Правило дифференцирования сложной функции приведет нас к одному замечательному и важному свойству дифференциала.

Пусть функции таковы, что из них может быть составлена сложная функция: . Если существуют производные то - по правилу V - существует и производная

Заменяя, однако, производную ее выражением (7) и замечая, что есть дифференциал х как функции от t, окончательно получим:

т. е. вернемся к прежней форме дифференциала!

Таким образом, мы видим, что форма дифференциала может быть сохранена даже в том случае, если прежняя независимая переменная заменена новой. Мы всегда имеем право писать дифференциал у в форме (5), будет ли х независимой переменной или нет; разница лишь в том, что, если за независимую переменную выбрано t, то означает не произвольное приращение а дифференциал х как функции от Это свойство и называют инвариантностью формы дифференциала.

Так как из формулы (5) непосредственно получается формула (6), выражающая производную через дифференциалы то и последняя формула сохраняет силу, по какой бы независимой переменной (конечно, одной и той же в обоих случаях) ни были вычислены названные дифференциалы.

Пусть, например, так что

Положим теперь Тогда и мы будем иметь: Легко проверить, что формула

дает лишь другое выражение для вычисленной выше производной.

Этим обстоятельством особенно удобно пользоваться в случаях, когда зависимость у от х не задана непосредственно, а вместо этого задана зависимость обеих переменных х и у от некоторой третьей, вспомогательной, переменной (называемой параметром):

Предполагая, что обе эти функции имеют производные и что для первой из них существует обратная функция имеющая производную , легко видеть, что тогда и у оказывается функцией от х:

для которой также существует производная. Вычисление этой производной может быть выполнено по указанному выше правилу:

не восстанавливая непосредственной зависимости у от х.

Например, если производную можно определить, как это сделано выше, не пользуясь вовсе зависимостью .

Если рассматривать х и у как прямоугольные координаты точки на плоскости, то уравнения (8) каждому значению параметра t ставят в соответствие некоторую точку, которая с изменением t описывает кривую на плоскости. Уравнения (8) называются параметрическими уравнениями этой кривой.

В случае параметрического задания кривой, формула (10) позволяет непосредственно по уравнениям (8) установить угловой коэффициент касательной, не переходя к заданию кривой уравнением (9); именно,

Замечание. Возмохсность выражать производную через дифференциалы, взятые по любой переменной, в частности, приводит к тому, что формулы

выражающие в лейбницевых обозначениях правила дифференцирования обратной функции и сложной функции, становятся простыми алгебраическими тождествами (поскольку все дифференциалы здесь могут быть взяты по одной и той же переменной). Не следует думать, впрочем, что этим дан новый вывод названных формул: прежде всего, здесь не доказывалось существование производных слева, главное же - мы существенно пользовались инвариантностью формы дифференциала, которая сама есть следствие правила V.


Выражение полного дифференциала функции нескольких переменных имеет тот же вид вне зависимости от того, являются ли u и v независимыми переменными или функциями других независимых переменных.

Доказательство опирается на формулу полного дифференциала

Что и требовалось доказать.

5.Полная производная функции - производная функции по времени вдоль траектории. Пусть функция имеет вид и ее аргументы зависят от времени: . Тогда , где - параметры задающие траекторию. Полная производная функции (в точке ) в таком случае равна частной производной по времени (в соответствующей точке ) и может быть вычислена по формуле:

где - частные производные. Следует отметить, что обозначение является условным и не имеет отношения к делению дифференциалов. Кроме того, полная производная функции зависит не только от самой функции, но и от траектории.

Например, полная производная функции :

Здесь нет так как сама по себе («явно») не зависит от .

Полный дифференциал

Полный дифференциал

функции f (x, у, z,...) нескольких независимых переменных - выражение

в случае, когда оно отличается от полного приращения

Δf = f (x + Δx, y + Δy, z + Δz,…) - f (x, y, z, …)

на величину, бесконечно малую по сравнению с

Касательная плоскость к поверхности

(X, Y, Z - текущие координаты точки на касательной плоскости; - радиус-вектор этой точки; x, y, z - коодинаты точки касания (соответственно для нормали); - касательные векторы к координатным линиям соответственно v = const; u = const; )

1.

2.

3.

Нормаль к поверхности

3.

4.

Понятие дифференциала. Геометрический смысл дифференциала. Инвариантность формы первого дифференциала.

Рассмотрим функцию y = f(x), дифференцируемую в данной точке x. Приращение Dy ее представимо в виде

D y = f"(x)D x +a (D x) D x,

где первое слагаемое линейно относительно Dx, а второе является в точке Dx = 0 бесконечно малой функцией более высокого порядка, чем Dx. Если f"(x)№ 0, то первое слагаемое представляет собой главную часть приращения Dy. Эта главная часть приращения является линейной функцией аргумента Dx и называется дифференциалом функции y = f(x). Если f"(x) = 0, то дифференциал функции по определению считается равным нулю.

Определение 5 (дифференциал). Дифференциалом функции y = f(x) называется главная линейная относительно Dx часть приращения Dy, равная произведению производной на приращение независимой переменной

Заметим, что дифференциал независимой переменной равен приращению этой переменной dx = Dx. Поэтому формулу для дифференциала принято записывать в следующем виде: dy = f"(x)dx. (4)

Выясним каков геометрический смысл дифференциала. Возьмем на графике функции y = f(x) произвольную точку M(x,y) (рис21.). Проведем касательную к кривой y = f(x) в точке M, которая образует угол f с положительным направлением оси OX, то есть f"(x) = tgf. Из прямоугольного треугольника MKN

KN = MNtgf = D xtg f = f"(x)D x,

то есть dy = KN.

Таким образом, дифференциал функции есть приращение ординаты касательной, проведенной к графику функции y = f(x) в данной точке, когда x получает приращение Dx.

Отметим основные свойства дифференциала, которые аналогичны свойствам производной.

2. d(c u(x)) = c d u(x);

3. d(u(x) ± v(x)) = d u(x) ± d v(x);

4. d(u(x) v(x)) = v(x) d u(x) + u(x)d v(x);

5. d(u(x) / v(x)) = (v(x) d u(x) - u(x) d v(x)) / v2(x).

Укажем еще на одно свойство, которым обладает дифференциал, но не обладает производная. Рассмотрим функцию y = f(u), где u = f (x), то есть рассмотрим сложную функцию y = f(f(x)). Если каждая из функций f и f являются дифференцируемыми, то производная сложной функции согласно теореме (3) равна y" = f"(u)· u". Тогда дифференциал функции

dy = f"(x)dx = f"(u)u"dx = f"(u)du,

так как u"dx = du. То есть dy = f"(u)du. (5)

Последнее равенство означает, что формула дифференциала не изменяется, если вместо функции от x рассматривать функцию от переменной u. Это свойство дифференциала получило название инвариантности формы первого дифференциала.

Замечание. Отметим, что в формуле (4) dx = Dx, а в формуле (5) du яляется лишь линейной частью приращения функции u.

Интегральное исчисление - раздел математики, в котором изучаются свойства и способы вычисления интегралов и их приложения. И. и. тесно связано с дифференциальным исчислением и составляет вместе с ним одну из основных частей

Мы видели, что дифференциал функции может быть записан в виде:
(1),

если есть независимая переменная. Пусть теперьесть сложная функ­ция от, т.е.
,
и поэтому
. Если производные функций
и
существуют, то
, как производная сложной функции. Дифференциал
или. Но
и поэтому можем записать
, т.е. получили снова выражение для
как и в (1).

Вывод: формула (1) верна как и в случае, когдаесть независимая переменная, так и в случае, когдаесть функция от независимой пере­менной. В первом случае под
понимается дифференциал независимой переменной
, во втором – дифференциал функции (при этом
, вообще говоря). Это свойство сохранения формы (1) и называетсяинвариантностью формы дифференциала .

Инвариантность формы дифференциала даёт большие выгоды при вычислении дифференциалов сложных функций.

Например : нужно вычислить
. Независимо от того, зависимая или независимая переменная, мы можем записать. Если- функция, например
, то найдём
и, пользуясь инвариантностью формы дифференциала, имеем право записать.

§18. Производные высших порядков.

Пусть функция у= (х) дифференцируема на некотором проме­жутке Х, (т.е. имеет конечную производную у 1 = 1 (х) в каждой точке этого промежутка). Тогда 1 (х) есть в Х сама функция от х. Может оказаться, что в некоторых точках или во всех х 1 (х) сама имеет производную, т.е. существует производная от производной (у 1) 1 =( 1 (х) 1 . В этом случае ее называют второй производной или производной второго порядка. Обозначают символами у 11 , 11 (х), d 2 у/ dх 2 . Если нужно подчеркнуть, что производная находится в т.х 0 , то пишут

у 11 /х=х 0 или 11 (х 0) или d 2 у/ dх 2 /х=х 0

производная у 1 называется производной первого порядка или первой производной.

Итак, производной второго порядка называют производную от производной первого порядка функции.

Совершенно аналогично, производная (там, где она существует) от производной второго порядка называется производной третьего порядка или третьей производной.

Обозначают (у 11) 1 = у 111 = 111 (х)= d 3 у/ dх 3 = d 3 (х) / dх 3

Вообще производной n-го порядка функции у= (х) называется производная от производной (n-1) порядка этой функции. (если они существуют, конечно).

Обозначают

Читают: n-ая производная от у, от (х); d n у по d х в n-ой.

Четвертый, пятый и т.д. порядок неудобно обозначать штрихами, поэтому пишут число в скобках, вместо  v (х) пишут (5) (х).

В скобках, чтобы не путать n-ый порядок производной и n-ую степень функции.

Производные порядка, выше первого, называют производными высших порядков.

Из самого определения следует, что для нахождения n-ой производной нужно найти последовательно все предыдущие от 1-ой до (n-1)-ой.

Примеры: 1) у=х 5 ; у 1 =5х 4 ; у 11 =20х 3 ;

у 111 =60х 2 ; у (4) =120х; у (5) =120; у (6) =0,…

2) у=е х; у 1 =е х; у 11 =е х;…;

3) у=sinх; у 1 =cosх; у 11 = -sinх; у 111 = -cosх; у (4) = sinх;…

Заметим, что вторая производная имеет определенный механический смысл.

Если первая производная пути по времени есть скорость прямолинейного неравномерного движения

V=ds/dt, где S=f(t) – уравнение движения, то V 1 =dV/dt= d 2 S/dt 2 -есть скорость изменения скорости, т.е. ускорение движения:

a= f 11 (t)= dV/dt= d 2 S/dt 2 .

Итак, вторая производная пути по времени,есть ускорение движения точки – в этом состоит механический смысл второй производной.

В ряде случаев удается написать выражение производной любого порядка, минуя промежуточные.

Примеры :

у=е х; (у) (n) =(е х) (n) =е х;

у=а х; у 1 =а х lnа; у 11 =а х (lnа) 2 ; у (n) =а х (lnа) n ;

у=х α ; у 1 = αx α-1 ; у 11 =
; у (п) = α(α-1)… (α-n+1)x α-n , при=n имеем

у (п) =(х п) (п) = n! Производные порядка вышеnвсе равны нулю.

у= sinх; у 1 =cosх; у 11 = -sinх; у 111 = -cosх; у (4) = sinх;… и т.д.. Т.к.

у 1 = sin(х+/2); у 11 = sin(х+2/2); у 111 = sin(х+3/2); и т.д., то у (п) =(sinх) (п) = sin(х+n/2).

Легко установить последовательным дифференцированием и общие формулы:

1) (СU) (n) = С(U) (n) ; 2) (U±V) (n) = U (n) ± V (n)

Более сложной оказывается формула для n-ой производной от произведения двух функций (U·V) (n) . Она носит название формулы Лейбница.

Получим ее

у= U·V; у 1 = U 1 V+ UV 1 ; у 11 = U 11 V+ U 1 V 1 + U 1 V 1 + UV 11 = U 11 V+2U 1 V 1 + UV 11 ;

у 111 = U 111 V+ U 11 V 1 +2U 11 V 1 +2U 1 V 11 + U 1 V 11 + UV 111 = U 111 V+3U 11 V 1 +3 U 1 V 11 + UV 111 ;

Аналогично получим

у (4) = U (4) V+4 U 111 V 1 +6 U 11 V 11 +4 U 1 V 111 + UV (4) и т.д.

Нетрудно заметить, что правые части всех этих формул напоминают разложение степеней бинома U+V, (U+V) 2 , (U+V) 3 и т.д. Только вместо степеней U и V тут стоят производные соответствующих порядков. Сходство будет особенно полным, если в полученных формулах писать вместо U и V, U (0) и V (0) , т.е. 0-ые производные от функций U и V (сами функции).

Распространяя этот закон на случай любого n, получим общую формулу

у (n) = (UV) (n) = U (n) V+ n/1! U (n-1) V 1 + n(n-1)/2! U (n-2) V (2) + n(n-1)(n-2)/3! U (n-3) V (3) +…+ n(n-1)…(n-к+1)/К! U (к) V (n-к) +…+ UV (n) - формула Лейбница.

Пример: найти (е х х) (n)

(е х) (n) =е х, х 1 =1, х 11 =0 и х (n) =0, поэтому (е х х) (n) = (е х) (n) х+ n/1! (е х) (n-1) х 1 = е х х+ nе х =е х (х+ n).

Дифференциал функции

Функция называется дифференцируемой в точке , предельной для множества E , если ее приращение Δf (x 0), соответствующее приращению аргумента x , может быть представлено в виде

Δf (x 0) = A (x 0)(x - x 0) + ω (x - x 0), (1)

где ω (x - x 0) = о (x - x 0) при x x 0 .

Отображение , называется дифференциалом функции f в точке x 0 , а величина A (x 0)h - значением дифференциала в этой точке.

Для значения дифференциала функции f принято обозначение df или df (x 0), если требуется знать, в какой именно точке он вычислен. Таким образом,

df (x 0) = A (x 0)h .

Разделив в (1) на x - x 0 и устремив x к x 0 , получим A (x 0) = f" (x 0). Поэтому имеем

df (x 0) = f" (x 0)h . (2)

Сопоставив (1) и (2), видим, что значение дифференциала df (x 0) (при f" (x 0) ≠ 0) есть главная часть приращения функции f в точке x 0 , линейная и однородная в то же время относительно приращения h = x - x 0 .


Критерий дифференцируемости функции

Для того чтобы функция f являлась дифференцируемой в данной точке x 0 , необходимо и достаточно, чтобы она имела в этой точке конечную производную.


Инвариантность формы первого дифференциала

Если x - независимая переменная, то dx = x - x 0 (фиксированное приращение). В этом случае имеем

df (x 0) = f" (x 0)dx . (3)

Если x = φ (t ) - дифференцируемая функция, то dx = φ" (t 0)dt . Следовательно,