3.5.1. Вероятностно-статистический метод исследования.

Во многих случаях необходимо исследовать не только детерминированные, но и случайные вероятностные (статистические) процессы. Эти процессы рассматриваются на базе теории вероятностей.

Совокупность случайной величины х составляет первичный математический материал. Под совокупностью понимают множество однородных событий. Совокупность, содержащую самые различные варианты массового явления, называют генеральной совокупностью, или большой выборкой N. Обычно изучают лишь часть генеральной сово­купности, называемой выборной совокупностью или малой выборкой.

Вероятностью Р (х) события х называют отношение числа случаев N(x), которые приводят к наступлению события х , к общему числу воз­можных случаев N:

P(x)=N(x)/N.

Теория вероятностей рассматривает теоретические распределения случайных величин и их характеристики.

Математическая статистика занимается способами обработки и анализа эмпирических событий.

Эти две родственные науки составляют единую математическую теорию массовых случайных процессов, широко применяемую для ана­лиза научных исследований.

Очень часто применяют методы вероятностей и математической статистики в теории надежности, живучести и безопасности, которая широко используется в различных отраслях науки и техники.

3.5.2. Метод статистического моделирования или статистических испытаний (метод Монте-Карло).

Этот метод представляет собой численный метод решения сложных задач и основан на использовании случайных чисел, моделирующих вероятностные процессы. Результаты решения этим методом позволяют установить эмпирически зависимости исследуемых процессов.

Решение задач методом Монте-Карло эффективно лишь с исполь­зованием быстродействующих ЭВМ. Для решения задач методом Мон­те-Карло необходимо иметь статистический ряд, знать закон его распре­деления, среднее значение математическое ожидание т(х), средне­квадратичное отклонение.

С помощью этого метода можно получить сколь угодно заданную точность решения, т.е.

-> т(х)

3.5.3. Метод системного анализа .

Под системным анализом понимают совокупность приемов и мето­дов для изучения сложных систем, представляющих собой сложную совокупность взаимодействующих между собой элементов. Взаимодей­ствие элементов системы характеризуется прямыми и обратными связя­ми.

Сущность системного анализа состоит в том, чтобы выявить эти связи и установить их влияние на поведение всей системы в целом. Наи­более полно и глубоко можно выполнить системный анализ методами кибернетики, которая представляет собой науку о сложных динамичных системах, способных воспринимать, хранить и перерабатывать инфор­мацию для целей оптимизации и управления.

Системный анализ складывается из четырех этапов.

Первый этап заключается в постановке задачи: определяют объект, цели и задачи исследования, а также критерии для изучения объекта и управления им.

Во время второго этапа определяют границы изучаемой сис­темы и определяют ее структуру. Все объекты и процессы, имеющие отношение к поставленной цели, разбивают на два класса ~ собственно изучаемую систему и внешнюю среду. Различают замкнутые и откры­тые системы. При исследовании замкнутых систем влиянием внешней среды на их поведение пренебрегают. Затем выделяют отдельные со­ставные части системы - ее элементы, устанавливают взаимодействие между ними и внешней средой.

Третий этап системного анализа заключается в составлении математической модели исследуемой системы. Вначале производят па­раметризацию системы, описывают основные элементы системы и эле­ментарные воздействия на нее с помощью тех или иных параметров. При этом различают параметры, характеризующие непрерывные и дис­кретные, детерминированные и вероятностные процессы. В зависимости от особенностей процессов используют тот или ной математический аппарат.

В результате третьего этапа системного анализа формируются за­конченные математические модели системы, описанные на формальном, например алгоритмическом, языке.

На четвертом этапе анализируют полученную математиче­скую модель, находят ее экстремальные условия в целях оптимизации процессов и управления системами и формулируют выводы. Оценку оптимизации производят по критерию оптимизации, принимающему в этом случае экстремальные значения (минимум, максимум, минимакс).

Обычно выбирают какой-либо один критерий, а для других уста­навливают пороговые предельно-допустимые значения. Иногда приме­няют смешанные критерии, представляющие собой функцию от первич­ных параметров.

На основании выбранного критерия оптимизации составляют зави­симость критерия оптимизации от параметров модели исследуемого объекта (процесса).

Известны различные математические методы оптимизации иссле­дуемых моделей: методы линейного, нелинейного или динамического программирования; методы вероятностно-статистические, основанные на теории массового обслуживания; теория игр, которая рассматривает развитие процессов как случайные ситуации.

Вопросы для самоконтроля знаний

Методология теоретических исследований.

Основные разделы этапа теоретических разработок научного исследования.

Типы моделей и виды моделирования объекта исследования.

Аналитические методы исследования.

Аналитические методы исследования с использованием эксперимента.

Вероятностно-аналитический метод исследования.

Методы статического моделирования (метод Монте-Карло).

Метод системного анализа.

Особенный интерес представляет количественная оценка предпринимательского риска при помощи методов математической статистики. Основными инструментами этого метода оценки являются:

§ вероятность появления случайной величины ,

§ математическое ожидание или среднее значение исследуемой случайной величины,

§ дисперсия ,

§ стандартное (среднеквадратическое) отклонение ,

§ коэффициент вариации ,

§ распределение вероятностей исследуемой случайной величины.

Для принятия решения нужно знать величину (степень) риска, которая измеряется двумя критериями:

1) среднее ожидаемое значение (математическое ожидание),

2) колебания (изменчивость) возможного результата.

Среднее ожидаемое значение это средневзвешенное значение случайной величины, которое связано с неопределенностью ситуации:

,

где значение случайной величины.

Среднее ожидаемое значение измеряет результат, который мы ожидаем в среднем.

Среднее значение является обобщенной качественной характеристикой и не позволяет принятия решения в пользу какого-нибудь отдельного значения случайной величины.

Для принятия решения необходимо измерить колебания показателей, то есть определить меру изменчивости возможного результата.

Колебание возможного результата представляет собой степень отклонения ожидаемого значения от средней величины.

Для этого на практике обычно используют два тесно связанных критерия: «дисперсия» и «среднеквадратическое отклонение».

Дисперсия – средневзвешенное из квадратов действительных результатов от среднего ожидаемого:

Среднеквадратическое отклонение – это квадратный кореньиз дисперсии. Оно является размерной величиной и измеряется в тех же единицах, в которых измеряется исследуемая случайная величина:

.

Дисперсия и среднеквадратическое отклонение служат мерой абсолютного колебания. Для анализа обычно используется коэффициент вариации.

Коэффициент вариации представляет собой отношение среднеквадратического отклонения к среднему ожидаемому значению , умноженное на 100%

или .

На коэффициент вариации не влияют абсолютные значения исследуемого показателя.

С помощью коэффициента вариации можно сравнивать даже колебания признаков, выраженных в разных единицах измерения. Коэффициент вариации может изменяться от 0 до 100%. Чем больше коэффициент, тем больше колебания.


В экономической статистике установлена такая оценка разных значений коэффициента вариации:

до 10% - слабое колебание, 10 – 25% - умеренное, свыше 25% - высокое.

Соответственно, чем выше колебания, тем больше риск.

Пример. Владелец небольшого магазина вначале каждого дня закупает для реализации некоторый скоропортящийся продукт. Единица этого продукта стоит 200 грн. Цена реализации – 300 грн. за единицу. Из наблюдений известно, что спрос на этот продукт на протяжении дня может быть 4, 5, 6 или 7 единиц с соответствующими вероятностями 0,1; 0,3; 0,5; 0,1. Если продукт на протяжении дня не будет реализован, то в конце дня его всегда купят по цене 150 грн. за единицу. Сколько единиц этого продукта должен закупить владелец магазина вначале дня?

Решение. Построим матрицу прибыли владельца магазина. Вычислим прибыль, которую получит владелец, если, например, он закупит 7 единиц продукта, а реализует на протяжении дня 6 и в конце дня одну единицу. Каждая единица продукта, реализованная на протяжении дня, дает прибыль в 100 грн., а в конце дня – потери 200 – 150 = 50 грн. Таким образом, прибыль в этом случае будет составлять:

Аналогично проводятся расчеты при других сочетаниях предложения и спроса.

Ожидаемая прибыль вычисляется как математическое ожидание возможных значений прибыли каждой строки построенной матрицы с учетом соответствующих вероятностей. Как видим, среди ожидаемых прибылей наибольшая равна 525 грн. Она соответствует закупке рассматриваемого продукта в количестве 6 единиц.

Для обоснования окончательной рекомендации о закупке необходимого количества единиц продукта вычислим дисперсию, среднеквадратическое отклонение и коэффициент вариации для каждого возможного сочетания предложения и спроса продукта (каждой строки матрицы прибыли):

400 0,1 40 16000
400 0,3 120 48000
400 0,5 200 80000
400 0,1 40 16000
1,0 400 160000
350 0,1 35 12250
500 0,3 150 75000
500 0,5 250 125000
500 0,1 50 25000
1,0 485 2372500
300 0,1 30 9000
450 0,3 135 60750
600 0,5 300 180000
600 0,1 60 36000
1,0 525 285750

Что касается закупки владельцем магазина 6 единиц продукта в сравнении с 5 и 4 единицами, то это неочевидно, поскольку риск при закупке 6 единиц продукта (19,2%) больше, чем при закупке 5 единиц (9,3%) и тем более, чем при закупке 4 единиц (0%).

Таким образом, имеем всю информацию об ожидаемых прибылях и рисках. И решать, сколько единиц продукта нужно закупить каждое утро владельцу магазина с учетом своего опыта, склонности к риску.

На наш взгляд, владельцу магазина следует рекомендовать каждое утро закупать 5 единиц продукта и его средняя ожидаемая прибыль будет равна 485 грн. и если сравнить это с закупкой 6 единиц продукта, при которой средняя ожидаемая прибыль составляет 525 грн., что на 40 грн. больше, но риск в этом случае будет большим в 2,06 раза.

При проведении психолого-педагогических исследований важная роль отводится математическим методам моделирования процессов и обработки экспериментальных данных. К таким методам следует отнести, прежде всего, так называемые, вероятностно-статистические методы исследования. Это связано с тем, что на поведение как отдельного человека в процессе его деятельности, так и человека в коллективе существенное влияние оказывает множество случайных факторов. Случайность не позволяет описывать явления в рамках детерминированных моделей, т. к. проявляется, как недостаточная регулярность в массовых явлениях и, следовательно, не дает возможность с достоверностью предсказывать наступление определенных событий. Однако при изучении таких явлений обнаруживаются определенные закономерности. Нерегулярность, свойственная случайным событиям, при большом количестве испытаний, как правило, компенсируется появлением статистической закономерности, стабилизацией частот наступлений случайных событий. Следовательно, данные случайные события имеют определенную вероятность. Существуют два принципиально различающихся вероятностно-статистических метода психолого-педагогических исследований: классический и неклассический. Проведем сравнительный анализ этих методов.

Классический вероятностно-статистический метод. В основе классического вероятностно-статистического метода исследования лежат теория вероятностей и математическая статистика. Данный метод применяется при изучении массовых явлений случайного характера, он включает несколько этапов, основные из которых следующие.

1. Построение вероятностной модели реальности, исходя из анализа статистических данных (определение закона распределения случайной величины). Естественно, что закономерности массовых случайных явлений выражаются тем более отчетливо, чем больше объем статистического материала. Выборочные данные, полученные при проведении эксперимента, всегда ограничены и носят, строго говоря, случайный характер. В связи с этим важная роль отводится обобщению закономерностей, полученных на выборке, и распространению их на всю генеральную совокупность объектов. С целью решения этой задачи принимается определенная гипотеза о характере статистической закономерности, которая проявляется в исследуемом явлении, например, гипотеза о том, что исследуемое явление подчиняется закону нормального распределения. Такая гипотеза носит название нулевой гипотезы, которая может оказаться ошибочной, поэтому наряду с нулевой гипотезой еще выдвигается и альтернативная или конкурирующая гипотеза. Проверка того насколько полученные экспериментальные данные соответствуют той или иной статистической гипотезе осуществляется с помощью так называемых непараметрических статистических критериев или критериев согласия. В настоящее время широко используются критерии согласия Колмогорова, Смирнова, омега-квадрат и др. . Основная идея этих критериев состоит в измерении расстояния между функцией эмпирического распределения и функцией полностью известного теоретического распределения. Методология проверки статистической гипотезы строго разработана и изложена в большом количестве работ по математической статистике.

2. Проведение необходимых расчетов математическими средствами в рамках вероятностной модели. В соответствии с установленной вероятностной моделью явления проводятся вычисления характеристических параметров, например, таких как математическое ожидание или среднее значение, дисперсия, стандартное отклонение, мода, медиана, показатель асимметрии и др.

3. Интерпретация вероятностно-статистических выводов применительно к реальной ситуации.

В настоящее время классический вероятностно-статистический метод хорошо разработан и широко используется при проведении исследований в различных областях естественных, технических и общественных наук. Подробное описание сути данного метода и его применения к решению конкретных задач можно найти в большом количестве литературных источников, например в .

Неклассический вероятностно-статистический метод. Неклассический вероятно-статистический метод исследований отличается от классического тем, что он применяется не только к массовым, но и к отдельным событиям, имеющим принципиально случайный характер. Данный метод может быть эффективно использован при анализе поведения индивида в процессе выполнения той или иной деятельности, например, в процессе усвоения знаний учащимся . Особенности неклассического вероятностно-статистического метода психолого-педагогических исследований рассмотрим на примере поведения учащихся в процессе усвоения знаний.

Впервые вероятностно-статистическая модель поведения учащихся в процессе усвоения знаний была предложена в работе . Дальнейшее развитие этой модели было сделано в работе . Учение как вид деятельности, цель которого приобретение человеком знаний, умений и навыков, зависит от уровня развития сознания учащегося. В структуру сознания входят такие познавательные процессы, как ощущение, восприятие, память, мышление, воображение. Анализ этих процессов показывает, что им присущи элементы случайности, обусловленные случайным характером психического и соматического состояний индивида, а также физиологическим, психологическим и информационным шумами при работе головного мозга. Последнее привело при описании процессов мышления к отказу от использования модели детерминистской динамической системы в пользу модели случайной динамической системы . Это означает, что детерминизм сознания реализуется через случайность. Отсюда можно заключить, что знания человека, являющиеся фактически продуктом сознания, также имеют случайный характер, и, следовательно, для описания поведения каждого отдельного учащегося в процессе усвоения знаний может быть использован вероятностно-статистический метод.

В соответствии с этим методом учащийся идентифицируется функцией распределения (плотностью вероятности), определяющей вероятность нахождения его в единичной области информационного пространства. В процессе обучения функция распределения, с которой идентифицируется учащийся, эволюционируя, движется в информационном пространстве. Каждый учащийся обладает индивидуальными свойствами и допускается независимая локализация (пространственная и кинематическая) индивидов друг относительно друга.

На основе закона сохранения вероятности записывается система дифференциальных уравнений, представляющих собой уравнения непрерывности, которые связывают изменение плотности вероятности за единицу времени в фазовом пространстве (пространстве координат, скоростей и ускорений различных порядков) с дивергенцией потока плотности вероятности в рассматриваемом фазовом пространстве. В проведен анализ аналитических решений ряда уравнений непрерывности (функций распределения), характеризующих поведение отдельных учащихся в процессе обучения.

При проведении экспериментальных исследований поведения учащихся в процессе усвоения знаний используется вероятностно-статистическое шкалирование , в соответствии с которым шкала измерений представляет собой упорядоченную систему , где A - некоторое вполне упорядоченное множество объектов (индивидов), обладающих интересующими нас признаками (эмпирическая система с отношениями); Ly - функциональное пространство (пространство функций распределения) с отношениями; F - операция гомоморфного отображения A в подсистему Ly; G - группа допустимых преобразований; f - операция отображения функций распределения из подсистемы Ly на числовые системы с отношениями n-мерного пространства M. Вероятностно-статистическое шкалирование применяется для нахождения и обработки экспериментальных функций распределения и включает три этапа.

1. Нахождение экспериментальных функций распределения по результатам контрольного мероприятия, например, экзамена. Типичный вид индивидуальных функций распределения, найденных при использовании двадцатибалльной шкалы, представлен на рис. 1. Методика нахождения таких функций описана в .

2. Отображение функций распределения на числовое пространство. С этой целью проводится расчет моментов индивидуальных функций распределения. На практике, как правило, достаточно ограничиться определением моментов первого порядка (математического ожидания), второго порядка (дисперсии) и третьего порядка, характеризующего асимметрию функции распределения.

3. Ранжирование учащихся по уровню знаний на основе сравнения моментов различных порядков их индивидуальных функций распределения.

Рис. 1. Типичный вид индивидуальных функций распределения студентов, получивших на экзамене по общей физике различные оценки : 1 - традиционная оценка «2»; 2 - традиционная оценка «3»; 3 - традиционная оценка «4»; 4 - традиционная оценка «5»

На основе аддитивности индивидуальных функций распределения в найдены экспериментальные функции распределения для потока студентов (рис. 2).


Рис. 2. Эволюция полной функции распределения потока студентов, аппроксимированной гладкими линиями : 1 - после первого курса; 2 - после второго курса; 3 - после третьего курса; 4 - после четвертого курса; 5 - после пятого курса

Анализ данных, представленных на рис. 2, показывает, что по мере продвижения в информационном пространстве функции распределения расплываются. Это происходит вследствие того, что математические ожидания функций распределения индивидов движутся с разными скоростями, а сами функции расплываются из-за дисперсии. Дальнейший анализ данных функций распределения может быть проведен в рамках классического вероятностно-статистического метода.

Обсуждение результатов. Анализ классического и неклассического вероятностно-статистических методов психолого-педагогических исследований показал, что между ними имеется существенное отличие. Оно, как это можно понять из сказанного выше, заключается в том, что классический метод применим лишь к анализу массовых событий, а неклассический метод применим как к анализу массовых, так и одиночных событий. В связи с этим классический метод может быть условно назван массовым вероятностно-статистическим методом (МВСМ), а неклассический метод - индивидуальным вероятностно-статистическим методом (ИВСМ). В 4] показано, что ни один из классических методов оценки знаний учащихся в рамках вероятностно-статистической модели индивида не может быть применен для этих целей.

Отличительные особенности методов МВСМ и ИВСМ рассмотрим на примере измерения полноты знаний учащихся. С этой целью проведем мысленный эксперимент. Предположим, что имеется большое количество абсолютно одинаковых по психическим и физическим характеристикам учащихся, имеющих одинаковую предысторию, и пусть они, не взаимодействуя друг с другом, одновременно участвуют в одном и том же познавательном процессе, испытывая абсолютно одинаковое строго детерминированное воздействие. Тогда в соответствии с классическими представлениями об объектах измерения все учащиеся должны были бы получить одинаковые оценки полноты знаний с любой заданной точностью измерений. Однако в реальности при достаточно большой точности измерений оценки полноты знаний учащихся будут различаться . Объяснить такой результат измерений в рамках МВСМ не представляется возможным, т. к. исходно предполагается, что воздействие на абсолютно одинаковых невзаимодействующих между собой учащихся имеет строго детерминированный характер. Классический вероятностно-статистический метод не учитывает того, что детерминизм процесса познания реализуется через случайность, внутренне присущую каждому познающему окружающий мир индивиду.

Случайный характер поведения учащегося в процессе усвоения знаний учитывает ИВСМ. Применение индивидуального вероятностно-статистического метода для анализа поведения рассматриваемого идеализированного коллектива учащихся показало бы, что указать точно положение каждого учащегося в информационном пространстве нельзя, можно лишь говорить вероятности нахождения его в той или иной области информационного пространства. Фактически каждый учащийся идентифицируется индивидуальной функцией распределения, причем ее параметры, такие как математическое ожидание, дисперсия и др., индивидуальны для каждого учащегося. Это означает, что индивидуальные функции распределения будут находиться в разных областях информационного пространства. Причина такого поведения учащихся заключается в случайном характере процесса познания.

Однако в ряде случаев результаты исследований, добытые в рамках МВСМ, могут быть интерпретированы и в рамках ИВСМ. Предположим, что преподаватель при оценке знаний учащегося использует пятибалльную шкалу измерений. В этом случае погрешность в оценке знаний составляет ±0,5 балла. Следовательно, когда учащемуся выставляется оценка, например, 4 балла, это означает, что его знания находятся в промежутке от 3,5 баллов до 4,5 баллов. Фактически положение индивида в информационном пространстве в данном случае определяется прямоугольной функцией распределения, ширина которой равна погрешности измерения ±0,5 балла, а оценка является математическим ожиданием. Эта погрешность настолько большая, что не позволяет наблюдать истинный вид функции распределения. Однако, несмотря на столь грубую аппроксимацию функции распределения, изучение ее эволюции позволяет получить важную информацию, как о поведении отдельного индивида, так и коллектива учащихся в целом .

На результат измерения полноты знаний учащегося непосредственно или опосредовано влияет сознание преподавателя (измерителя), которому также свойственна случайность. В процессе педагогических измерений фактически имеет место взаимодействие двух случайных динамических систем, идентифицирующих поведение учащегося и преподавателя в данном процессе. В рассмотрено взаимодействие студенческой подсистемы с профессорско-преподавательской подсистемой и показано, что скорость движения математического ожидания индивидуальных функций распределения студентов в информационном пространстве пропорциональна функции воздействия профессорско-преподавательского коллектива и обратно пропорциональна функции инертности, характеризующей неподатливость изменению положения математического ожидания в пространстве (аналог закона Аристотеля в механике).

В настоящее время, несмотря на значительные достижения в разработке теоретических и практических основ измерений при проведении психолого-педагогических исследований, проблема измерений в целом еще далека от решения. Это связано, прежде всего, с тем, что до сих пор не имеется достаточной информации о влиянии сознания на процесс измерения. Аналогичная ситуация сложилась и при решении проблемы измерений в квантовой механике. Так, в работе при рассмотрении концептуальных проблем квантовой теории измерений говорится о том, что разрешить некоторые парадоксы измерений в квантовой механике «… вряд ли возможно без непосредственного включения сознания наблюдателя в теоретическое описание квантового измерения». Далее говорится, что «… непротиворечивым является предположение о том, что сознание может сделать вероятным некоторое событие, даже если по законам физики (квантовой механики) вероятность этого события мала. Сделаем важное уточнение формулировки: сознание данного наблюдателя может сделать вероятным, что он увидит это событие».

Статистические методы

Статисти́ческие ме́тоды - методы анализа статистических данных. Выделяют методы прикладной статистики , которые могут применяться во всех областях научных исследований и любых отраслях народного хозяйства, и другие статистические методы, применимость которых ограничена той или иной сферой. Имеются в виду такие методы, как статистический приемочный контроль, статистическое регулирование технологических процессов, надежность и испытания, планирование экспериментов.

Классификация статистических методов

Статистические методы анализа данных применяются практически во всех областях деятельности человека. Их используют всегда, когда необходимо получить и обосновать какие-либо суждения о группе (объектов или субъектов) с некоторой внутренней неоднородностью.

Целесообразно выделить три вида научной и прикладной деятельности в области статистических методов анализа данных (по степени специфичности методов, сопряженной с погруженностью в конкретные проблемы):

а) разработка и исследование методов общего назначения, без учета специфики области применения;

б) разработка и исследование статистических моделей реальных явлений и процессов в соответствии с потребностями той или иной области деятельности;

в) применение статистических методов и моделей для статистического анализа конкретных данных.

Прикладная статистика

Описание вида данных и механизма их порождения - начало любого статистического исследования. Для описания данных применяют как детерминированные, так и вероятностные методы. С помощью детерминированных методов можно проанализировать только те данные, которые имеются в распоряжении исследователя. Например, с их помощью получены таблицы, рассчитанные органами официальной государственной статистики на основе представленных предприятиями и организациями статистических отчетов. Перенести полученные результаты на более широкую совокупность, использовать их для предсказания и управления можно лишь на основе вероятностно-статистического моделирования. Поэтому в математическую статистику часто включают лишь методы, опирающиеся на теорию вероятностей.

Мы не считаем возможным противопоставлять детерминированные и вероятностно-статистические методы. Мы рассматриваем их как последовательные этапы статистического анализа. На первом этапе необходимо проанализировать имеющие данные, представить их в удобном для восприятия виде с помощью таблиц и диаграмм. Затем статистические данные целесообразно проанализировать на основе тех или иных вероятностно-статистических моделей. Отметим, что возможность более глубокого проникновения в суть реального явления или процесса обеспечивается разработкой адекватной математической модели.

В простейшей ситуации статистические данные - это значения некоторого признака, свойственного изучаемым объектам. Значения могут быть количественными или представлять собой указание на категорию, к которой можно отнести объект. Во втором случае говорят о качественном признаке.

При измерении по нескольким количественным или качественным признакам в качестве статистических данных об объекте получаем вектор. Его можно рассматривать как новый вид данных. В таком случае выборка состоит из набора векторов. Есть часть координат - числа, а часть - качественные (категоризованные) данные, то говорим о векторе разнотипных данных.

Одним элементом выборки, то есть одним измерением, может быть и функция в целом. Например, описывающая динамику показателя, то есть его изменение во времени, - электрокардиограмма больного или амплитуда биений вала двигателя. Или временной ряд, описывающий динамику показателей определенной фирмы. Тогда выборка состоит из набора функций.

Элементами выборки могут быть и иные математические объекты. Например, бинарные отношения. Так, при опросах экспертов часто используют упорядочения (ранжировки) объектов экспертизы - образцов продукции, инвестиционных проектов, вариантов управленческих решений. В зависимости от регламента экспертного исследования элементами выборки могут быть различные виды бинарных отношений (упорядочения, разбиения, толерантности), множества, нечеткие множества и т. д.

Итак, математическая природа элементов выборки в различных задачах прикладной статистики может быть самой разной. Однако можно выделить два класса статистических данных - числовые и нечисловые. Соответственно прикладная статистика разбивается на две части - числовую статистику и нечисловую статистику.

Числовые статистические данные - это числа, вектора, функции. Их можно складывать, умножать на коэффициенты. Поэтому в числовой статистике большое значение имеют разнообразные суммы. Математический аппарат анализа сумм случайных элементов выборки - это (классические) законы больших чисел и центральные предельные теоремы.

Нечисловые статистические данные - это категоризованные данные, вектора разнотипных признаков, бинарные отношения, множества, нечеткие множества и др. Их нельзя складывать и умножать на коэффициенты. Поэтому не имеет смысла говорить о суммах нечисловых статистических данных. Они являются элементами нечисловых математических пространств (множеств). Математический аппарат анализа нечисловых статистических данных основан на использовании расстояний между элементами (а также мер близости, показателей различия) в таких пространствах. С помощью расстояний определяются эмпирические и теоретические средние, доказываются законы больших чисел, строятся непараметрические оценки плотности распределения вероятностей, решаются задачи диагностики и кластерного анализа, и т. д. (см. ).

В прикладных исследованиях используют статистические данные различных видов. Это связано, в частности, со способами их получения. Например, если испытания некоторых технических устройств продолжаются до определенного момента времени, то получаем т. н. цензурированные данные, состоящие из набора чисел - продолжительности работы ряда устройств до отказа, и информации о том, что остальные устройства продолжали работать в момент окончания испытания. Цензурированные данные часто используются при оценке и контроле надежности технических устройств.

Обычно отдельно рассматривают статистические методы анализа данных первых трех типов. Это ограничение вызвано тем отмеченным выше обстоятельством, что математический аппарат для анализа данных нечисловой природы - существенно иной, чем для данных в виде чисел, векторов и функций.

Вероятностно-статистическое моделирование

При применении статистических методов в конкретных областях знаний и отраслях народного хозяйства получаем научно-практические дисциплины типа «статистические методы в промышленности», «статистические методы в медицине» и др. С этой точки зрения эконометрика - это «статистические методы в экономике». Эти дисциплины группы б) обычно опираются на вероятностно-статистические модели, построенные в соответствии с особенностями области применения. Весьма поучительно сопоставить вероятностно-статистические модели, применяемые в различных областях, обнаружить их близость и вместе с тем констатировать некоторые различия. Так, видна близость постановок задач и применяемых для их решения статистических методов в таких областях, как научные медицинские исследования, конкретные социологические исследования и маркетинговые исследования, или, короче, в медицине , социологии и маркетинге . Они часто объединяются вместе под названием «выборочные исследования».

Отличие выборочных исследований от экспертных проявляется, прежде всего, в числе обследованных объектов или субъектов - в выборочных исследованиях речь обычно идет о сотнях, а в экспертных - о десятках. Зато технологии экспертных исследований гораздо изощреннее. Еще более выражена специфика в демографических или логистических моделях, при обработке нарративной (текстовой, летописной) информации или при изучении взаимовлияния факторов.

Вопросы надежности и безопасности технических устройств и технологий, теории массового обслуживания подробно рассмотрены, в большом количестве научных работ.

Статистический анализ конкретных данных

Применение статистических методов и моделей для статистического анализа конкретных данных тесно привязано к проблемам соответствующей области. Результаты третьего из выделенных видов научной и прикладной деятельности находятся на стыке дисциплин. Их можно рассматривать как примеры практического применения статистических методов. Но не меньше оснований относить их к соответствующей области деятельности человека.

Например, результаты опроса потребителей растворимого кофе естественно отнести к маркетингу (что и делают, читая лекции по маркетинговым исследованиям). Исследование динамики роста цен с помощью индексов инфляции, рассчитанных по независимо собранной информации, представляет интерес прежде всего с точки зрения экономики и управления народным хозяйством (как на макроуровне, так и на уровне отдельных организаций).

Перспективы развития

Теория статистических методов нацелена на решение реальных задач. Поэтому в ней постоянно возникают новые постановки математических задач анализа статистических данных, развиваются и обосновываются новые методы. Обоснование часто проводится математическими средствами, то есть путем доказательства теорем. Большую роль играет методологическая составляющая - как именно ставить задачи, какие предположения принять с целью дальнейшего математического изучения. Велика роль современных информационных технологий, в частности, компьютерного эксперимента.

Актуальной является задача анализа истории статистических методов с целью выявления тенденций развития и применения их для прогнозирования.

Литература

2. Нейлор Т. Машинные имитационные эксперименты с моделями экономических систем. - М.: Мир, 1975. - 500 с.

3. Крамер Г. Математические методы статистики. - М.: Мир, 1948 (1-е изд.), 1975 (2-е изд.). - 648 с.

4. Большев Л. Н., Смирнов Н. В. Таблицы математической статистики. - М.: Наука, 1965 (1-е изд.), 1968 (2-е изд.), 1983 (3-е изд.).

5. Смирнов Н. В., Дунин-Барковский И. В. Курс теории вероятностей и математической статистики для технических приложений. Изд. 3-е, стереотипное. - М.: Наука, 1969. - 512 с.

6. Норман Дрейпер, Гарри Смит Прикладной регрессионный анализ. Множественная регрессия = Applied Regression Analysis. - 3-е изд. - М.: «Диалектика» , 2007. - С. 912. - ISBN 0-471-17082-8

Смотри также

Wikimedia Foundation . 2010 .

  • Yat-Kha
  • Амальгама (значения)

Смотреть что такое "Статистические методы" в других словарях:

    СТАТИСТИЧЕСКИЕ МЕТОДЫ - СТАТИСТИЧЕСКИЕ МЕТОДЫ научные методы описания и изучения массовых явлений, допускающих количественное (численное) выражение. Слово “статистика” (от игал. stato государство) имеет общий корень со словом “государство”. Первоначально оно… … Философская энциклопедия

    СТАТИСТИЧЕСКИЕ МЕТОДЫ – - научные методы описания и изучения массовых явлений, допускающих количественное (численное) выражение. Слово «статистика» (от итал. stato – государство) имеет общий корень со словом «государство». Первоначально оно относилось к науке управления и … Философская энциклопедия

    Статистические методы - (в экологии и биоценологии) методы вариационной статистики, позволяющие исследовать целое (напр., фитоценоз, популяцию, продуктивность) по его частным совокупностям (напр., по данным, полученным на учетных площадках) и оценить степень точности… … Экологический словарь

    статистические методы - (в психологии) (от лат. status состояние) нек рые методы прикладной математической статистики, используемые в психологии в основном для обработки экспериментальных результатов. Основная цель применения С. м. повышение обоснованности выводов в… … Большая психологическая энциклопедия

    Статистические методы - 20.2. Статистические методы Конкретные статистические методы, используемые для организации, регулирования и проверки деятельности, включают, но не ограничиваются следующими: а) планированием экспериментов и факторный анализ; b) анализ дисперсии и … Словарь-справочник терминов нормативно-технической документации

    СТАТИСТИЧЕСКИЕ МЕТОДЫ - методы исследования количеств. стороны массовых обществ. явлений и процессов. С. м. дают возможность в цифровом выражении характеризовать происходящие изменения в обществ. процессах, изучать разл. формы социально экономич. закономерностей, смену… … Сельско-хозяйственный энциклопедический словарь

    СТАТИСТИЧЕСКИЕ МЕТОДЫ - некоторые методы прикладной математической статистики, используемые для обработки экспериментальных результатов. Ряд статистических методов был разработан специально для проверки качества психологических тестов, для применения в профессиональном… … Профессиональное образование. Словарь

    СТАТИСТИЧЕСКИЕ МЕТОДЫ - (в инженерной психологии) (от лат. status состояние) некоторые методы прикладной статистики, используемые в инженерной психологии для обработки экспериментальных результатов. Основная цель применения С. м. повышение обоснованности выводов в… … Энциклопедический словарь по психологии и педагогике

Что такое «математическая статистика»

Под математической статистикой понимают «раздел математики, посвященный математическим методам сбора, систематизации, обработки и интерпретации статистических данных, а также использование их для научных или практических выводов. Правила и процедуры математической статистики опираются на теорию вероятностей, позволяющую оценить точность и надежность выводов, получаемых в каждой задаче на основании имеющегося статистического материала». При этом статистическими данными называются сведения о числе объектов в какой-либо более или менее обширной совокупности, обладающих теми или иными признаками.

По типу решаемых задач математическая статистика обычно делится на три раздела: описание данных, оценивание и проверка гипотез.

По виду обрабатываемых статистических данных математическая статистика делится на четыре направления:

  • - одномерная статистика (статистика случайных величин), в которой результат наблюдения описывается действительным числом;
  • - многомерный статистический анализ, где результат наблюдения над объектом описывается несколькими числами (вектором);
  • - статистика случайных процессов и временных рядов, где результат наблюдения - функция;
  • - статистика объектов нечисловой природы, в которой результат наблюдения имеет нечисловую природу, например, является множеством (геометрической фигурой), упорядочением или получен в результате измерения по качественному признаку.

Исторически первой появились некоторые области статистики объектов нечисловой природы (в частности, задачи оценивания доли брака и проверки гипотез о ней) и одномерная статистика. Математический аппарат для них проще, поэтому на их примере обычно демонстрируют основные идеи математической статистики.

Лишь те методы обработки данных, т.е. математической статистики, являются доказательными, которые опираются на вероятностные модели соответствующих реальных явлений и процессов. Речь идет о моделях поведения потребителей, возникновения рисков, функционирования технологического оборудования, получения результатов эксперимента, течения заболевания и т.п. Вероятностную модель реального явления следует считать построенной, если рассматриваемые величины и связи между ними выражены в терминах теории вероятностей. Соответствие вероятностной модели реальности, т.е. ее адекватность, обосновывают, в частности, с помощью статистических методов проверки гипотез.

Невероятностные методы обработки данных являются поисковыми, их можно использовать лишь при предварительном анализе данных, так как они не дают возможности оценить точность и надежность выводов, полученных на основании ограниченного статистического материала.

Вероятностные и статистические методы применимы всюду, где удается построить и обосновать вероятностную модель явления или процесса. Их применение обязательно, когда сделанные на основе выборочных данных выводы переносятся на всю совокупность (например, с выборки на всю партию продукции).

В конкретных областях применений используются как вероятностно-статистические методы широкого применения, так и специфические. Например, в разделе производственного менеджмента, посвященного статистическим методам управления качеством продукции, используют прикладную математическую статистику (включая планирование экспериментов). С помощью ее методов проводится статистический анализ точности и стабильности технологических процессов и статистическая оценка качества. К специфическим методам относятся методы статистического приемочного контроля качества продукции, статистического регулирования технологических процессов, оценки и контроля надежности и др.

Широко применяются такие прикладные вероятностно-статистические дисциплины, как теория надежности и теория массового обслуживания. Содержание первой из них ясно из названия, вторая занимается изучением систем типа телефонной станции, на которую в случайные моменты времени поступают вызовы - требования абонентов, набирающих номера на своих телефонных аппаратах. Длительность обслуживания этих требований, т.е. длительность разговоров, также моделируется случайными величинами. Большой вклад в развитие этих дисциплин внесли член-корреспондент АН СССР А.Я. Хинчин (1894-1959), академик АН УССР Б.В.Гнеденко (1912-1995) и другие отечественные ученые.