Условия параллельности и перпендикулярности

1°. Условие компланарности двух плоскостей

Пусть даны две плоскости:

A 1 x + B 1 y + C 1 z + D 1 = 0, n 1 = {A 1 ; B 1 ; C 1 } ≠ 0 ;(1)

A 2 x + B 2 y + C 2 z + D 2 = 0, n 2 = {A 2 ; B 2 ; C 2 } ≠ 0 .(2)

Когда они компланарны (т. е. параллельны или совпадают)? Очевидно, это будет тогда и только тогда, когда их нормальные векторы коллинеарны. Применяя критерий компла­нарности, получаем

Предложение 1. Две плоскости компланарны тогда и только тогда, когда вектор­ное произведение их нормальных векторов равно нулевому вектору:

[n 1 , n 2 ] = 0 .

2°. Условие совпадения двух плоскостей

Предложение 2. Плоскости (1) и (2) совпадают тогда и только тогда, когда все че­тыре их коэффициента пропорциональны, т. е. существует такое число λ, что

A 2 = λA 1 , B 2 = λB 1 , C 2 = λC 1 , D 2 = λD 1 . (3)

Доказательство. Пусть условия (3) выполнены. Тогда уравнение второй плоскости может быть записано так:

λA 1 x + λB 1 y + λC 1 z + λD 1 = 0.

λ ≠ 0, иначе было бы A 2 = B 2 = C 2 = D 2 = 0, что противоречит условию n 2 ≠ 0 . Следова­тельно, последнее уравнение эквивалентно уравнению (1), а это означает, что две плоско­сти совпадают.

Пусть теперь, наоборот, известно, что данные плоскости совпадают. Тогда их нор­мальные векторы коллинеарны, т. е. существует такое число λ такое, что

A 2 = λA 1 , B 2 = λB 1 , C 2 = λC 1 .

Уравнение (2) можно теперь переписать в виде:

λA 1 x + λB 1 y + λC 1 z + D 2 = 0.

Умножим уравнение (1) на λ, получим равносильное уравнение первой плоскости (т. к. λ ≠ 0):

λA 1 x + λB 1 y + λC 1 z + λD 1 = 0.

Возьмём какую-нибудь точку (x 0 , y 0 , z 0) из первой (а следовательно, и второй) плоскости и подставим её координаты в последние два уравнения; получим верные равен­ства:

λA 1 x 0 + λB 1 y 0 + λC 1 z 0 + D 2 = 0 ;

λA 1 x 0 + λB 1 y 0 + λC 1 z 0 + λD 1 = 0.

Вычитая из верхнего нижнее, получим D 2 − λD 1 = 0, т. е. D 2 = λD 1 , QED.

3°. Условие перпендикулярности двух плоскостей

Очевидно, для этого необходимо и достаточно, чтобы нормальные векторы были перпендикулярны.

Предложение 3. Две плоскости перпендикулярны тогда и только тогда, когда ска­лярное произведение нормальных векторов равно нулю:

(n 1 , n 2) = 0 .

Пусть дано уравнение плоскости

Ax + By + Cz + D = 0, n = {A ; B ; C } ≠ 0 ,

и точка M 0 = (x 0 , y 0 , z 0). Выведем формулу расстояния от точки до плоскости:

Возьмём произвольную точку Q = (x 1 , y 1 , z 1), лежащую в данной плоскости. Её ко­ординаты удовлетворяют уравнению плоскости:



Ax 1 + By 1 + Cz 1 + D = 0.

Заметим теперь, что искомое расстояние d равно абсолютной величине проекции вектора на направление вектора n (здесь мы берём проекцию как числовую величину, а не как вектор). Далее применяем формулу для вычисления проекции:

Аналогичная формула справедлива для расстояния d от точки M 0 = (x 0 , y 0) плоско­сти до прямой, заданной общим уравнением Ax + By + C = 0.

ЗАДАЧИ C2 ЕДИНОГО ГОСУДАРСТВЕННОГО ЭКЗАМЕНА ПО МАТЕМАТИКЕ НА НАХОЖДЕНИЕ РАССТОЯНИЯ ОТ ТОЧКИ ДО ПЛОСКОСТИ

Куликова Анастасия Юрьевна

студент 5 курса, кафедра мат. анализа, алгебры и геометрии ЕИ КФУ, РФ, Республика Татарстан, г. Елабуга

Ганеева Айгуль Рифовна

научный руководитель, канд. пед. наук, доцент ЕИ КФУ, РФ, Республика Татарстан, г. Елабуга

В заданиях ЕГЭ по математике в последние годы появляются задачи на вычисление расстояния от точки до плоскости. В данной статье на примере одной задачи рассмотрены различные методы нахождения расстояния от точки до плоскости. Для решения различных задач можно использовать наиболее подходящий метод. Решив задачу одним методом, другим методом можно проверить правильность полученного результата.

Определение. Расстояние от точки до плоскости, не содержащей эту точку, есть длина отрезка перпендикуляра, опущенного из этой точки на данную плоскость.

Задача. Дан прямоугольный параллелепипед А B С DA 1 B 1 C 1 D 1 со сторонами AB =2, BC =4, AA 1 =6. Найдите расстояние от точки D до плоскости АС D 1 .

1 способ . Используя определение . Найти расстояние r(D , АС D 1) от точки D до плоскости АС D 1 (рис. 1).

Рисунок 1. Первый способ

Проведем DH АС , следовательно по тереме о трех перпендикулярах D 1 H АС и (DD 1 H )⊥АС . Проведем прямую DT перпендикулярно D 1 H . Прямая DT лежит в плоскости DD 1 H , следовательно DT AC . Следовательно, DT АС D 1.

А DC найдем гипотенузу АС и высоту DH

Из прямоугольного треугольника D 1 DH найдем гипотенузу D 1 H и высоту DT

Ответ: .

2 способ. Метод объемов (использование вспомогательной пирамиды ). Задачу данного типа можно свести к задаче о вычислении высоты пирамиды, где высота пирамиды является искомым расстоянием от точки до плоскости. Доказать, что эта высота и есть искомое расстояние; найти объём этой пирамиды двумя способами и выразить эту высоту.

Отметим, что при данном методе нет необходимости в построении перпендикуляра из данной точки к данной плоскости.

Прямоугольный параллелепипед - параллелепипед, все грани которого являются прямоугольниками.

AB =CD =2, BC =AD =4, AA 1 =6.

Искомым расстоянием будет высота h пирамиды ACD 1 D , опущенной из вершины D на основание ACD 1 (рис. 2).

Вычислим объем пирамиды ACD 1 D двумя способами.

Вычисляя, первым способом за основание примем ∆ ACD 1 , тогда

Вычисляя, вторым способом за основание примем ∆ ACD , тогда

Приравняем правые части последних двух равенств, получим

Рисунок 2. Второй способ

Из прямоугольных треугольников АС D , ADD 1 , CDD 1 найдем гипотенузы, используя теорему Пифагора

ACD

Вычислим площадь треугольника АС D 1 , используя формулу Герона

Ответ: .

3 способ. Координатный метод.

Пусть дана точка M (x 0 ,y 0 ,z 0) и плоскость α , заданная уравнением ax +by +cz +d =0 в прямоугольной декартовой системе координат. Расстояние от точки M до плоскости α можно вычислить по формуле:

Введем систему координат (рис. 3). Начало координат в точке В ;

Прямая АВ - ось х , прямая ВС - ось y , прямая BB 1 - ось z .

Рисунок 3. Третий способ

B (0,0,0), А (2,0,0), С (0,4,0), D (2,4,0), D 1 (2,4,6).

Пусть a х+ by + cz + d =0 – уравнение плоскости ACD 1 . Подставляя в него координаты точек A , C , D 1 получим:

Уравнение плоскости ACD 1 примет вид

Ответ: .

4 способ. Векторный метод.

Введем базис (рис. 4) , .

Рисунок 4. Четвертый способ

Данная статья рассказывает об определении расстояния от точки до плоскости. произведем разбор методом координат, который позволит находить расстояние от заданной точки трехмерного пространства. Для закрепления рассмотрим примеры нескольких задач.

Расстояние от точки до плоскости находится посредством известного расстояния от точки до точки, где одна из них заданная, а другая – проекция на заданную плоскость.

Когда в пространстве задается точка М 1 с плоскостью χ , то через точку можно провести перпендикулярную плоскости прямую. Н 1 является общей точкой их пересечения. Отсюда получаем, что отрезок М 1 Н 1 – это перпендикуляр,который провели из точки М 1 к плоскости χ , где точка Н 1 – основание перпендикуляра.

Определение 1

Называют расстояние от заданной точки к основанию перпендикуляра, который провели из заданной точки к заданной плоскости.

Определение может быть записано разными формулировками.

Определение 2

Расстоянием от точки до плоскости называют длину перпендикуляра, который провели из заданной точки к заданной плоскости.

Расстояние от точки М 1 к плоскости χ определяется так: расстояние от точки М 1 до плоскости χ будет являться наименьшим от заданной точки до любой точки плоскости. Если точка Н 2 располагается в плоскости χ и не равна точке Н 2 , тогда получаем прямоугольный треугольник вида М 2 H 1 H 2 , который является прямоугольным, где имеется катет М 2 H 1 , М 2 H 2 – гипотенуза. Значит, отсюда следует, что M 1 H 1 < M 1 H 2 . Тогда отрезок М 2 H 1 считается наклонной, которая проводится из точки М 1 до плоскости χ . Мы имеем, что перпендикуляр, проведенный из заданной точки к плоскости, меньше наклонной, которую проводят из точки к заданной плоскости. Рассмотрим этот случай на рисунке, приведенном ниже.

Расстояние от точки до плоскости – теория, примеры, решения

Существует ряд геометрических задач, решения которых должны содержать расстояние от точки до плоскости. Способы выявления этого могут быть разными. Для разрешения применяют теорему Пифагора или подобия треугольников. Когда по условию необходимо рассчитать расстояние от точки до плоскости, заданные в прямоугольной системе координат трехмерного пространства, решают методом координат. Данный пункт рассматривает этот метод.

По условию задачи имеем, что задана точка трехмерного пространства с координатами M 1 (x 1 , y 1 , z 1) с плоскостью χ , необходимо определить расстояние от М 1 к плоскости χ . Для решения применяется несколько способов решения.

Первый способ

Данный способ основывается на нахождении расстояния от точки до плоскости при помощи координат точки Н 1 , которые являются основанием перпендикуляра из точки М 1 к плоскости χ . Далее необходимо вычислить расстояние между М 1 и Н 1 .

Для решения задачи вторым способом применяют нормальное уравнение заданной плоскости.

Второй способ

По условию имеем, что Н 1 является основанием перпендикуляра, который опустили из точки М 1 на плоскость χ . Тогда определяем координаты (x 2 , y 2 , z 2) точки Н 1 . Искомое расстояние от М 1 к плоскости χ находится по формуле M 1 H 1 = (x 2 - x 1) 2 + (y 2 - y 1) 2 + (z 2 - z 1) 2 , где M 1 (x 1 , y 1 , z 1) и H 1 (x 2 , y 2 , z 2) . Для решения необходимо узнать координаты точки Н 1 .

Имеем, что Н 1 является точкой пересечения плоскости χ с прямой a , которая проходит через точку М 1 , расположенную перпендикулярно плоскости χ . Отсюда следует, что необходимо составление уравнения прямой, проходящей через заданную точку перпендикулярно к заданной плоскости. Именно тогда сможем определить координаты точки Н 1 . Необходимо произвести вычисление координат точки пересечения прямой и плоскости.

Алгоритм нахождения расстояния от точки с координатами M 1 (x 1 , y 1 , z 1) к плоскости χ :

Определение 3

  • составить уравнение прямой а, проходящей через точку М 1 и одновременно
  • перпендикулярной к плоскости χ ;
  • найти и вычислить координаты (x 2 , y 2 , z 2) точки Н 1 , являющимися точками
  • пересечения прямой a с плоскостью χ ;
  • вычислить расстояние от М 1 до χ , используя формулу M 1 H 1 = (x 2 - x 1) 2 + (y 2 - y 1) 2 + z 2 - z 1 2 .

Третий способ

В заданной прямоугольной системе координат О х у z имеется плоскость χ , тогда получаем нормальное уравнение плоскости вида cos α · x + cos β · y + cos γ · z - p = 0 . Отсюда получаем, что расстояние M 1 H 1 с точкой M 1 (x 1 , y 1 , z 1) , проведенной на плоскость χ , вычисляемое по формуле M 1 H 1 = cos α · x + cos β · y + cos γ · z - p . Эта формула справедлива, так как это установлено благодаря теореме.

Теорема

Если задана точка M 1 (x 1 , y 1 , z 1) в трехмерном пространстве, имеющая нормальное уравнение плоскости χ вида cos α · x + cos β · y + cos γ · z - p = 0 , тогда вычисление расстояния от точки до плоскости M 1 H 1 производится из формулы M 1 H 1 = cos α · x + cos β · y + cos γ · z - p , так как x = x 1 , y = y 1 , z = z 1 .

Доказательство

Доказательство теоремы сводится к нахождению расстояния от точки до прямой. Отсюда получаем, что расстояние от M 1 до плоскости χ - это и есть модуль разности числовой проекции радиус-вектора M 1 с расстоянием от начала координат к плоскости χ . Тогда получаем выражение M 1 H 1 = n p n → O M → - p . Нормальный вектор плоскости χ имеет вид n → = cos α , cos β , cos γ , а его длина равняется единице, n p n → O M → - числовая проекция вектора O M → = (x 1 , y 1 , z 1) по направлению, определяемым вектором n → .

Применим формулу вычисления скалярных векторов. Тогда получаем выражение для нахождения вектора вида n → , O M → = n → · n p n → O M → = 1 · n p n → O M → = n p n → O M → , так как n → = cos α , cos β , cos γ · z и O M → = (x 1 , y 1 , z 1) . Координатная форма записи примет вид n → , O M → = cos α · x 1 + cos β · y 1 + cos γ · z 1 , тогда M 1 H 1 = n p n → O M → - p = cos α · x 1 + cos β · y 1 + cos γ · z 1 - p . Теорема доказана.

Отсюда получаем, что расстояние от точки M 1 (x 1 , y 1 , z 1) к плоскости χ вычисляется при помощи подстановки в левую часть нормального уравнения плоскости cos α · x + cos β · y + cos γ · z - p = 0 вместо х, у, z координаты x 1 , y 1 и z 1 ,относящиеся к точке М 1 , взяв абсолютную величину полученного значения.

Рассмотрим примеры нахождения расстояния от точки с координатами до заданной плоскости.

Пример 1

Вычислить расстояние от точки с координатами M 1 (5 , - 3 , 10) к плоскости 2 x - y + 5 z - 3 = 0 .

Решение

Решим задачу двумя способами.

Первый способ начнется с вычисления направляющего вектора прямой a . По условию имеем, что заданное уравнение 2 x - y + 5 z - 3 = 0 является уравнением плоскости общего вида, а n → = (2 , - 1 , 5) является нормальным вектором заданной плоскости. Его применяют в качестве направляющего вектора прямой a , которая перпендикулярна относительно заданной плоскости. Следует записать каноническое уравнение прямой в пространстве, проходящее через M 1 (5 , - 3 , 10) с направляющим вектором с координатами 2 , - 1 , 5 .

Уравнение получит вид x - 5 2 = y - (- 3) - 1 = z - 10 5 ⇔ x - 5 2 = y + 3 - 1 = z - 10 5 .

Следует определить точки пересечения. Для этого нежно объединить уравнения в систему для перехода от канонического к уравнениям двух пересекающихся прямых. Данную точку примем за Н 1 . Получим, что

x - 5 2 = y + 3 - 1 = z - 10 5 ⇔ - 1 · (x - 5) = 2 · (y + 3) 5 · (x - 5) = 2 · (z - 10) 5 · (y + 3) = - 1 · (z - 10) ⇔ ⇔ x + 2 y + 1 = 0 5 x - 2 z - 5 = 0 5 y + z + 5 = 0 ⇔ x + 2 y + 1 = 0 5 x - 2 z - 5 = 0

После чего необходимо разрешить систему

x + 2 y + 1 = 0 5 x - 2 z - 5 = 0 2 x - y + 5 z - 3 = 0 ⇔ x + 2 y = 1 5 x - 2 z = 5 2 x - y + 5 z = 3

Обратимся к правилу решения системы по Гауссу:

1 2 0 - 1 5 0 - 2 5 2 - 1 5 3 ~ 1 2 0 - 1 0 - 10 - 2 10 0 - 5 5 5 ~ 1 2 0 - 1 0 - 10 - 2 10 0 0 6 0 ⇒ ⇒ z = 0 6 = 0 , y = - 1 10 · 10 + 2 · z = - 1 , x = - 1 - 2 · y = 1

Получаем, что H 1 (1 , - 1 , 0) .

Производим вычисления расстояния от заданной точки до плоскости. Берем точки M 1 (5 , - 3 , 10) и H 1 (1 , - 1 , 0) и получаем

M 1 H 1 = (1 - 5) 2 + (- 1 - (- 3)) 2 + (0 - 10) 2 = 2 30

Второй способ решения заключается в том, чтобы для начала привести заданное уравнение 2 x - y + 5 z - 3 = 0 к нормальному виду. Определяем нормирующий множитель и получаем 1 2 2 + (- 1) 2 + 5 2 = 1 30 . Отсюда выводим уравнение плоскости 2 30 · x - 1 30 · y + 5 30 · z - 3 30 = 0 . Вычисление левой части уравнения производится посредствам подстановки x = 5 , y = - 3 , z = 10 , причем нужно взять расстояние от M 1 (5 , - 3 , 10) до 2 x - y + 5 z - 3 = 0 по модулю. Получаем выражение:

M 1 H 1 = 2 30 · 5 - 1 30 · - 3 + 5 30 · 10 - 3 30 = 60 30 = 2 30

Ответ: 2 30 .

Когда плоскость χ задается одним из способов раздела способы задания плоскости, тогда нужно для начала получить уравнение плоскости χ и вычислять искомое расстояние при помощи любого метода.

Пример 2

В трехмерном пространстве задаются точки с координатами M 1 (5 , - 3 , 10) , A (0 , 2 , 1) , B (2 , 6 , 1) , C (4 , 0 , - 1) . Вычислить расстяние от М 1 к плоскости А В С.

Решение

Для начала необходимо записать уравнение плоскости, проходящее через заданные три точки с координатами M 1 (5 , - 3 , 10) , A (0 , 2 , 1) , B (2 , 6 , 1) , C (4 , 0 , - 1) .

x - 0 y - 2 z - 1 2 - 0 6 - 2 1 - 1 4 - 0 0 - 2 - 1 - 1 = 0 ⇔ x y - 2 z - 1 2 4 0 4 - 2 - 2 = 0 ⇔ ⇔ - 8 x + 4 y - 20 z + 12 = 0 ⇔ 2 x - y + 5 z - 3 = 0

Отсюда следует, что задача имеет аналогичное предыдущему решение. Значит, расстояние от точки М 1 к плоскости А В С имеет значение 2 30 .

Ответ: 2 30 .

Нахождение расстояния от заданной точки на плоскости или к плоскости, которым они параллельны, удобнее, применив формулу M 1 H 1 = cos α · x 1 + cos β · y 1 + cos γ · z 1 - p . Отсюда получим, что нормальные уравнения плоскостей получают в несколько действий.

Пример 3

Найти расстояние от заданной точки с координатами M 1 (- 3 , 2 , - 7) к координатной плоскости О х у z и плоскости, заданной уравнением 2 y - 5 = 0 .

Решение

Координатная плоскость О у z соответствует уравнению вида х = 0 . Для плоскости О у z оно является нормальным. Поэтому необходимо подставить в левую часть выражения значения х = - 3 и взять модуль значения расстояния от точки с координатами M 1 (- 3 , 2 , - 7) к плоскости. Получаем значение, равное - 3 = 3 .

После преобразования нормальное уравнение плоскости 2 y - 5 = 0 получит вид y - 5 2 = 0 . Тогда можно найти искомое расстояние от точки с координатами M 1 (- 3 , 2 , - 7) к плоскости 2 y - 5 = 0 . Подставив и вычислив, получаем 2 - 5 2 = 5 2 - 2 .

Ответ: Искомое расстояние от M 1 (- 3 , 2 , - 7) до О у z имеет значение 3 , а до 2 y - 5 = 0 имеет значение 5 2 - 2 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

  1. Плоскость в пространстве задана уравнением 3x-4y+2z+5=0, найдите расстояние от нее до точки M(3;-2;6).

    Дано:

    $$ x_0 = 3, \quad y_0 = -2, \quad z_0 = 6 $$

    $$ A = 3, \quad B = -4, \quad C = 2, \quad D = 5 $$

    Решение:

    Для решения задачи воспользуемся формулой для нахождения расстояния от точки до плоскости, которое равно длине перпендикуляра, опущенного из этой точки на плоскость:

    $$ p = {| A \cdot x_0 + B \cdot y_0 + C \cdot z_0 + D|} \over \sqrt{(A^2 + B^2 + C^2)} $$

    где A, B, C, D – коэффициенты уравнения плоскости, а x0, y0, z0 – координаты точки.

    Произведем подстановку:

    $$ \frac{|3 \cdot 3 + (-4) \cdot (-2)+2 \cdot 6 + 5 |}{ \sqrt{(3^2 + (-4)^2 + 2^2)} } = \frac{|9+8+12+5|}{\sqrt{(9+16+4)}} =6,314$$ (линейных единиц)

    Ответ:
  2. Дан куб ABCDA1B1C1D1 с ребром равным 1 см. Вычислите расстояние от точки А1 до плоскости, определяемой точками В, D и C1.

    Решение:

    Для решения задачи применим координатный метод. Начало системы координат расположим в точке А. Ось x совместим с ребром AD, ось у – с ребром АВ, ось z – с ребром АА1.

    Тогда координаты точки А1 (0;0;1), точек В (0; 1; 0), D (1; 0; 0), C1(1; 1; 1). Поставив в общее уравнение для плоскости A·x+B·y+C·z+D=0 координаты каждой из точек, получим систему из трех уравнений, решив которую найдем коэффициенты и уравнение плоскости x+y-z-1=0.

    $$ p = \frac{ |A \cdot x_0 + B \cdot y_0 + C \cdot z_0 + D| }{ \sqrt{(A^2 + B^2 + C^2)} } $$, произведем подстановку:

    $$ p = \frac{ |1 \cdot 0 + 1 \cdot 0 - 1 \cdot 1 - 1| }{ \sqrt{(1+1+1)} } = 1,155 см$$

    Ответ:

    $$ R = 1,155 см $$

  3. Найдите расстояние то точки М (2;4;-7) до плоскости XOY.

    Решение:

    Уравнение плоскости XOY представляет собой частный случай, ее уравнение z=0. Применим формулу:

    $$ p = \frac{ | A \cdot x_0 + B \cdot y_0 + C \cdot z_0 + D| }{ (A^2 + B^2 + C^2) } $$ , где A=0, B=0, С=1, D=0, x0=2, y0=4, z0=-7.

    Произведем подстановку:

    $$ p = \frac{ |0 \cdot 2 + 0 \cdot 4 + 1 \cdot (-7)) + 0| }{ \sqrt{(0^2 + 0^2 + 1^2)} } = 7$$

    Ответ:
  4. Плоскость определяется репером из трех точек с координатами в прямоугольной системе А1 (0;2;1), В1(2;6;1), С1(4;0;-1). Определите, на каком расстоянии от нее находится точка с координатами М (5;-3;10).

    Решение:

    Для того чтобы определить расстояние от точки до плоскости воспользуемся формулой

    $$ p= \frac{ |A \cdot x_0 + B \cdot y_0 + C \cdot z_0 + D| }{ sqrt{ (A^2 + B^2 + C^2) } } $$

    Чтобы воспользоваться нею, необходимо вывести уравнение плоскости, определенной точками А1, В1 и С1. Общий вид этого уравнения A·x+B·y+C·z+D=0. Воспользовавшись одним из методов выведения уравнения плоскости (система уравнений с координатами точек или определитель) находим уравнение плоскости, получим $$2x-y+5z-3=0$$.

    Подставим полученные коэффициенты уравнения и координаты точки в формулу:

    $$ p = \frac{ |A \cdot x_0 + B \cdot y_0 + C \cdot z_0 + D| }{ \sqrt{ (A^2 + B^2 + C^2) } } = \frac{ |2 \cdot 5 - (-3) + 5 \cdot 10 - 3|}{ \sqrt{ (2^2 + (-1)^2 + 5^2) } } = 10,95 $$

    Ответ:
  5. Найдите расстояние от плоскости 4x-6y-4z+7=0 до начала системы координат точки О.

    Дано:

    $$ x_0 = 0, \quad y_0 = 0, \quad z_0 = 0 $$

    $$ A = 4, \quad B = -6, \quad C = -4, \quad D = 7 $$

    Решение:

    Координаты начала системы координат О(0;0;0). Воспользуемся формулой:

    $$ p= \frac{ |A \cdot x_0 + B \cdot y_0 + C \cdot z_0 + D| }{ sqrt{ (A^2 + B^2 + C^2) } } $$ Для плоскости $$4x-6y-4z+7=0$$,

    $$ A=4, $$
    $$ B=-6, $$
    $$ C=-4, $$
    $$ D=7. $$

    Подставим значения:

    $$ p = \frac{ |A \cdot x_0 + B \cdot y_0 + C \cdot z_0 + D| }{ \sqrt{ (A^2 + B^2 + C^2) } } = \frac{ |4 \cdot 0 - 6 \cdot 0 - 4 \cdot 0 + 7|}{ \sqrt{ (4^2 + (-6)^2 + (-4)^2) } } = 0,85 $$

    Ответ:

Пусть существует плоскость . Проведем нормаль
через начало координат О. Пусть заданы
– углы, образованные нормальюс осями координат.
. Пусть– длина отрезка нормали
до пересечения с плоскостью. Считая известными направляющие косинусы нормали, выведем уравнение плоскости.

Пусть
) – произвольная точка плоскости. Вектор единичной нормали имеет координаты. Найдем проекцию вектора
на нормаль.

Поскольку точка М принадлежит плоскости, то

.

Это и есть уравнение заданной плоскости, называющееся нормальным .

Расстояние от точки до плоскости

Пусть дана плоскость ,М *
– точка пространства,d – её расстояние от плоскости.

Определение. Отклонением точки М* от плоскости называется число (+ d ), если M * лежит по ту сторону от плоскости, куда указывает положительное направление нормали , и число (-d ), если точка расположена по другую сторону плоскости:

.

Теорема . Пусть плоскость с единичной нормальюзадана нормальным уравнением:

Пусть М *
– точка пространства Отклонение т.M * от плоскости задаётся выражением

Доказательство. Проекцию т.
* на нормаль обозначимQ . Отклонение точки М* от плоскости равно

.

Правило. Чтобы найти отклонение т. M * от плоскости, нужно в нормальное уравнение плоскости подставить координаты т. M * . Расстояние от точки до плоскости равно .

Приведение общего уравнения плоскости к нормальному виду

Пусть одна и та же плоскость задана двумя уравнениями:

Общее уравнение,

Нормальное уравнение.

Поскольку оба уравнения задают одну плоскость, их коэффициенты пропорциональны:

Первые три равенства возведем в квадрат и сложим:

Отсюда найдем – нормирующий множитель:

. (10)

Умножив общее уравнение плоскости на нормирующий множитель, получим нормальное уравнение плоскости:

Примеры задач на тему «Плоскость».

Пример 1. Составить уравнение плоскости , проходящей через заданную точку
(2,1,-1) и параллельной плоскости.

Решение . Нормаль к плоскости :
. Поскольку плоскости параллельны, то нормальявляется и нормалью к искомой плоскости. Используя уравнение плоскости, проходящей через заданную точку (3), получим для плоскостиуравнение:

Ответ:

Пример 2. Основанием перпендикуляра, опущенного из начала координат на плоскость , является точка
. Найти уравнение плоскости.

Решение . Вектор
является нормалью к плоскости. ТочкаМ 0 принадлежит плоскости. Можно воспользоваться уравнением плоскости, проходящей через заданную точку (3):

Ответ:

Пример 3. Построить плоскость , проходящую через точки

и перпендикулярную плоскости :.

Следовательно, чтобы некоторая точка М (x , y , z ) принадлежала плоскости , необходимо, чтобы три вектора
были компланарны:

=0.

Осталось раскрыть определитель и привести полученное выражение к виду общего уравнения (1).

Пример 4. Плоскость задана общим уравнением:

Найти отклонение точки
от заданной плоскости.

Решение . Приведем уравнение плоскости к нормальному виду.

,

.

Подставим в полученное нормальное уравнение координаты точки М* .

.

Ответ:
.

Пример 5. Пересекает ли плоскость отрезок.

Решение . Чтобы отрезок АВ пересекал плоскость, отклонения иот плоскостидолжны иметь разные знаки:

.

Пример 6. Пересечение трех плоскостей в одной точке.



.

Система имеет единственное решение, следовательно, три плоскости имеют одну общую точку.

Пример 7. Нахождение биссектрис двугранного угла, образованного двумя заданными плоскостями.

Пусть и- отклонение некоторой точки
от первой и второй плоскостей.

На одной из биссектральных плоскостей (отвечающей тому углу, в котором лежит начало координат) эти отклонения равны по модулю и знаку, а на другой – равны по модулю и противоположны по знаку.

Это уравнение первой биссектральной плоскости.

Это уравнение второй биссектральной плоскости.

Пример 8. Определение местоположения двух данных точек иотносительно двугранных углов, образованных данными плоскостями.

Пусть
. Определить: в одном, в смежных или в вертикальных углах находятся точкии.


а). Если илежат по одну сторону оти от, то они лежат в одном двугранном углу.

б). Если илежат по одну сторону оти по разные от, то они лежат в смежных углах.

в). Если илежат по разные стороны оти, то они лежат в вертикальных углах.

Системы координат 3

Линии на плоскости 8

Линии первого порядка. Прямые на плоскости. 10

Угол между прямыми 12

Общее уравнение прямой 13

Неполное уравнение первой степени 14

Уравнение прямой “в отрезках” 14

Совместное исследование уравнений двух прямых 15

Нормаль к прямой 15

Угол между двумя прямыми 16

Каноническое уравнение прямой 16

Параметрические уравнения прямой 17

Нормальное (нормированное) уравнение прямой 18

Расстояние от точки до прямой 19

Уравнение пучка прямых 20

Примеры задач на тему «прямая на плоскости» 22

Векторное произведение векторов 24

Свойства векторного произведения 24

Геометрические свойства 24

Алгебраические свойства 25

Выражение векторного произведения через координаты сомножителей 26

Смешанное произведение трёх векторов 28

Геометрический смысл смешанного произведения 28

Выражение смешанного произведения через координаты векторов 29

Примеры решения задач