер, направленный в противоположную сторону, предметы, подброшенные вверх, должны были бы оставаться позади и падать на поверхность Земли далеко не в том месте, где они были подброшены. На самом же деле ничего этого не происходит.

Галилей в «Диалоге» формулирует словами Сальвиати эти сомнения и возражения следующим образом:

«Сальвиати . В качестве самого сильного довода все приводят опыт с тяжелыми телами: падая сверху вниз, тела идут по прямой линии, перпендикулярной к поверхности Земли; это считается неопровержимым аргументом в пользу неподвижности Земли. Ведь если бы она обладала суточным обращением, то башня, с вершины которой дали упасть камню, перенесется обращением Земли, пока падает камень, на много сотен локтей (Локоть - существовавшая раньше мера длины, ранная приблизительно длине локтевой кости (455 - 475 мм). ) к востоку, и на таком расстоянии от подножия башни камень должен был бы удариться о Землю» (Галилео Галилей. Избр. тр., т. 1, с. 224. ).

И далее: «Птолемей и его последователи приводят другой опыт, подобный опыту с брошенными телами; они указывают на такие предметы, которые, будучи разобщены с Землей, держатся высоко в воздухе, как, например, облака и летающие птицы; и так как про них нельзя сказать, что они увлекаются Землей, поскольку они с ней не соприкасаются, то представляется невозможным, чтобы они могли сохранять ее скорость, и нам должно было бы казаться, что все они весьма быстро движутся к западу; если бы мы, несомые Землей, проходили нашу параллель в двадцать четыре часа - а это составляет по меньшей мере шестнадцать тысяч миль,- как могли бы птицы поспевать за такого рода движением? Между тем на самом деле мы видим, что они летят в любом направлении без малейшего ощутимого различия как на восток, так и на запад» (Галилео Галилей. Избр. пр., т. 1, с. 230 ) .

Действительно, какая интересная наука механика, какой сложный предмет движение и какие трудные задачи приходилось решать 400 лет назад наиболее талантливым и образованным людям! Заметим, однако, правды ради что современные ученые стоят лицом к лицу отнюдь не с менее сложными проблемами (об этом пойдет речь ниже).

На первый взгляд может показаться, что высказанные в отношении гелиоцентрической системы мира сомнения и возражения основательны, что Птолемей и его последователи правы. Но это, конечно, не так. Предоставим слово Галилею (Сальвиати):

«Сальвиати. Уединитесь с кем-либо из друзей в просторное помещение под палубой какого-нибудь корабля, запаситесь мухами, бабочками и другими подобными мелкими летающими насекомыми; пусть будет у вас там также большой сосуд с водой и плавающими в нем маленькими рыбками; подвесьте, далее, наверху ведерко, из которого вода будет падать капля за каплей в другой сосуд с узким горлышком, подставленный внизу. Пока корабль стоит неподвижно, наблюдайте прилежно, как мелкие летающие животные с одной и той же скоростью движутся во все стороны помещения; рыбы, как вы увидите, будут плавать безразлично во всех направлениях; все падающие капли попадут в поставленный сосуд, и вам, бросая какой-нибудь предмет, не придется бросать его с большей силой в одну сторону, чем в другую, если расстояния будут одни и те же; и если вы будете прыгать сразу двумя ногами, то сделаете прыжок на одинаковое расстояние в любом направлении. Прилежно наблюдайте все это, хотя у пас не возникает никакого сомнения в том, что пока корабль стоит неподвижно, все должно происходить именно так. Заставьте теперь корабль двигаться с любой скоростью, и тогда (если только движение будет равномерным и без качки в ту и другую сторону) во всех названных явлениях вы не обнаружите ни малейшего изменения и ни по одному из них не сможете установить, движется ли корабль или стоит неподвижно. Прыгая, вы переместитесь по полу па то же расстояние, что и раньше, и не будете делать больших прыжков в сторону кормы, чем в сторону носа, па том основании, что корабль быстро движется, хотя за то время, как вы будете в воздухе, пол под вами будет двигаться в сторону, противоположную вашему прыжку, и, бросая какую-нибудь вещь товарищу, вы не должны будете бросать ее с большей силой, когда он будет находиться на носу, а вы на корме, чем когда ваше взаимное положение будет обратным; капли, как и ранее, будут падать в нижний сосуд, и ни одна не упадет ближе к корме, хотя, пока капля находится в воздухе, корабль пройдет много пядей (Пядь - старинная мера длины, равная приблизительно расстояние между концами разведенных большого и указательного пальцев руки взрослого человека. ) ; рыбы в воде не с большим усилием будут плыть к передней, чем к задней части сосуда; настолько же проворно они бросятся к пище, положенной в какой угодно части сосуда; наконец, бабочки и мухи по-прежнему будут летать во всех направлениях, и никогда не случится того, чтобы они собрались у стенки, обращенной к корме, как если бы устали, следуя за быстрым движением корабля, от которого они были совершенно обособлены, держась долгое время в воздухе; и если от капли зажженного ладана образуется немного дыма, то видно будет, как он восходит вверх и держится наподобие облачка, двигаясь безразлично, в одну сторону не более, чем в ДРУгую. И причина согласованности всех этих явлений заключается в том, что движение корабля обще всем находящимся на нем предметам, так же как и воздуху; поэтому-то я и сказал, что вы должны находиться под палубой, так как если бы вы были на ней, т. е. па открытом воздухе, не следующим за бегом корабля, то должны были бы видеть более или менее заметные различия в некоторых из названных-явлений: дым, несомненно, стал бы отставать вместе с воздухом, мухи и бабочки вследствие сопротивления воздуха равным образом не могли бы следовать за движением корабля в тех случаях, когда они отделились бы от него на довольно заметное расстояние; если же они будут держаться вблизи, то, поскольку сам корабль представляет собой сооружение неправильной формы и захватывает с собой ближайшие к нему части воздуха, они без особого усилия будут следовать за кораблем; подобным же образом мы видим при езде на почтовых, как надоедливые мухи и слепни следуют за лошадьми, подлетая то к одной, то к другой части их тела; в падающих же каплях различие будет незначительным, а в прыжках или брошенных телах - совершенно неощутимым» (Галилео Галилей. Избр. тр., т. 1, с. 286 - 287. ).

Как мы помним, Птолемей утверждал, что птицы и облака не должны поспевать за движением Земли. Теперь же, как следует из этого опыта Галилея, устанавливающего принцип относительности движения, и птицы, и облака, и сама Земля участвуют в одном и том же движении - движении Земли (которое в данном случае аналогично движению корабля) - и потому друг относительно друга смещаться не будут.

Невозможно дать более ясный и убедительный ответ на возражения приверженцев Птолемея, чем основанный на простом опыте ответ Галилея. Говоря современным языком и используя современную научную терминологию, мы сказали бы, что Галилей установил независимость протекания механических явлений от избранных инерциальных систем отсчета. Хотя об этих вещах речь еще будет идти ниже, сделаем все же некоторые пояснения. Под системой отсчета понимается система тел (может быть, даже одно тело), относительно которых (которого) рассматривается движение. Система считается инерциальной в том случае, когда в ней выполняется установленное Галилеем положение: если на тело не производится никакого воздействия (на тело не действует какая-либо сила, сказали бы теперь), оно либо находится в состоянии покоя, либо движется прямолинейно по горизонтальной плоскости с постоянной скоростью. Другими словами, система считается инерциальной в том случае, когда тело свободно от взаимодействия с другими телами. Таких систем на самом деле не существует (всегда на тело действуют какие-либо силы), по можно их себе представить и к ним приблизиться.

Прямолинейное и равномерное движение тела по горизонтальной плоскости без воздействия на него каких-либо внешних сил называется движением по инерции (Инерция от латинского слова inertia - покой, бездействие; под инерцией или инертностью тела понимается свойство тела сохранять свое состояние в случае, если на него не действуют внешние силы. ) . Отсюда произошло название инерциальных систем. Галилей установил: хотя положение движущегося тела (его координаты), его скорость, характер траектории (Траектория - линия, которую проходит центр массы движущегося тела. ) движения зависят от выбора инерциальной системы отсчета (например, неподвижный корабль, т. е. Земля, или корабль, движущийся в отношении Земли прямолинейно и равномерно), законы механики, протекание механических явлений не зависят от того, в какой именно иперциальной системе отсчета рассматривается изучаемое механическое движение.

Другими словами, механические явления, как уже было сказано, протекают одинаково во всех инерциальных системах отсчета. Это положение названо принципом относительности Галилея. Его никак нельзя путать с теорией относительности Эйнштейна, о которой речь пойдет ниже. Говоря современным научным языком, можно сформулировать принцип относительности Галилея так: законы механики инвариантны (Инвариантность - неизменность, независимость какой-либо величины (величин, уравнений) по отношению к некоторым преобразованиям; например, независимость уравнений механики относительно преобразований координат и времени при переходе от одной инерцнальной системы отсчета к другой. ) в отношении выбора инерциальной системы отсчета.

Галилей в «Диалоге» показал, что утверждения сторонников Птолемея о якобы невозможности суточного вращения Земли вокруг своей оси и движения ее по орбите вокруг Солнца являются неосновательными. Это явилось важнейшим доводом в пользу гелиоцентрической системы мира Коперника.

Интересно отметить еще одну аргументацию Галилея в пользу гелиоцентрической системы мира, Астрономические наблюдения за перемещением небесных тел, видимом с Земли, могут в принципе получить объяснение как с позиций гелиоцентрической системы мира и суточного вращения Земли вокруг своей оси, так и с позиций геоцентрической системы мира, согласно которой всо небесные тела обращаются вокруг неподвижной Земли. В первом случае, приняв за основу гелиоцентрическую систему мира, объяснение астрономических наблюдений за перемещением небесных тел получается относительно простым - все планеты Солнечной системы (включая Землю) обращаются вокруг Солнца по близким к круговым (как думало большинство сторонников гелиоцентрической системы во времена Галилея) орбитам. Во втором случае, т. е. приняв геоцентрическую систему мира, объяснение наблюдаемого с Земли движения небесных тел получается очень искусственным: траектории небесных тел оказались бы невероятно сложными, а скорости должны были бы изменяться от фантастически больших до очень малых.

Вот что пишет Галилей по поводу суточного вращения Земли вокруг своей оси.

«Сальвиати . Если мы примем во внимание огромный объем звездной сферы по сравнению с ничтожностью земного шара, содержащегося в пей много и много миллионов раз, а затем подумаем о скорости движения, которое за день и ночь должно проделать полное обращение, то я не могу убедить себя, что может найтись кто-либо, считающий более правильным и вероятным, что такое обращение проделывает звездная сфера, тогда как земной шар остается неподвижным.

Сагредо . Если решительно все явления природы, могущие стоять в зависимости от таких движений, порождают как в одном, так и в другом случае без всякого различия одни и те же следствия, то я сразу признал бы того, кто считает более правильным заставить двигаться всю Вселенную, лишь бы сохранить неподвижность Земли, еще более неразумным, чем того человека, который взобравшись на вершину купола вашей виллы, чтобы посмотреть на город и его окрестности, потребовал, чтобы вокруг пего вращалась вся местность и ему не пришлось трудиться, поворачивая голову» (Галилео Галилей. Избр. тр., т. 1, с. 213. ).

Выше уже было сказано об открытиях Галилея в области механики, благодаря которым он (вместе с Ньютоном) справедливо считается основоположником современной науки. Сверх того, о чем уже было упомянуто, необходимо назвать некоторые другие важные достижения Галилея.

Очень большое значение имеют исследования свободного падения тел и движения их по наклонной плоскости. Галилей установил, что скорость свободного падения тел не зависит от их массы, как думал Аристотель, а пройденный падающими телами путь пропорционален квадрату времени падения. Это было великое открытие. Оно позволило в дальнейшем установить численное равенство гравитационной и инертной масс тел, о чем еще будет сказано.

Галилей создал теорию параболического движения и определил, что траектория бросаемого тела, т. е. тела, движущегося под действием начального толчка и земного притяжения, является параболой.

Много было сделано Галилеем в области теории прочности и сопротивления материалов. Очень интересны соображения, высказанные Галилеем о механическом подобии и о том, что в случае, когда значительна тяжесть тела, подобие в отношении прочности тел отсутствует.

Вот что пишет Галилей по этому вопросу: «Если мы возьмем деревянное бревно некоторой толщины, вделанное, скажем, в стену под прямым углом так, что оно располагается параллельно горизонту, и предположим, что длина его достигнет крайнего предела, при котором оно может еще держаться, т. е. что при увеличении длины его еще на волос оно ломается от собственной тяжести, то бревно это явится единственным в своем роде на свете. Если длина его, предположим, превышает его толщину в сто раз, то мы не сможем найти ни одного бревна из того же дерева, которое при длине, превышающей его толщину в сто раз, было бы способно выдержать ровно столько же, сколько взятое для примера: все бревна большего размера сломаются, меньшего же - будут способны, помимо собственной тяжести, выдержать и еще некоторую нагрузку. То, что сказано мною о способгтости выдержать свой собственный вес, применимо и к другим сооружениям (Цит. по: Седов Л. И. Галилей и основы механики. М.: Паука, 1961, с. 36-37 ).

В этой связи Галилей высказал очень интересные соображения о преимуществах в отношении «прочности» и подвижности малых животных по сравнению с большими и о существовании предела их размеров. Точное решение этих вопросов было найдено только спустя примерно триста лет.

Великий итальянский ученый Галилео Галилей (1564-1642) вел решительную борьбу за признание учения Коперника. Одновременно он развернул наступление по всему фронту на средневековое мировоззрение попов, монахов и схоластов, закладывая основы научного метода познания природы. Галилей - один из основателей экспериментальной науки о природе - естествознания.

Галилей родился в городе Пизе в семье музыканта. Отец Галилея хотел сделать его врачом, для чего направил в 1581 г. в Пизанский университет. Однако интересы Галилея лежали в другой области, и он, бросив учение, переезжает во Флоренцию. Здесь Галилей занялся изучением математики и механики и написал несколько работ, посвященных механике. В 1589 г. Галилей получил кафедру в Пизанском университете, а в 1592 г. - в университете города Падуя, где он работал до 1610 г. В течение всего этого времени Галилей занимался научными исследованиями в области физико-математических наук, а также техническими проблемами своего времени.

Галилео Галилей

Галилей довольно рано стал противником механики и астрономии Аристотеля. Ученик Галилея- Вивиани свидетельствует, что Галилей, будучи еще в Пизе, опровергал учение Аристотеля о том, что тяжелые тела падают быстрее, чем легкие. По его свидетельству, Галилей будто бы даже проводил опыты, бросая различные тела с наклонной башни в Пизе для экспериментального подтверждения ошибочности мнения Аристотеля 1 . О раннем критическом отношении к астрономии Аристотеля свидетельствует письмо Галилея к Кеплеру, написанное в 1597 г. В этом письме он пишет:

«Я считаю себя счастливым, что в поисках истины нашел столь великого союзника. Действительно, больно видеть, что есть так мало людей, стремящихся к истине и готовых отказаться от превратного способа философствования. Но здесь не место жаловаться на печальное состояние нашего времени, я хочу лишь пожелать тебе удачи в твоих замечательных исследованиях. Я делаю это тем охотнее, что уже много лет являюсь приверженцем учения Коперника. Оно объяснило мне причину многих явлений, совершенно непонятных с точки зрения общепринятых взглядов. Для опровержения последних я собрал множество аргументов, но я не решаюсь опубликовать их. Конечно, я решился бы на это, если бы было больше таких людей, как ты. Но так как этого нет, то я держу себя осторожно» 2 .

Аргументами в защиту учения Коперника, о которых говорит в письме Галилей, были, вероятно, его новые открытия в области механики (позже он будет приводить их в защиту этого учения).

Через 13 лет Галилей имел новые аргументы, подтверждающие учение Коперника. Они основывались уже на астрономических открытиях Галилея. В 1608 или 1609 г.

Галилей узнал об изобретении голландскими мастерами зрительной трубы и в 1609 г. сам сконструировал такую трубу. Труба-телескоп Галилея имела выпуклую линзу-объектив и вогнутую линзу-окуляр.

Она давала более чем тридцатикратное увеличение (рис. 11). Наблюдая за небом с помощью этого телескопа, Галилей сделал ряд важнейших наблюдений. Он открыл, что поверхность Луны - небесного тела- ничем принципиально не отличается по виду от земной поверхности. Подобно Земле, Луна имеет горные возвышенности и впадины. Далее Галилей установил, что планеты, в отличие от неподвижных звезд подобны Луне и видны в трубу в виде круглых светящихся дисков. Венера же, совсем как Луна, с течением времени меняет свой вид от круглого диска до узкого серпа. Галилей открыл также спутники Юпитера. Он заметил, что вокруг Юпитера вращаются четыре маленькие звездочки (спутники), подобно тому, как вокруг Земли вращается Луна. Галилей также установил, что число неподвижных звезд гораздо больше, чем видно невооруженным глазом.

Опираясь на свои открытия, Галилей осторожно, но настойчиво вступил на путь распространения и обоснования учения Коперника как теории действительного строения Вселенной. Сразу же он встретил сопротивление со стороны богословов, которые либо отрицали открытия Галилея, либо же ссылались на авторитет священного писания. Однако Галилей искусно вел борьбу, старался не касаться чисто богословских вопросов. В 1516 г. обеспокоенная церковь официально осудила учение Коперника, книга его была внесена в список запрещенных, и Галилей был предупрежден, что отныне он не смеет придерживаться этого учения и пропагандировать его. Галилей вынужден был на время умолкнуть. Однако собранный им фактический материал из области механики и астрономии, являющийся подтверждением системы Коперника, заставил Галилея, несмотря на запрещение церкви, искать способы во что бы то ни стало выступить в защиту Коперника. Галилей знал, что мог при этом рассчитывать на свой авторитет ученого, который к тому времени был велик, а также на благосклонность некоторых кругов высшего духовенства. Однако прямо в защиту «коперникианской ереси» выступить было невозможно, не будучи немедленно схваченным инквизицией. Оценив всю обстановку, Галилей решил написать книгу, в которой по существу обосновывалась бы система Коперника, но так, чтобы автора книги формально нельзя было обвинить в защите ее. Эта книга вышла в свет в 1632 г. под названием «Диалог о двух главнейших системах мира: птолемеевой и коперниковой». Она была написана в форме беседы или дискуссии между приверженцем учения Коперника - сеньором Сальвиати и защитником системы Птолемея - Симпличио. В диспуте участвовало также третье лицо - Сагредо, который по существу стоял на стороне Сальвиати. Чтобы обезопасить себя от обвинения в ереси, Галилей в предисловии указывал, что учение о движении Земли запрещено церковью и что в книге это учение лишь обсуждается, а не утверждается. Однако ни предисловие, ни форма сочинения не могли никого обмануть. Защитник системы Птолемея - Симпличио выглядел весьма бледно и непрерывно был побиваем аргументами и шутками его противников. Читатель ясно представлял, на чьей стороне автор и какую в действительности цель он преследовал. Вскоре после выхода в свет этой книги против Галилея был возбужден судебный процесс. В начале 1633 г. Галилей был вызван в Рим, где ему было предъявлено обвинение в том, что он ослушался постановления о запрещении придерживаться и пропагандировать учение Коперника. Галилей отверг это обвинение, указав, что он нигде не утверждает истинности этого учения, а говорит о нем лишь предположительно как о гипотезе. Однако ему пришлось сознаться, что, увлекшись, он слишком убедительно излагал условные аргументы за то положение, которое хотел опровергнуть. Инквизиция удовлетворилась этим объяснением, но потребовала публичного отречения от учения Коперника, что и пришлось сделать Галилею. После процесса Галилей, находясь под надзором инквизиции, продолжал заниматься научной деятельностью и написал новый научный труд «Беседы и математические доказательства о двух новых науках», посвященный вопросам механики, акустики и некоторым другим. Рукопись этого сочинения была напечатана в Голландии в 1638 г. В 1642 г. Галилей скончался. При его кончине присутствовали два представителя инквизиции.

С внешней стороны процесс Галилея выглядел как победа церкви, на самом же деле это было ее поражение. В результате деятельности Галилея и его борьбы гелиоцентрическое учение стало широко известно и завладело умами культурных людей Европы. Правда, книга Галилея, как и книга Коперника, долгое время (до 1822 г.) находилась в списке запрещенных. Однако уже во второй половине XVII в. на это запрещение перестали обращать внимание.

В «Диалоге» в защиту теории Коперника приводится два типа аргументов. Во-первых, Галилей опирается на свои астрономические открытия, которые подтверждали, что Земля такое же тело, как и другие планеты, и говорить об ее исключительности нельзя. Во-вторых, аргументы, основанные на его открытиях в области механики. Они опровергали теорию Аристотеля о движении и снимали возражения против движения Земли, которые высказал еще Птолемей. Уже Коперник отвергает эти возражения, утверждая, что движение тел вместе с Землей нужно считать естественным движением. Галилей идет еще дальше, утверждая, что всякое движение по горизонтальной поверхности на Земле, если исключить силы трения, является, употребляя терминологию Аристотеля, естественным, т. е. движением, не требующим действия силы. Оно происходит вечно, сохраняя свою скорость. При этом Галилей непросто утверждает это положение, а обращается к опыту. Участники «Диалога» обсуждают такой опыт. Рассматривается движение тела по совершенно гладкой (т. е. исключающей трение) наклонной плоскости. Если тело движется вверх по наклонной плоскости, то его скорость уменьшается, если вниз - то увеличивается. Спрашивается, как двигается тело по горизонтальной плоскости? Ответ напрашивается сам собой: тело двигается с постоянной скоростью. Позднее Галилей сформулирует этот вывод в более общей форме:

«Когда тело движется по горизонтальной плоскости, не встречая никаких сопротивлений движению, то, как мы знаем из всего того, что было изложено выше, движение его является равномерным и продолжалось бы постоянно, если бы плоскость простиралась в пространстве без конца» 3 .

В таком виде Галилей формулирует закон инерции. Это еще не общая формулировка закона инерции, которая была дана позже. Но здесь, конечно, сделан принципиально новый шаг. В такой формулировке под равномерным движением понимается прямолинейное движение с постоянной скоростью и этот закон уже принципиально отличается от формулировок теорий «импетуса». С другой стороны, следует отметить, что Галилей хотя и сформулировал закон инерции для горизонтального движения, но понимал его шире. Об этом можно судить по тому, как обсуждается Галилеем вопрос, почему с вращающейся Земли не разлетаются предметы, как это имеет место для быстро вращающегося колеса. Галилей определенно говорит, что отброшенное с обода колеса тело стремится затем двигаться прямолинейно по касательной с постоянной скоростью, независимо от того, отлетает ли оно в горизонтальном или каком другом направлении, и только сила тяжести мешает этому.

Одновременно возникает вопрос о том, почему же тела, находящиеся на Земле, при ее вращении не разлетаются с ее поверхности? Галилей не решает этот вопрос, он полагал, говоря современным языком, что центробежное ускорение ничтожно мало по сравнению с ускорением силы тяжести.

Таким образом, мы видим, что, с одной стороны, Галилей более широко понимал закон инерции, нежели его формулировал, а с другой стороны, он, вероятно, понимал, что движение Земли нельзя считать строго инерциальным.

Одновременно с законом инерции Галилей использует другое основное положение классической механики, так называемый закон независимости действия сил, опять-таки в применении к движению тел в поле силы тяжести Земли. Тело стремится, по Галилею, сохранить свою горизонтальную скорость не только когда поддерживается горизонтальной плоскостью, но и когда свободно падает, т. е. если тело падает, то на горизонтальную составляющую скорости сила тяжести, действующая вертикально, не оказывает никакого влияния. С другой стороны, изменение вертикальной слагающей скорости под действием силы тяжести не зависит от того, находится ли при этом тело в горизонтальном движении или нет.

На основании установленных законов Галилей объясняет, почему мы не замечаем движение Земли, находясь на ней. Так, например, свободно падающий камень падает вертикально, так как в момент бросания имеет ту же скорость, что и поверхность Земли в месте бросания. Эту скорость он сохраняет при падении. Галилей приводит для подтверждения опыт с бросанием камня с мачты движущегося корабля. Он разбирает и другие опыты с бросанием тел на Земле и показывает, что с их помощью нельзя опровергнуть гипотезу движения Земли. Обобщая свои объяснения, Галилей формулирует классический принцип относительности. Он подчеркивает, что движение по инерции можно заметить, только не участвуя в этом движении, так как оно не воздействует на вещи, находящиеся в таком движении. Поясняя это положение, Галилей приводит следующий пример:

«Уединитесь с кем-либо из друзей, - пишет он, - в просторное помещение под палубой какого-нибудь корабля, запаситесь мухами, бабочками и другими подобными мелкими летающими насекомыми; пусть будет у вас там также большой сосуд с водой и плавающими в нем маленькими рыбками; подвесьте далее, наверху ведро, из которого вода будет падать капля за каплей в другой сосуд с узким горлышком, подставленный внизу. Пока корабль стоит неподвижно, наблюдайте прилежно, как мелкие летающие животные с одной и той же скоростью движутся во все стороны помещения; рыбы, как вы увидите, будут плавать безразлично во всех направлениях; все падающие капли попадут в подставленный сосуд, и вам, бросая какой-нибудь предмет, не придется бросать его с большей силой в одну сторону, чем в другую, если расстояния будут одни и те же, и если вы будете прыгать сразу двумя ногами, то сделаете прыжок на одинаковое расстояние в любом направлении. Прилежно наблюдайте все это, хотя у вас не возникает никакого сомнения в том, что, пока корабль стоит неподвижно, все должно происходить именно так. Заставьте теперь корабль двигаться с любой скоростью, и тогда (если только движение будет равномерным и без качки в ту или другую сторону) во всех названных явлениях вы не обнаружите ни малейшего изменения и ни по одному из них не сможете установить, движется ли корабль или стоит неподвижно» 4 .

Открытия Галилея в области механики были непосредственно связаны с его обоснованием учения Коперника, но, конечно, имели и самостоятельное значение (т. е. для развития механики вообще). Собственно говоря, с работ Галилея и начинается, по существу, развиваться механика как учение о механическом движении. О других исследованиях по механике Галилея будет сказано ниже.

Галилею, видному представителю научной революции, принадлежит заслуга не только в борьбе за обоснование гелиоцентрической системы мира и не только как основоположнику механики. Он наметил новый экспериментальный метод исследования природы, ставший основным методом экспериментального естествознания. Источником познания, по Галилею, является опыт и только опыт. Он осуждает схоластику, оторванную от действительности и опирающуюся исключительно на авторитеты. Заслуга Галилея заключается не только в том, что он считает опыт источником познания. Опыт как источник познания провозглашался и до Галилея, и наука фактически строилась на опыте и до него. Аристотель, как правильно подчеркивает Галилей, признавал, что опыт - источник познания. Для развивающейся науки было важно, как из опыта должно строиться познание, т. е. найти правильный научный метод опытного познания: Галилей как раз и сделал это. До Галилея опыт был лишь, если можно так сказать, исходным пунктом познания. Метод исследования в общих чертах состоял главным образом из двух звеньев: непосредственных наблюдений (очень часто - случайных) и построения общей теории на основании этих наблюдений. Третье же звено, заключающееся в проверке выводов построенной теории, либо совсем отсутствовало, либо находилось в зачаточном состоянии, не было сколько-нибудь развито. Поэтому наука в древности имела созерцательный характер. Такой же она осталась и в рамках средневековой схоластики, а это определяло, с одной стороны, ее грубо эмпирический, а с другой стороны, спекулятивный характер. Таким было учение Аристотеля о небе и его динамика. В основе лежали самые простые непосредственные] наблюдения, не проанализированные сколько-нибудь подробно. Повседневная практика древности и средних веков показывала, например, что для того, чтобы везти одну и ту же повозку с большей скоростью, нужно приложить и большее усилие, или что часто-более тяжелые тела падают быстрее, чем легкие. Этих и подобных наблюдений Аристотелю казалось достаточно, чтобы построить систему всей динамики, имевшую фантастический характер. Ни Аристотелю, ни его ученикам не приходило в голову попробовать не просто согласовать теорию движения с наблюдаемыми фактами, а вывести следствия из этой теории и на специально поставленных экспериментах убедиться в ее правильности или неправильности.

Иначе поступает Галилей: исследуя движение, он отрывается от непосредственных результатов единичных опытов. Законы и положения, на которые он опирается, являются научными абстракциями и не следуют из единичных наблюдаемых фактов. Так, закон инерции непосредственно не мог быть проверен Галилеем.на опыте. Нельзя было непосредственно наблюдать движение тела исключив трение. И закон, что тело падает равноускоренно, также не мог быть, строго говоря, проверен в то время на опыте. Однако научная абстракция более глубоко проникает в сущность явлений, чем простая констатация фактов, являющаяся выражением того общего, что скрывается в этих фактах, выходит за рамки явлений, при исследовании которых она впервые возникает. Научная абстракция выражается в форме гипотезы. Гипотеза позволяет предвидеть новые факты и явления на основе выводов из нее. Поэтому научная гипотеза становится руководящей идеей в дальнейших научных исследованиях. Одновременно проверка выводов из ее следствий и предсказаний превращает гипотезу в научный закон.

Экспериментальный метод Галилея особенно отчетливо виден на примере исследования им законов падения тел. Галилей начинает с предположения о том, что тела падают с постоянным ускорением. Это еще гипотеза; хотя она и основана на непосредственных наблюдениях и некоторых соображениях, все же является догадкой. Из этих предположений Галилей выводит следствия. Он доказывает, что если тело падает равноускоренно, т. е. если v~t , то пройденный путь пропорционален t 2 . Техника эксперимента не позволяла непосредственно проверить этот вывод (в то время не было еще даже обычных маятниковых часов). Поэтому Галилей решает проверить этот закон для случая движения тел по наклонной плоскости. Он берет длинную доску с желобом, выстланным пергаментом. Под один конец доски укрепляет подставку так, чтобы доска образовала наклонную плоскость. Заставляя скользить шарик по желобу, он измеряет время, за которое шарик проходит-определенное расстояние по желобу. Время движения шарика Галилей измеряет по количеству воды, вытекшей через малое отверстие из сосуда. Проделав измерения, Галилей нашел, что по наклонной плоскости тело движется равноускоренно, причем это справедливо для наклонных плоскостей с различными углами наклона. Отсюда Галилей заключает, что данное положение верно и для свободного падения, так как вертикальное движение тела вниз можно рассматривать как предельный случай движения его по наклонной плоскости, когда угол наклона стремится к 90°. Таким образом, эксперимент подтверждает основную гипотезу и теперь можно считать, что закон падения установлен. В этом исследовании совершенно отчетливо содержится новое звено: обоснование высказанной гипотезы, вывод из нее с помощью специально поставленного экспериментального исследования.

Таким образом, метод научного исследования Галилея можно охарактеризовать так: из наблюдений и опытов устанавливается предположение - гипотеза, которая хотя и является обобщением опытов, но включает в себя нечто новое, что непосредственно не содержится в каждом конкретном опыте. Гипотеза дает возможность вывести строго математическим и логическим путем определенные следствия, предсказать некоторые новые факты, которые можно проверить на опыте. Проверка следствий и подтверждает гипотезу - превращает ее в физический закон. В основных чертах этот метод и становится основным методом, следуя которому развивается естествознание.

В своих сочинениях Галилей наметил также основные черты нового представления о природе материи, движении и закономерностях материального мира - механического материализма. Галилей был противником учения Аристотеля о материи и форме и в своих сочинениях возрождал идеи древних атомистов. Материальные вещи, по Галилею, состоят из бесчисленного множества мельчайших частиц, между которыми имеются пустоты. Изменения в природе происходят в результате движения и перераспределения этих частиц, которые не уничтожаются и не создаются вновь. Возрождая атомистическую гипотезу, Галилей намечает основные черты количественного механического понимания природы. Он отрицает бесчисленные скрытые качества, вводимые схоластами (стремления, антипатии и т. д.), и смеется над их методологией. Материя, по Галилею, обладает лишь простыми геометрическими и механическими свойствами.

«Никогда, - пишет Галилей, - я не стану от внешних тел требовать что-либо иное, чем величина, фигуры, количество и более или менее быстрые движения, для того чтобы объяснить возникновение ощущений вкуса, запаха и звука; и думаю, что если бы мы устранили уши, языки, носы, то остались бы только фигуры, число и движения, но не запахи, вкусы и звуки, которые по нашему мнению, вне живого существа являются не чем иным, как только пустыми именами» 5 .

Таким образом, в лице Галилея наука развернула по всему фронту наступление на мировоззрение средневековых богословов, попов, монахов и схоластов, в результате которого ему был нанесен сокрушительный удар. Одновременно Галилей заложил основы нового экспериментального метода исследования природы, явился одним из основоположников естествознания и нового мировоззрения - механического материализма, которое стало основным мировоззрением физиков и естествоиспытателей вообще. Наконец, Галилей заложил основы динамики; с его исследований, собственно говоря, начинает развиваться эта область физических наук.

1 По вопросу о справедливости этого свидетельства Вивиани в настоящее время высказывают разные мнения. Одни историки отрицают достоверность этих опытов, другие же полагают, что свидетельству Вивиани следует верить.
2 Данеман Ф. История естествознания. Т. II. М.-Л., ОНТИ, 1933, с. 29.
3 Галилей Галилео. Избранные труды. Т. II. М., «Наука», 1964, с. 304.
4 Галилей Галилео, Избранные труды. Т. I. М., «Наука», 1964, с. 286.
5 Антология мировой философии. Т. II. М., «Мысль», 1970, с. 224-225.

Галилео Галилей и его роль в становлении классической науки

Работа по обоснованию гелиоцентризма была начата Галилео Галилеем, труды которого предопределили весь облик классической, а во многом и современной науки. Именно им были заложены основы нового типа мировоззрения, а также новой науки - математического опытного естествознания. Чтобы глубже проникнуть в математические законы и постичь истинный характер природы, Галилей усовершенствовал и изобрел множество технических приборов и инструментов - линзу, телескоп, микроскоп, магнит, воздушный термометр, барометр и др. Их использование придало естествознанию новое, неведомое грекам измерение. Прежние размышления о Вселенной уступили место экспериментальному исследованию с целью постижения действующих в ней универсальных математических законов.

Г. Галилей (1564-1642)

Очень важно, что свою систематическую ориентацию на опыт Галилей сочетал со стремлением к его математическому осмыслению. И ставил его так высоко, что считал возможным полностью заменить традиционную логику как бесполезное орудие мышления математикой, которая только и способна научить человека искусству доказательства.

Математический аналитический метод Галилея привел его к механистическому истолкованию бытия, позволил ему сформулировать понятие физического закона в его современном понимании. Можно считать, что, начиная с работ этого ученого, наука полностью порвала с сугубо качественным истолкованием природы. Особое значение для утверждения науки нового типа имели открытия Галилея в области механики и астрономии. Именно они заложили прочный фундамент в обоснование гелиоцентризма.

Гелиоцентризм - картина мира, представляющая центром Вселенной Солнце, вокруг которого вращаются все планеты, в том числе и Земля.

Одной из серьезнейших проблем, препятствующих утверждению нового мировоззрения, было давнее убеждение, сложившееся еще в античности и поддерживавшееся на протяжении Средневековья, что между земными и небесными явлениями и телами существует принципиальная разница. Со времен Аристотеля считалось, что небеса - место нахождения идеальных тел, состоящих из эфира и вращающихся по идеальным круговым орбитам вокруг Земли. Земные же тела возникают и функционируют совсем по другим законам. Поэтому прежде чем создавать всеобъемлющие теории и открывать законы природы, ученые Нового времени должны были опровергнуть деление на земное и небесное. Первый шаг в этом направлении был сделан Галилеем.

После того, как в 1608 г . была изобретена зрительная труба, Галилей усовершенствовал ее и превратил в телескоп с 30-кратным увеличением. С его помощью он совершил целый ряд выдающихся астрономических открытий. Среди них - горы на Луне, пятна на Солнце, фазы Венеры, четыре крупнейших спутника Юпитера. Он же первый увидел, что Млечный Путь представляет собой скопление огромного множества звезд. Все эти факты доказывали, что небесные тела - это не эфирные создания, а вполне материальные предметы и явления. Ведь не может быть на идеальном теле гор, как на Луне, или пятен, как на Солнце.

С помощью своих открытий в механике Галилей разрушил догматические построения господствовавшей почти в течение двух тысяч лет Аристотелевской физики. Галилей выступил против мыслителя, авторитет которого считался бесспорным, и впервые проверил многие его утверждения опытным путем, заложив тем самым основы нового раздела физики - динамики - науки о движении тел под действием приложенных сил. До этого единственным более или менее разработанным разделом физики была статика.

Статика - наука о равновесии тел под действием приложенных сил, основанная Архимедом.

Также Галилей изучал свободное падение тел и на основании своих наблюдений выяснил, что оно совершенно не зависит от веса или состава тела. После этого он сформулировал понятия скорости, ускорения, показал, что результатом действия силы на тело является не скорость, а ускорение.

Проанализировал Галилей и метательное движение, на основании чего пришел к идее инерции, пока еще не сформулированной точно, но сыгравшей огромную роль в дальнейшем развитии естествознания. В отличие от Аристотеля, полагавшего, будто все тела стремятся достичь места, отведенного им природой, после чего движение прекращается, Галилей считал, что движущееся тело стремится пребывать в постоянном равномерном прямолинейном движении или в покое, если только какая-нибудь внешняя сила не остановит его или не отклонит от направления его движения. Идея инерции позволила опровергнуть одно из возражений противников гелиоцентризма, которые утверждали, что предметы, находящиеся на поверхности Земли, в случае ее движения неизбежно оказались бы сброшенными с нее, и что любой метательный снаряд, запускаемый вверх под прямым углом, обязательно приземлялся бы на некотором расстоянии от исходной точки броска. Понятие инерции объясняло, что движущаяся Земля автоматически передавала свое движение всем находящимся на ней телам.

Еще одним возражением противников гелиоцентризма было то, что мы не чувствуем движения Земли. Ответ на него также был дан Галилеем в сформулированном им классическом принципе относительности. Согласно этому принципу, никакими механическими опытами, проведенными внутри системы, невозможно установить, покоится система или движется равномерно и прямолинейно. Также классический принцип относительности утверждает, что между покоем и равномерным прямолинейным движением нет никакой разницы, они описываются одними и теми же законами. Равноправие движения и покоя, т.е. инерциальных систем - покоящихся или движущихся друг относительно друга равномерно и прямолинейно, Галилей доказывал рассуждениями и многочисленными примерами. Например, путешественник в каюте корабля с полным основанием считает, что книга, лежащая на его столе, покоится. Но человек на берегу видит, что корабль плывет, и он имеет все основания утверждать, что книга движется и притом с той же скоростью, что и корабль. Так движется на самом деле книга или покоится? На этот вопрос, очевидно, нельзя ответить просто «да» или «нет». Спор между путешественником и человеком на берегу был бы пустой тратой времени, если бы каждый из них отстаивал только свою точку зрения и отрицал точку зрения партнера. Они оба правы, и чтобы согласовать позиции, им нужно только признать, что в одно и то же время книга покоится относительно корабля и движется относительно берега вместе с кораблем.

Законы механики вместе с его астрономическими открытиями подводили ту физическую базу под гипотезу Коперника, которой сам ее творец еще не располагал. Из гипотезы гелиоцентрическая доктрина теперь начинала приобретать статус теории.

Но еще не был окончательно решен вопрос о соотношении земных и небесных движений, не было объяснено движение самой Земли. Реальное движение планет также мало соответствовало их описанию в гелиоцентрической гипотезе Коперника (круговое движение), как и в геоцентризме Птолемея.

Великие ошибки великого Галилея

Перенесемся из античных времен в доньютоновскую эпоху, где над механикой «властвовал» великий Галилей. Развитие динамики как науки связано с именем великого итальянского ученого эпохи Возрождения Галилео Галилея (1564-1642). Наибольшей заслугой Галилея как ученого-механика было то, что он первым заложил основы научной динамики, нанесшей сокрушительный удар по динамике Аристотеля. Галилей называл динамику «наукой о движении относительно места». Его сочинение «Беседы и математические доказательства, касающиеся двух новых наук» состоит из трех частей: первая часть посвящена равномерному движению, вторая – равномерно ускоренному, третья – принужденному движению брошенных тел.

В античной механике термина «скорость» не было. Рассматривались более или менее скорые движения, а также «равноскорые», но количественно характеристики этих движений в виде скорости не существовало. Галилей впервые подошел к разрешению вопроса о равномерном и ускоренном движении массивных тел и рассмотрел движение тел по инерции.

Галилею приписывают открытие закона инерции. Делают это даже в учебниках – школьных и не только. Закон этот Галилей выражал так: «Движение тела, на которое не действуют силы (конечно, внешние) либо равнодействующая их равна нулю, является равномерным движением по окружности». Так, по мнению Галилея, двигались небесные тела, «предоставленные самим себе». На самом же деле движение по инерции, как известно, может быть только равномерным и прямолинейным. Что же касается небесных тел, то их с этого движения «сбивает» внешняя сила – сила всемирного тяготения.

Рассматривая взгляд Галилея на инерцию, убеждаемся в его неправомерности: ошибка в рассуждениях возникла из-за того, что Галилей не знал о законе всемирного тяготения, открытого позже Ньютоном.

Доказывая принцип относительности, Галилей утверждал, что если корабль движется равномерно и без качки (рис. 23), то никаким механическим экспериментом нельзя обнаружить этого движения. Он предлагал мысленно разместить в трюме корабля сосуды с вытекающей из них водой, с плавающими в них рыбками, летающих мух и бабочек и утверждал, что стоит ли корабль или движется равномерно – их действия не изменяются. Не надо при этом забывать, что движение корабля не прямолинейное, а круговое (правда, по окружности большого радиуса, какой является то или иное сечение Земли).

Рис. 23. Корабль Галилея (видно, что он плывет по окружности)

Сейчас мы знаем, что в системе, движущейся по кривой, какой является и окружность, невозможно соблюдение закона инерции: эта система не является инерциальной. Действительно, в принципе Галилея величина скорости относительного движения не играет роли, как и скорость движения одной инерциальной системы относительно другой.

Но если кораблю придать первую космическую скорость (8 км/с), то все предметы в его трюме, как и сам корабль, сделаются невесомыми. Механический эксперимент, проведенный с достаточной точностью, покажет, что и для реальных скоростей движения перемещения тел в трюме движущегося корабля и корабля неподвижного будут различаться между собой. Более того, движение тел изменится, если корабль будет идти с одной и той же скоростью, но разными курсами – допустим, по меридиану и по экватору. Не только движущиеся в трюме тела будут сбиваться с предполагаемой траектории, но и сам корабль в Северном полушарии будет относить вправо по курсу, а в Южном – влево. Интересно, что эти отклонения, вызванные вращением Земли как неинерциальной системы, не зависят даже от направления движения.

В другой своей работе – «Диалог о двух главнейших системах мира…» – Галилей утверждает, что мир есть тело в высшей степени совершенное, и в отношении его частей должен господствовать наивысший и наисовершеннейший порядок. Из этого Галилей делает вывод, что небесные тела по своей природе не могут двигаться прямолинейно, поскольку если бы они двигались прямолинейно, то безвозвратно удалялись бы от своей исходной точки и первоначальное место для них не было бы естественным, а части Вселенной не были бы расположены в «наисовершенном порядке». Следовательно, небесным телам недопустимо менять места, т. е. двигаться прямолинейно. Исчезни вдруг закон всемирного тяготения, это и случилось бы! Именно он удерживает небесные тела в устойчивом движении, не допуская их хаотического разбегания (рис. 24). Кроме того, прямолинейное движение бесконечно, ибо прямая линия бесконечна, а стало быть, неопределенна. Галилей считал, что по самой сути природы невозможно, чтобы что-либо двигалось по прямой линии к недостижимой цели.


Рис. 24. Естественное, или инерционное движение по Галилею на примере вращения Луны вокруг Земли

Но коль скоро порядок достигнут и небесные тела размещены наилучшим образом, невозможно, чтобы в них оставалась естественная склонность к прямолинейному движению, в результате которого они отклонились бы от надлежащего места. Как утверждал Галилей, прямолинейное движение может только «доставлять материал для сооружения», но, когда последнее готово, оно или остается неподвижным, или если и обладает движением, то только круговым. Более того, Галилей утверждал, что если тело бросить скользить как по льду по горизонтальной плоскости, то, упав с нее, тело обязательно пересечет свою траекторию с центром Земли (рис. 25, а). Но так как движение по инерции все время удаляет брошенное тело от этой траектории, то оно никак не может пересечь свой путь с центром Земли. Это очень распространенная ошибка, автору доводилось даже в современных школьных учебниках по физике (в семидесятых годах) встречать подобное утверждение и видеть соответствующие рисунки: например, как ядро, вылетевшее из пушки, продолжая свой полет, пересекает центр Земли.


Рис. 25. Падение движущихся по касательной к поверхности Земли тел: а – по Галилею; б – по Ньютону

Кроме того, движение по горизонтальной скользкой плоскости таково, что тело, отходя от точки пересечения кратчайшего радиуса Земли с этой плоскостью, начинает удаляться от центра Земли. Значит, и приближаясь, и удаляясь от центра Земли, тело не может двигаться равномерно, поскольку на него все время (кроме одной точки в центре Земли) будет действовать сила.

Как видим, Галилей в своем воззрении на инерцию, а следовательно, и на механику вообще, ошибался очень существенно. Пророческую формулировку законов инерции, очень близкую к ньютоновской и принятую с незначительными изменениями в современной механике, дал французский философ и математик Р. Декарт (1596-1650), современник Галилея. Пророческую потому, что Декарт тоже не знал о силах тяготения и сформулировал этот закон по наитию.



В своей книге «Начала философии», вышедшей в свет в 1644 г., он так формулирует законы инерции. Первый закон: «Всякая вещь продолжает по возможности пребывать в одном и том же состоянии и изменяет его не иначе как от встречи с другим». Второй закон: «Каждая материальная частица в отдельности стремится продолжать дальнейшее движение не по кривой, а исключительно по прямой». Поэтому вместо того чтобы называть первый закон Ньютона, или закон инерции, законом Галилея – Ньютона, что и делают иногда в учебниках, или говорить, что закон инерции был открыт раньше Ньютона, следовало бы отметить то, что ранее Ньютона его достаточно точно сформулировал Декарт, но никак не Галилей.

Стало быть, движение по инерции – обязательно прямолинейное, равномерное; это движение можно приравнять к покою, изменив инерциальную систему отсчета на такую, которая двигалась бы тоже равномерно и прямолинейно со скоростью нашего движущегося тела.

Кто стоял на плечах гигантов?

Итак, Галилей не внес особой ясности в сакраментальные вопросы, которые так и остались не разрешенными с древних времен: как ведут себя тела, когда на них действуют силы, и как они ведут себя, когда на них силы не действуют?

Пытаясь ответить хотя бы на последний из поставленных вопросов, Галилей, как известно, пришел к выводу, что тела, предоставленные сами себе, т. е. на которые никакие силы не действуют… ходят по кругам! Да это и Аристотель так думал два тысячелетия назад! И так же ошибался. Поэтому выглядит удивительным, когда школьникам преподносят то, чего не было. Например, такое: «Итальянский ученый Галилео Галилей первый показал, что… в отсутствии внешних воздействий тело может не только покоиться, но и двигаться прямолинейно и равномерно» . Не показывал этого Галилей, тем более первым, о чем мы уже знаем. Почему-то Галилею приписывают многое из того, чего он не делал вообще: не бросал он шаров с Пизанской башни, не изобретал телескопа, не был судим инквизицией и не топал ногой, говоря: «И все-таки она вертится!». Об этом еще поговорим попозже, а пока вернемся к тому, что до Ньютона в умах ученых не было ясности в вопросе о движении тел, а стало быть, и вообще о механике.



Только великому англичанину Исааку Ньютону (1643-1727) удалось привести механический мир в надлежащий порядок. Краткий перечень заслуг Ньютона высечен на камне на его могиле:

Здесь покоится
Сэр Исаак Ньютон,
Который почти божественной силой своего ума
Впервые объяснил
Помощью своего математического метода
Движения и формы планет,
Пути комет, приливы и отливы океана.
Он первый исследовал разнообразие световых лучей
И проистекающие отсюда особенности цветов,
Каких до того времени никто даже не подозревал.
Прилежный, проницательный и верный истолкователь
Природы, древностей и священного писания,
Он прославил в своем учении Всемогущего Творца.
Требуемую Евангелием простоту он доказал своей Жизнью.
Пусть смертные радуются, что в их среде
Жило такое украшение человеческого рода.

Все поколения ученых до настоящего времени поражала и продолжает поражать величественная и цельная картина мира, которая была создана Ньютоном.

Согласно Ньютону весь мир состоит из «твердых, весомых, непроницаемых, подвижных частиц». Эти «первичные частицы абсолютно тверды: они неизмеримо более тверды, чем тела, которые из них состоят, настолько тверды, что они никогда не изнашиваются и не разбиваются вдребезги». Все богатство, все качественное многообразие мира – это результат различий в движении частиц. Основным в его картине мира является движение. Внутренняя сущность частиц остается на втором плане: главное – как эти частицы движутся.

Великий гений родился в одном из провинциальных английских городов – Вулстропе в семье фермера. Ребенок был так мал, что, говорят, его крестили в пивной кружке. В начальных классах школы он учился посредственно (радуйтесь, троечники, для вас еще ничего не потеряно!). Затем у него случилось моральное потрясение – его избили и оскорбили, причем сделал это лучший ученик в классе. Вот тут-то у юного Ньютона проснулся интерес к учебе, и он легко сам стал лучшим учеником, а затем и поступил в лучший университет Англии – Кембриджский. А через 4 года после окончания он уже был профессором математики этого же университета. В 1696 г. он переехал в Лондон, где жил до самой смерти в 1727 г., которая наступила на 85-м году жизни. С 1703 г. он президент Лондонского королевского общества, а за научные заслуги ему был пожалован титул лорда. Вот так и стал он членом палаты лордов, заседания которой посещал самым регулярным образом. Но в отличие от других лордов, которые, как и наши «думцы», любили поговорить с трибуны, на протяжении многих лет Ньютон не проронил и слова. И вот, наконец, великий человек вдруг попросил слова. Все замерли – ожидали, что же такого умного скажет гений всех времен и народов. В гробовой тишине Ньютон провозгласил свою первую и последнюю речь в парламенте: «Господа, я прошу закрыть окно, иначе я могу простудиться!»

Последние годы жизни Ньютон вплотную занялся богословием и под большим секретом писал книгу, о которой высказывался, как о самом великом своем труде, который должен решительным образом изменить жизнь людей. Но по вине любимой собаки Ньютона, опрокинувшей лампу, случился пожар, в котором кроме самого дома и всего имущества сгорела великая рукопись. Вот вам и воландовское: «Рукописи не горят!» Еще как горят…

Вскоре после этого великого ученого не стало…

Так что же такого замечательного сделал Ньютон в механике? А то, что он открыл и сформулировал свои законы: три закона движения и один – всемирного тяготения.

Кратко основная идея законов движения Ньютона состоит в том, что изменение скорости тел вызывается только их взаимным действием друг на друга. Да полноте, неужели люди до этого не знали таких простых вещей? Представьте себе, что нет, а многие не знают и до сих пор.

Возьмем первый закон Ньютона (это тот, который иногда несправедливо приписывают Галилею). Сам Ньютон сформулировал его очень уж мудрено, как, кстати, и во многих школьных учебниках. Автор полагает, что более кратко и проще всего говорить так: «Тело пребывает в покое или движется равномерно и прямолинейно, если равнодействующая внешних сил, приложенных к нему, равна нулю». Вроде бы и придраться тут не к чему. А то пишут в некоторых учебниках: «…если на тело не действуют силы или другие тела…». Неточно это, и вот вам подтверждающий пример.

По прекрасному ровному шоссе едет автомобиль с выключенным двигателем (как говорят, «накатом»), медленно сбавляя скорость. И ревя двигателем от натуги, бульдозер тащит перед собой целую гору песка, но движется равномерно и по прямой, хотя и медленно (рис. 26). Которое из этих движений можно назвать движением по инерции? Да конечно, второе, хотя так и хочется указать на первое. Самое главное, что тело движется равномерно и прямолинейно. Все, этого уже достаточно, больше ничего и не нужно. Автомобиль в первом примере хоть и медленно, но замедляется. Следовательно, силы, действующие на него, не скомпенсированы: сопротивление есть, а силы тяги – нет. А на бульдозер действуют много тел, каждое со своей силой, но все силы скомпенсированы, их равнодействующая равна нулю. Вот почему он и продолжает двигаться равномерно и прямолинейно, то есть по инерции.


Рис. 26. Движение автомобиля накатом и загруженного бульдозера

Теперь понятно, почему остановился автомобиль полковника Циллергута: потому что движение его с выключенным двигателем не имеет никакого отношения к движению по инерции. На этот автомобиль действует неуравновешенная система сил, равнодействующая которой направлена назад. Вот и замедляется автомобиль, пока совсем не остановится.

К сожалению, многие из нас часто неправильно толкуют термин «по инерции».

По инерции крутится маховик, по инерции я ударился лбом о стекло, когда автомобиль затормозил… Все это бытовые понятия инерции. Строгое же только то, которое определяется первым законом Ньютона. Который до него, может, не так точно, но сформулировал… нет, не Галилей – Декарт!

Итак, Ньютон понял одну из сокровенных тайн природы и продолжал постигать эти тайны. «Господь Бог изощрен, но не злонамерен!» – любил говорить Эйнштейн и даже выгравировал эти слова у себя на камине. Это означает, что при должном старании человек постигает-таки одну за другой тайны Создателя, который не запрещает напрочь ему это делать. И таким человеком, разгадавшим наибольшее число этих тайн, пока, видимо, был и остается Ньютон. А когда его спрашивали, каким образом он мог видеть так далеко в науке, он скромно отвечал: «Если я видел дальше других, то потому, что стоял на плечах гигантов!»

Что влечет тела друг к другу?

Ньютон не назвал конкретные имена и фамилии этих гигантов, но по крайней мере одного из них можно назвать точно. Сдается, что это был… нет, опять не угадали, хотя это имя и упоминают обычно первым в числе гигантов, это не Галилей. Кажется, это был Иоганн Кеплер (1571-1630). Пару слов о гиганте, которого ученые назвали «законодателем неба».



«Законодатель неба» родился в 1571 г. в Южной Германии в бедной семье, но сумел окончить школу и университет в г. Тюбингене. Надо сказать, что и умер он также в бедности в 1630 г., и после него семье осталось одно изношенное платье, две рубашки, несколько медных монет и… почти 13 тысяч гульденов невыплаченного жалованья! И еще говорят, что раньше ученым платили вовремя и много… Автор, рискуя, что его побьют коллеги, утверждает, что плохо, когда ученые живут богато – голова у таких думает не о том, о чем надо. Не о новых законах природы они пекутся, а о том, в какой банк и под какие проценты положить свои сокровища. «Ибо, где сокровище ваше, там будет и сердце ваше», – сказал Господь. Еще поэт Петрарка заметил, что богатство, как, кстати, и крайняя бедность, мешают творчеству. Поэтому если науку будут продолжать держать на голодном пайке, то одно (к сожалению, лишь только одно!) уже точно будет хорошо: туда не будут рваться хапуги и коммерсанты. Да из истории науки и трудно назвать ученого (настоящего, а не коммерсанта с ученой степенью!), который был бы по-настоящему богат. Исключая королей-ученых, которые, кстати, тоже бывали.

Итак, Кеплеру пришлось за жизнь хлебнуть немало горя и забот. Он был болезнен, страдал странной болезнью – множественностью зрения. (Каково для астронома, а? Все равно что глухой музыкант, но и такие бывали, Бетховен, например!) Опять же бедность, хотя работал он придворным астрономом и астрологом. Да и мамаша ему подсунула сюрприз – возьми да и скажи своей соседке еретические слова: «Нет ни рая, ни ада, от человека остается то же, что и от животных!» Дошло это до «кого надо», и не миновать бы ей костра (а на родине Кеплера в маленьком городке Вейле только за 14 лет было сожжено 38 еретичек!), если бы не 6 лет «адвокатства» Кеплера!

И вот среди таких забот и хлопот Кеплер ввел в механику понятия «инерция» и «гравитация», причем последнюю определил как силу взаимного притяжения тел. Все почти правильно, если бы только Кеплер не связывал это притяжение с магнетизмом и не считал, что «Солнце, вращаясь, постоянными толчками увлекает планеты во вращение. И только инерция мешает этим планетам точно следовать вращению Солнца». Оказывается, «планеты смешивают косность своей массы со скоростью движения»… В общем, мешанина получилась изрядная. Но законы Кеплера о движении планет – это шедевр, и они подтолкнули Ньютона к осмыслению закона всемирного тяготения.

Первый закон Кеплера – об эллиптическом движении планет. Раньше все думали, что планеты движутся по кругам (опять эти магические круги: и Коперника, и Галилея сбивали с толку!). Кеплер доказал, что это не так и планеты движутся по эллипсам, в фокусе которых находится Солнце.

Второй закон – это о том, что, подходя ближе к Солнцу, планеты (да и кометы!) движутся быстрее, а отходя от него – медленнее (рис. 27). А третий закон уже строго количественный: квадраты периодов обращения любых двух планет относятся между собой как кубы их средних расстояний от Солнца.


Рис. 27. Иллюстрация второго закона Кеплера

Тут уже немного осталось и до осмысления, какие же силы управляют движением планет. Современник Ньютона и старший его коллега, а может быть, один из тех гигантов, на плечах которых стоял Ньютон, Роберт Гук в 1674 г. писал, что «…все без исключения небесные тела обладают направленным к их центру притяжением… и эти силы притяжения действуют тем больше, чем ближе к ним находятся тела, на которые они действуют». Диву даешься, насколько близок был Гук к открытию закона всемирного тяготения, но он сам не захотел этим заниматься, ссылаясь на занятость другими работами.

Впервые мысль о точном определении гравитации возникла еще у Ньютона-студента (вспомните миф о падении яблока на его голову!), но вычисления не дали желаемой точности. Дело в том, что для вычислений Ньютон использовал величину земного радиуса, неточно определенную голландским ученым Снеллиусом, и, получив значение ускорения Луны на 15 % меньше наблюдаемого, с горечью отложил эту работу.

Потом уже, через 18 лет, когда французский астроном Пикар более точно определил величину радиуса Земли, Ньютон заново взялся за свои отложенные вычисления и доказал правильность своего предположения. Но и после этого Ньютон не спешил публиковать свое открытие. Он тщательно проверил новый закон на движении планет вокруг Солнца, на движении спутников Юпитера и Сатурна, а также на движении комет и решился-таки опубликовать закон всемирного тяготения в своей знаменитой книге «Математические начала натуральной философии» в 1687 г., где изложены и три его закона движения.

Вот как этот закон можно попроще и попонятнее сформулировать: «Всякое тело притягивает другое тело с силой, прямо пропорциональной массам этих тел и обратно пропорциональной квадрату расстояния между ними».

Например, два человеческих тела при расстоянии между ними в 1 м притягиваются с силой примерно в одну сороковую долю миллиграмма-силы. Это менее одной миллиардной доли той силы, которая нужна, чтобы сдвинуть нас с места. Два корабля массой 25 000 т каждый на расстоянии 100 м притягиваются с ничтожной силой 4 Н, и нелепые объяснения столкновения судов из-за их взаимного притяжения лишены смысла.

От силы притяжения не спасают никакие преграды или экраны. Хотя многие мечтали найти такой экран: то и дело слышишь, что, дескать, в XXI в. ученые найдут средство избавляться от гравитации. Уже чертят проекты домов без фундамента и машин-гравилетов, летающих без топлива.

Поиски эти не новы – еще английский фантаст Герберт Уэллс воспользовался идеей «гравитационного щита», якобы изготовленного из особого материала, названного в честь автора – изобретателя Кэвора – кэворитом. Если этот щит подвести под какой-нибудь предмет, то он освободится от притяжения Земли и будет притягиваться только небесными телами, т. е. взлетит. Герои Уэллса сооружают межпланетный корабль, покрытый кэворитом; открывая и закрывая соответствующие шторы, они притягиваются к той части пространства, куда хотят лететь, и таким образом перемещаются в космосе.

Доводы фантаста звучат убедительно: мы знаем, что экран из какого-нибудь проводника (например, лист металла) является непроницаемым для электрического поля; сверхпроводник выталкивает из себя магнитное поле и т. д. Тем более появившееся в печати сообщение об измерениях французского астронома Аллена подтвердили, что Луна, заслоняя нас от Солнца, создает и некоторую «гравитационную тень». Но оказалось, что эта «тень» явилась лишь ошибкой приборов.

Высказывались мысли, что гравитация, дескать, действует только на небесные тела, но не на нас с вами. Так, английский физик Генри Кавендиш построил специальные очень точные так называемые крутильные весы и одним из первых в 1798 г. измерил гравитацию на Земле. В этих весах на тонкой и прочной нити на коромысле были подвешены грузы, которые притягивались двумя массивными шарами из свинца массой 50 кг (рис. 28). Прибор Кавендиша был заключен в воздухонепроницаемую камеру, а движение коромысла улавливалось оптическими приборами. Так была определена «гравитационная постоянная», которая оказалась равной 6,67·10 – 11 Н⋅м2/кг2, иначе говоря, два шара массой 1 000 кг каждый, находящиеся на расстоянии 1 м друг от друга, притягиваются с силой 6,67 стотысячных долей ньютона!


Рис. 28. «Крутильные весы» Г. Кавендиша для определения гравитации

Вот как слабы, ничтожны гравитационные силы, и вместе с тем именно они и «движут миром», определяя полет планет, звезд, комет и других небесных тел. Падение тел на Земле, кстати, тоже дело «рук» гравитации, так что она не только всемирна, но и вездесуща!