Куда ни кинь взгляд, всюду - магнит. Когда-то школьникам рассказывали только про компас, позже - про применение в промышленности, в последнее время заговорили о будущем поезде на магнитной подвеске. Хотя можно было бы сказать, что любой электродвигатель и любой трансформатор - электромагнит. Сегодня убедить читателя в важности магнитов стало проще: достаточно сказать, что магнит почти наверняка есть у него дома (на дверце холодильника и в микроволновке), в кармане (в сотовом), десятки магнитов - в компьютере и автомобиле. В промышленности и медицине их вообще не счесть, и физика элементарных частиц без них не обходится - они стоят и по всему периметру ускорительного кольца, и в большинстве детекторов элементарных частиц.

Есть постоянные магниты, есть электромагниты. Постоянные имеют один большой плюс - не потребляют энергию, и несколько минусов - их поле нельзя регулировать (а если можно, то медленно - механически перемещая), и оно не может быть очень сильным. Электромагниты свободны от этих недостатков, но зато у них есть тот, которого нет у постоянных магнитов, - они потребляют энергию, и много потребляют. Иногда говорят, что проблему решают электромагниты со сверхпроводящими обмотками, как у Токамака. Но, во-первых, ни жидкого гелия, ни жидкого азота на Земле из озера не зачерпнешь, а во-вторых, магнитное поле таких электромагнитов тоже трудно регулировать.

Возникает идея: скрестить электрическое и магнитное поле, найти вещество или создать материал, при помещении которого в электрическое поле он становится магнитом, а в магнитном поле, наоборот, проявляет электрические свойства. О таких веществах рассказывается в статье А. П. Пятакова и А. К. Звездина из Московского государственного университета им. М. В. Ломоносова и Института общей физики им. А. М. Прохорова.

Переменный постоянный магнит

Магнитные и электрические явления известны с античных времен, но связать их между собой удалось намного позже, уже после работ классиков электромагнетизма: Эрстеда, Ампера, Фарадея, Максвелла. Вслед за Ампером магнитные свойства постоянных магнитов стали объяснять «молекулярными» токами, текущими внутри вещества в каждой молекуле. Хотя природа молекулярных токов долгое время оставалась непонятой, сама возможность вечного движения зарядов внутри вещества казалась многообещающей (такая возможность реализуется и в сверхпроводниках, но при низких температурах). Если бы с помощью электрического поля удалось воздействовать на молекулярные токи, то можно было бы управлять постоянными магнитами практически без потерь энергии.

Слева направо: Пьер Кюри (1859–1906), Бернард Теллеген (1900–1990), Л. Д. Ландау (1908–1968) (справа) и Е. М Лифшиц (1915–1985), И. Е. Дзялошинский (слева) и Д. Н. Астров, Джордж Радо, Г. А. Смоленский (1910–1986)

В 1884 году французский физик Пьер Кюри высказал мысль, что существование таких молекул и веществ, которые намагничивались бы под действием электрического поля, не противоречит известным законам. Американский инженер-электроник Бернард Теллеген позже предложил создать композит - магнитоэлектрическую среду в виде взвеси, где плавали бы частицы, представлявшие собой магнитики, сцепленные с кусочками электрета. А электрет - это вещество, которое можно «зарядить» внешним электрическим полем, и оно после этого долго, например годы, создает вокруг себя электрическое поле, как магнит - магнитное. Электретами являются многие хорошие диэлектрики, однако материалы, сочетающие в себе свойства и электрета и магнита, ни найдены, ни созданы не были. Хотя название для них придумали - «магнитоэлектрики».

Дело сдвинулось с мертвой точки, когда Л. Д. Ландау и Е. М. Лифшиц указали, что магнитоэлектрики надо искать среди антиферромагнетиков, то есть кристаллов, состоящих из противоположно намагниченных подрешеток (рис. 1). И. Е. Дзялошинский назвал в 1959 году конкретное соединение - Cr2O3, и через год магнитоэлектрический эффект в этом материале был обнаружен Д. Н. Астровым. За несколько лет до того американские ученые в группе профессора Джорджа Радо пытались обнаружить магнитоэлектрические свойства у различных веществ, но поиски оказались безрезультатными, поскольку они не знали о работах Ландау, Лифшица и Дзялошинского - переводы книг и статей выходили с задержкой. Узнав об открытии Астрова, они продемонстрировали на Cr2O3 и обратный эффект - электрическую поляризацию, наводимую магнитным полем.


Рис. 1. Антиферромагнетизм. Идею антиферромагнитного упорядочения предвосхитили рисунки Мориса Эшера, например «День и ночь» (а), в соседних узлах кристаллической ячейки магнитные стрелки (моменты) ионов направлены противоположно (б)

В это же время в ленинградском Физико-техническом институте, в группе Г. А. Смоленского, вели поиск магнитных сегнетоэлектриков. Обычный сегнетоэлектрик - это вещество, которое само по себе, без участия внешнего воздействия, создает и внутри себя, и снаружи электрическое поле, то есть в некотором смысле электрический аналог постоянного магнита. А магнитный сегнетоэлектрик - материал, в котором бы при отсутствии внешних полей наблюдались бы и намагниченность, и электрическая поляризация. Предполагалось замещение магнитными элементами ионов в уже известных сегнетоэлектриках, и первый «сегнетомагнетик» (или «мультиферроик», как теперь называют эти материалы) получился «сложносочиненным», это был твердый раствор (1–x)Pb(Fe2/3W1/3)O3 - xPb(Mg1/2W1/2)O3 .

Сегнетомагнетики и мультиферроики: термины-химеры

На свое несчастье Духов я призвал.
И. В. Гёте, «Ученик чародея»

Три класса ферроиков: сегнетоэлектрические, магнитные и сегнетоэластические вещества. На пересечении этих множеств лежат мультиферроики

Многие привычные слова представляют собой подобие мифологической химеры - животного с головой льва, туловищем козы и хвостом змеи. Так слово «автобус» получилось соединением частей слов «автомобиль» и «омнибус» (от лат. omnibus - всем, для всех). Похожим образом термин «сегнетомагнетик» составлен из двух слов «сегнетоэлектрик» и «ферромагнетик». Слово «сегнетоэлектрик» происходит от первого обнаруженного вещества, в котором существует поляризация в отсутствие электрического поля (спонтанная электрическая поляризация), - сегнетовой соли, названной по имени французского аптекаря Сеньета (Seignette). А есть и другое чудо - вещества, в которых при понижении температуры кристалл, оставаясь целым, разбивается на домены - области с разной ориентацией кристаллической решетки (это называется структурным фазовым переходом). Таким образом, слово «сегнетомагнетик» уже представляет собой довольно странный гибрид, но еще более «химеричен» термин «мультиферроик».

Химера античной мифологии

В англоязычной научной литературе названия всех этих трех классов веществ начинаются с приставки «ферро»: ferromagnetics, ferroelastics, ferroelectrics, хотя железо здесь ни при чем. Это не помешало, однако, в середине прошлого века японскому ученому Кейчиро Айдзу назвать все три класса общим термином «ferroics» - ферроики. Похожая история произошла в английском языке: кусочек от «омнибуса» перекочевал в «автобус», а потом bus стал самостоятельным словом, означающим кроме автобуса еще и канал передачи данных.

В случае ферроиков история имела продолжение: в начале девяностых годов прошлого века из бутылки был выпущен новый джинн - термин «мультиферроик» (от лат. multi - много) - для обозначения вещества, которое одновременно принадлежит хотя бы двум классам ферроиков. В начале нашего столетия, когда появились новые среды с магнитными и электрическими свойствами, это слово неожиданно быстро завоевало признание и вытеснило «сегнетомагнетик», так что сам создатель неологизма, швейцарский ученый Ганс Шмид, когда речь заходит о придуманном им термине, вспоминает стихотворение Гёте, отрывок из которого приведен в качестве эпиграфа.

Перемешать или прослоить?

Позже нашли и более простые соединения, а особенно интересным оказался феррит висмута BiFeO3 (рис. 2). Большинство его замечательных свойств - следствие отличий от идеальной кубической структуры. Вращение кислородных октаэдров (рис. 2а) приводит к тому, что в этом антиферромагнетике магнитные стрелки соседних ионов уже не строго противоположны, образуя угол меньше 180 градусов. В результате они не полностью компенсируют друг друга, и появляется общая намагниченность кристалла (такие материалы называют слабыми ферромагнетиками). Электрические и магнитоэлектрические свойства обусловлены смещением ионов вдоль главной диагонали куба, а также искажениями октаэдра (рис. 2б). Кристалл феррита висмута способен также растягиваться в лучах света (рис. 2в) и превращаться в полупроводниковый диод под действием электрического поля (рис. 2г). Последнее превращение происходит из-за кислородных вакансий - заряженных дефектов, которые изменяют тип проводимости.


Рис. 2. Кристаллическая структура феррита висмута: в центрах кубов находятся ионы железа, в вершинах - ионы висмута, в центрах граней - ионы кислорода: вращение кислородных октаэдров (а), смещение ионов вдоль диагонали куба и вызванное им искажение октаэдров - смещения ионов показаны стрелками (б), электрострикция в феррите висмута - растяжение образца под действием светового излучения, под стоваттной лампой относительное удлинение составляет около тысячной процента, что не так уж и мало для твердого тела (в), образование p-n перехода под действием электрического поля в результате перемещения кислородных вакансий (г)

Таких «высокотемпературных» магнитоэлектриков, как феррит висмута, совсем немного, едва ли больше десятка, да и те имеют существенный недостаток - заметную проводимость при комнатной температуре. Это сводит на нет главное достоинство магнитоэлектрического способа получения магнитного поля - при приложении электрического поля в таком веществе начнет протекать ток, а значит, расход энергии становится ощутимым. Поэтому в 70-х годах прошлого столетия были предприняты первые попытки создать искусственные композиционные магнитоэлектрические среды в виде смеси двух порошков (рис. 3а): магнитострикционные частички изменяли форму в магнитном поле, они воздействовали на частички пьезоэлектрика, а те, в свою очередь, при деформации электрически поляризовались.


Идея была замечательная, но эффект оказался малым и нестабильным. При перемешивании получались комки и сгустки, а образование каналов из проводящих магнитострикционных частиц приводило к «короткому замыканию» образца, а значит, и к отсутствию электрического напряжения. Тогда возникла идея «слоеного пирога» или сэндвича из магнитострикционного и пьезоэлектрического материалов, склеенных вместе (рис. 3б). Проводящие каналы теперь не образовывались, и магнитоэлектрический эффект стал в 50 раз больше, чем в Cr2O3. С помощью датчиков на сэндвич-структурах удавалось измерить магнитные поля в миллион раз меньшие, чем поле Земли, - такие создает наше сердце, перегоняя кровь по сосудам.

Когда структура влияет на свойства

Новый этап в создании композиционных материалов наступил с приходом современных технологий: теперь искусственные магнитоэлектрики изготавливают на чипах в виде пленок со столбчатыми наноструктурами (рис. 3в). Сэндвич-структуры в нанопленочном исполнении работают плохо - сцепление с подложкой-чипом не дает им свободно деформироваться, а столбики легко сжимаются и растягиваются в вертикальном направлении. Вдобавок такие структуры не надо было создавать специально, они «самоорганизуются» при одновременном осаждении на подложку двух веществ: магнитострикционного, например шпинели CoFe2O4, и пьезоэлектрического, например титаната бария BaTiO3 или феррита висмута BiFeO3. Изменяя кристаллографическую ориентацию подложки, можно выращивать как магнитострикционные столбики в пьезоэлектрической матрице, так и пьезоэлектрические столбики в магнитострикционной матрице (рис. 4).


Рис. 4. Строение нанокомпозита зависит от кристаллографической ориентации плоскости подложки: подложка с ориентацией(001) (а), подложка с ориентацией (111) (б); кубики соответствуют кристаллам пьезоэлектрика, октаэдры - кристаллам магнитострикционного материала

Что же вынуждает две фазы осаждаться таким образом? То же самое явление, которое заставляет капельку воды расплываться на чистом стекле и скатываться в шарик на поверхности, натертой воском, - поверхностное натяжение. Если подложка вырезана перпендикулярно кристаллографическому направлению (то есть оси z системы координат), то вещество магнитострикционного материала не смачивает поверхность, собираясь в капли, которые потом вырастают в столбики, в то время как пьезоэлектрическая фаза смачивает подложку и обволакивает столбики, образуя матрицу. На подложке (111) всё происходит наоборот: внутри магнитострикционной матрицы растет столбчатая структура из пьезоэлектрика.

Когда характерные размеры наноструктур составляют несколько межатомных расстояний, фазы композита начинают влиять на внутреннее строение и свойства друг друга. Если слои титаната бария перемежать магнитным материалом с похожей кристаллической структурой, например манганита лантана с замещением кальцием La0.7Ca0.3MnO3, то получается искусственная магнитоэлектрическая среда: благодаря близкому соседству кристаллические структуры двух материалов подвергаются взаимным искажениям, что приводит к взаимодействию электрической и магнитной подсистем. То есть удалось не только создать наноструктурированный материал, но и осуществлять инженерию на атомном уровне, изменяя сами свойства веществ-компонентов.

А как же первоначальная идея Кюри о магнитоэлектрических молекулах? Ее можно реализовать в органических молекулярных нанокластерах Dy3, в которых магнитными атомами являются три атома диспрозия, образующие правильный треугольник (рис. 5а). В состоянии молекулы с наименьшей энергией (в основном состоянии) магнитные стрелки (моменты) ионов диспрозия ориентированы параллельно противолежащей стороне треугольника (рис. 5а). Если бы магнитных ионов было больше (как, например, в недавно синтезированном кластере Dy6), они бы образовали «карусель» из магнитных моментов (рис. 5б). Такое упорядочение называют «тороидным», поскольку круговой электромагнит можно создать, намотав провод на магнитный сердечник в форме бублика (тора). Структуры с тороидным упорядочением, следуя традиции обозначать любое упорядочение словом «ферро», называют «ферротороиками». Они обладают магнитоэлектрическим эффектом - приложение магнитного поля вызывает перераспределение магнитных моментов: число ионов, у которых магнитные моменты направлены по магнитному полю, возрастает. Смещение магнитных ионов влечет перераспределение зарядов, так что возникает электрическая поляризация. Однако с равной вероятностью реализуются и состояния молекулы, в которых магнитные моменты направлены по часовой стрелке, и состояния с направлением моментов против часовой стрелки, а в этих случаях магнитоэлектрический эффект будет противоположным. Так что остается проблема, как получать тороидные структуры с одним направлением вращения магнитных моментов.


Рис. 5. Органический молекулярный нанокластер на основе редкоземельных ионов: взаимная ориентация магнитных моментов катионов диспрозия (а); при тороидном упорядочении магнитных моментов во внешнем магнитном поле H помимо намагниченности наводится электрическая поляризация P (б); для сравнения - тороидальный электромагнит (в центре)

Из монитора память не получится

Идея Теллегена о композите, состоящем из магнитоэлектрических частиц, которые вращаются в жидкости, была реализована с появлением первой модели электронных чернил - гирикона (от греч. «вращающееся изображение»). Гирикон - полимерная среда, в которую внедрены двухцветные сферические частицы из полиэтилена, вращающиеся внутри полостей с жидкостью (рис. 6). Полусферы частицы отличались не только цветом, но и электрическим зарядом. Поэтому их можно было ориентировать, прикладывая электрическое поле, и на белом фоне появлялись черные буквы. Когда же в частицы ввели магнитные примеси, электрическое поле стало управлять намагниченностью системы. Однако на вращение уходило около секунды, поэтому возникла идея «омагнитить» не электронную бумагу, а главную составляющую другого типа дисплеев - жидкие кристаллы.


Рис. 6. Гирикон: полимер с внедренными черно-белыми сферическими частицами (а), магнитоэлектрический композит на основе гирикона: частицы-диполи вращаются в микрополостях с жидкостью. +/– электрические, S, N - магнитные полюса (б)

В жидких кристаллах нематиках (от греч. «нить») продолговатые молекулы располагаются вдоль одного направления (рис. 7а). Жидкокристаллические мониторы работают благодаря свойству молекул нематика ориентироваться вдоль поля (рис. 7б), но если примешать к жидкому кристаллу магнитные наностолбики, то они будут поворачиваться вместе с молекулами. Получился магнитный материал, управляемый с помощью электрического поля, причем он откликался на изменение электрического поля намного быстрее - частота переключения составляла килогерцы.


Рис. 7. Жидкий кристалл с магнитными наностолбиками: в отсутствие электрического напряжения (а), при включении напряжения (б)

Это уже быстрее, но гирикон и жидкокристаллическая ячейка ни по размерам, ни по быстродействию не могут соперничать с элементами полупроводниковых микросхем, а значит, для устройств магнитной памяти не годятся. Вместо жидкого кристалла в устройствах магнитной памяти между электродами предлагали помещать слой твердотельного магнитоэлектрика, однако из-за малочисленности высокотемпературных магнитоэлектриков и больших токов утечки магнитоэлектрическая память пока еще далека от реализации.

«Умная пыль» собирает энергию

Миниатюризация электронных устройств - путь к созданию беспроводных сенсорных сетей, состоящих из множества датчиков, способных собирать, обрабатывать информацию и обмениваться ею между собой. Такие структуры иногда называют «умная пыль». Наиболее очевидные области применения - экологический и медицинский мониторинг, охранные системы. Но датчикам нужно питание, а с ним проблемы: если датчик находится внутри объекта (например, во вращающейся детали или в теле человека), то провод к нему не подведешь, батарейки недостаточно миниатюрны и долговечны, а солнечные батареи в темноте бесполезны.


Рис. 8. Дистанционное питание датчиков: магнитоэлектрический преобразователь на основе пьезоэлектрического и магнитострикционного материалов, расположенных на подложке из сужающейся металлической пластины - волноводного акустического концентратора (а), узел беспроводной сенсорной сети с магнитоэлектрическим питанием (б)

Интересной альтернативой представляется energy harvesting - получение энергии из окружающей среды. Это могут быть системы, накапливающие энергию механических, температурных колебаний или радиоволн, но поток энергии, поступающий от естественных источников, мал - меньше 1 мкВт/см2. Однако можно создать источник излучения, создающий в месте расположения датчиков переменное магнитное поле. Преобразовать энергию магнитного поля в электростатическую энергию заряженных конденсаторов можно с помощью магнитоэлектрического элемента, который состоит из слоев магнитострикционного и пьезоэлектрических материалов, расположенных на общей металлической подложке в форме сужающейся к одному концу пластины (рис. 8). Переменное магнитное поле вызывает периодическую деформацию магнитострикционной пластины на резонансной частоте. Эти механические колебания передаются подложке и распространяются по ней, так что при подходе к узкому концу возрастают концентрация акустической энергии и амплитуда колебаний. Колебания подложки передаются пластинкам пьезоэлектрика, и в них возникает переменное электрическое напряжение. Эта конструкция - разновидность магнитоэлектрического композиционного материала, однако при помощи акустического концентратора удается получить выигрыш в два раза по сравнению с традиционной многослойной структурой из скрепленных магнитных и пьезоэлектрических слоев.

Рис. 9. Механические колебания кантилевера из пьезоэлектрического материала: преобразуются в электрическую энергию (а), пьезоэлектрический элемент для сбора энергии при ходьбе (б)

Для электропитания имплантатов в медицине, автономных датчиков, а также средств связи и мобильной электроники лучше использовать механическое движение или вибрации, например колебания упругой пластинки (в современных микромеханике и нанотехнологиях такие пластинки называют кантилеверами) из пьезоэлектрического материала (рис. 9а). Когда кантилевер, изготовленный из магнитоэлектрического композиционного материала, колеблется в магнитном поле Земли, магнитострикционный слой испытывает дополнительные деформации, которые передаются пьезоэлектрическому слою, и в результате амплитуда переменного напряжения достигает десятка вольт. Такое устройство предлагается использовать на подводных аппаратах и буях, где всегда есть океанские волны и магнитное поле Земли.

Здесь надо сделать еще одно замечание: частоты колебаний, встречающиеся в естественных условиях, невелики - герцы, максимум десятки герц. Это означает, с одной стороны, малую мощность, вырабатываемую агрегатом (мощность пропорциональна кубу частоты), с другой стороны - совсем не микроскопические размеры устройств, способных вибрировать на этих низких частотах. В результате зарядные устройства дают лишь микроватт в пересчете на кубический сантиметр. Лучших результатов ожидают от использования других видов колебательного движения: человеческого тела при ходьбе (расположенные в ботинке пьезоэлементы (рис. 9б) уже позволяют получать до 1 мВт/см3) и еще более высокочастотных вибраций мотора автомобиля - до 30 мВт/см3. Но в любом случае о замене аккумуляторов в сотовых телефонах речь пока не идет. Сам сбор урожая даровой энергии («energy harvesting») напоминает известный процесс «по сусекам поскрести, по амбарам помести», и это объясняет, почему в таких случаях часто используют другой термин: «energy scavenging» (scavenging - уборка, утилизация мусора).

Проблема взаимосвязи магнитных и электрических явлений в твердом теле чрезвычайно многогранна, и в этой статье показаны лишь некоторые ее стороны. Эта область науки сейчас активно развивается, остается много непонятного, и неизвестные эффекты ждут своих первооткрывателей.

А. П. Пятаков, кандидат физико-математических наук
А. К. Звездин, доктор физико-математических наук

Литература:
1. Смоленский Г.А., Чупис И.Е. Сегнето-магнетики. «Успехи физических наук», 1982, 137, 415–448.
2. Eerenstein W., Mathur N.D., Scott J.F. Multiferroic and magnetoelectric materials. «Nature», 2006, 442, 7104, 759–765, doi:10.1038/nature05023.
3. Пятаков А.П., Звездин А.К. Магнитоэлектрические материалы и мульти-ферроики. «Успехи физических наук», 2012, 182, 593–620.

Куда ни кинь взгляд, всюду - магнит. Когда-то школьникам рассказывали только про компас, позже - про применение в промышленности, в последнее время заговорили о будущем поезде на магнитной подвеске. Хотя можно было бы сказать, что любой электродвигатель и любой трансформатор - электромагнит. Сегодня убедить читателя в важности магнитов стало проще: достаточно сказать, что магнит почти наверняка есть у него дома (на дверце холодильника и в микроволновке), в кармане (в сотовом), десятки магнитов - в компьютере и автомобиле. В промышленности и медицине их вообще не счесть, и физика элементарных частиц без них не обходится - они стоят и по всему периметру ускорительного кольца, и в большинстве детекторов элементарных частиц.

Есть постоянные магниты, есть электромагниты. Постоянные имеют один большой плюс - не потребляют энергию, и несколько минусов - их поле нельзя регулировать (а если можно, то медленно - механически перемещая), и оно не может быть очень сильным. Электромагниты свободны от этих недостатков, но зато у них есть тот, которого нет у постоянных магнитов, - они потребляют энергию, и много потребляют. Иногда говорят, что проблему решают электромагниты со сверхпроводящими обмотками, как у Токамака. Но, во-первых, ни жидкого гелия, ни жидкого азота на Земле из озера не зачерпнешь, а во-вторых, магнитное поле таких электромагнитов тоже трудно регулировать.

Возникает идея: скрестить электрическое и магнитное поле, найти вещество или создать материал, при помещении которого в электрическое поле он становится магнитом, а в магнитном поле, наоборот, проявляет электрические свойства. О таких веществах рассказывается в статье А. П. Пятакова и А. К. Звездина из Московского государственного университета им. М. В. Ломоносова и Института общей физики им. А. М. Прохорова.

Переменный постоянный магнит

Магнитные и электрические явления известны с античных времен, но связать их между собой удалось намного позже, уже после работ классиков электромагнетизма: Эрстеда, Ампера, Фарадея, Максвелла. Вслед за Ампером магнитные свойства постоянных магнитов стали объяснять «молекулярными» токами, текущими внутри вещества в каждой молекуле. Хотя природа молекулярных токов долгое время оставалась непонятой, сама возможность вечного движения зарядов внутри вещества казалась многообещающей (такая возможность реализуется и в сверхпроводниках, но при низких температурах). Если бы с помощью электрического поля удалось воздействовать на молекулярные токи, то можно было бы управлять постоянными магнитами практически без потерь энергии.

В 1884 году французский физик Пьер Кюри высказал мысль, что существование таких молекул и веществ, которые намагничивались бы под действием электрического поля, не противоречит известным законам. Американский инженер-электроник Бернард Теллеген позже предложил создать композит - магнитоэлектрическую среду в виде взвеси, где плавали бы частицы, представлявшие собой магнитики, сцепленные с кусочками электрета. А электрет - это вещество, которое можно «зарядить» внешним электрическим полем, и оно после этого долго, например годы, создает вокруг себя электрическое поле, как магнит - магнитное. Электретами являются многие хорошие диэлектрики, однако материалы, сочетающие в себе свойства и электрета и магнита, ни найдены, ни созданы не были. Хотя название для них придумали - «магнитоэлектрики».

Дело сдвинулось с мертвой точки, когда Л. Д. Ландау и Е. М. Лифшиц указали, что магнитоэлектрики надо искать среди антиферромагнетиков, то есть кристаллов, состоящих из противоположно намагниченных подрешеток (рис. 1). И. Е. Дзялошинский назвал в 1959 году конкретное соединение - Cr 2 O 3 , и через год магнитоэлектрический эффект в этом материале был обнаружен Д. Н. Астровым. За несколько лет до того американские ученые в группе профессора Джорджа Радо пытались обнаружить магнитоэлектрические свойства у различных веществ, но поиски оказались безрезультатными, поскольку они не знали о работах Ландау, Лифшица и Дзялошинского - переводы книг и статей выходили с задержкой. Узнав об открытии Астрова, они продемонстрировали на Cr 2 O 3 и обратный эффект - электрическую поляризацию, наводимую магнитным полем.

В это же время в ленинградском Физико-техническом институте, в группе Г. А. Смоленского, вели поиск магнитных сегнетоэлектриков. Обычный сегнетоэлектрик - это вещество, которое само по себе, без участия внешнего воздействия, создает и внутри себя, и снаружи электрическое поле, то есть в некотором смысле электрический аналог постоянного магнита. А магнитный сегнетоэлектрик - материал, в котором бы при отсутствии внешних полей наблюдались бы и намагниченность, и электрическая поляризация. Предполагалось замещение магнитными элементами ионов в уже известных сегнетоэлектриках, и первый «сегнетомагнетик» (или «мультиферроик», как теперь называют эти материалы) получился «сложносочиненным», это был твердый раствор (1–x)Pb(Fe 2/3 W 1/3)O 3 - xPb(Mg 1/2 W 1/2)O 3 .

Сегнетомагнетики и мультиферроики: термины-химеры

На свое несчастье
Духов я призвал.
И. В. Гёте, «Ученик чародея»

Многие привычные слова представляют собой подобие мифологической химеры - животного с головой льва, туловищем козы и хвостом змеи. Так слово «автобус» получилось соединением частей слов «автомобиль» и «омнибус» (от лат. omnibus - всем, для всех). Похожим образом термин «сегнетомагнетик» составлен из двух слов «сегнетоэлектрик» и «ферромагнетик». Слово «сегнетоэлектрик» происходит от первого обнаруженного вещества, в котором существует поляризация в отсутствие электрического поля (спонтанная электрическая поляризация), - сегнетовой соли, названной по имени французского аптекаря Сеньета (Seignette ). А есть и другое чудо - вещества, в которых при понижении температуры кристалл, оставаясь целым, разбивается на домены - области с разной ориентацией кристаллической решетки (это называется структурным фазовым переходом). Таким образом, слово «сегнетомагнетик» уже представляет собой довольно странный гибрид, но еще более «химеричен» термин «мультиферроик».

В англоязычной научной литературе названия всех этих трех классов веществ начинаются с приставки «ферро»: ferromagnetics , ferroelastics , ferroelectrics , хотя железо здесь ни при чем. Это не помешало, однако, в середине прошлого века японскому ученому Кейчиро Айдзу назвать все три класса общим термином «ferroics » - ферроики. Похожая история произошла в английском языке: кусочек от «омнибуса» перекочевал в «автобус», а потом bus стал самостоятельным словом, означающим кроме автобуса еще и канал передачи данных.

В случае ферроиков история имела продолжение: в начале девяностых годов прошлого века из бутылки был выпущен новый джинн - термин «мультиферроик» (от лат. multi - много) - для обозначения вещества, которое одновременно принадлежит хотя бы двум классам ферроиков. В начале нашего столетия, когда появились новые среды с магнитными и электрическими свойствами, это слово неожиданно быстро завоевало признание и вытеснило «сегнетомагнетик», так что сам создатель неологизма, швейцарский ученый Ганс Шмид, когда речь заходит о придуманном им термине, вспоминает стихотворение Гёте, отрывок из которого приведен в качестве эпиграфа.

Перемешать или прослоить?

Позже нашли и более простые соединения, а особенно интересным оказался феррит висмута BiFeO 3 (рис. 2). Большинство его замечательных свойств - следствие отличий от идеальной кубической структуры. Вращение кислородных октаэдров (рис. 2а) приводит к тому, что в этом антиферромагнетике магнитные стрелки соседних ионов уже не строго противоположны, образуя угол меньше 180 градусов. В результате они не полностью компенсируют друг друга, и появляется общая намагниченность кристалла (такие материалы называют слабыми ферромагнетиками). Электрические и магнитоэлектрические свойства обусловлены смещением ионов вдоль главной диагонали куба, а также искажениями октаэдра (рис. 2б). Кристалл феррита висмута способен также растягиваться в лучах света (рис. 2в) и превращаться в полупроводниковый диод под действием электрического поля (рис. 2г). Последнее превращение происходит из-за кислородных вакансий - заряженных дефектов, которые изменяют тип проводимости.

Таких «высокотемпературных» магнитоэлектриков, как феррит висмута, совсем немного, едва ли больше десятка, да и те имеют существенный недостаток - заметную проводимость при комнатной температуре. Это сводит на нет главное достоинство магнитоэлектрического способа получения магнитного поля - при приложении электрического поля в таком веществе начнет протекать ток, а значит, расход энергии становится ощутимым. Поэтому в 70-х годах прошлого столетия были предприняты первые попытки создать искусственные композиционные магнитоэлектрические среды в виде смеси двух порошков (рис. 3а): магнитострикционные частички изменяли форму в магнитном поле, они воздействовали на частички пьезоэлектрика, а те, в свою очередь, при деформации электрически поляризовались.

Идея была замечательная, но эффект оказался малым и нестабильным. При перемешивании получались комки и сгустки, а образование каналов из проводящих магнитострикционных частиц приводило к «короткому замыканию» образца, а значит, и к отсутствию электрического напряжения. Тогда возникла идея «слоеного пирога» или сэндвича из магнитострикционного и пьезоэлектрического материалов, склеенных вместе (рис. 3б). Проводящие каналы теперь не образовывались, и магнитоэлектрический эффект стал в 50 раз больше, чем в Cr 2 O 3 . С помощью датчиков на сэндвич-структурах удавалось измерить магнитные поля в миллион раз меньшие, чем поле Земли, - такие создает наше сердце, перегоняя кровь по сосудам.

Когда структура влияет на свойства

Новый этап в создании композиционных материалов наступил с приходом современных технологий: теперь искусственные магнитоэлектрики изготавливают на чипах в виде пленок со столбчатыми наноструктурами (рис. 3в). Сэндвич-структуры в нанопленочном исполнении работают плохо - сцепление с подложкой-чипом не дает им свободно деформироваться, а столбики легко сжимаются и растягиваются в вертикальном направлении. Вдобавок такие структуры не надо было создавать специально, они «самоорганизуются» при одновременном осаждении на подложку двух веществ: магнитострикционного, например шпинели CoFe 2 O 4 , и пьезоэлектрического, например титаната бария BaTiO 3 или феррита висмута BiFeO 3 . Изменяя кристаллографическую ориентацию подложки, можно выращивать как магнитострикционные столбики в пьезоэлектрической матрице, так и пьезоэлектрические столбики в магнитострикционной матрице (рис. 4).

Что же вынуждает две фазы осаждаться таким образом? То же самое явление, которое заставляет капельку воды расплываться на чистом стекле и скатываться в шарик на поверхности, натертой воском, - поверхностное натяжение. Если подложка вырезана перпендикулярно кристаллографическому направлению (то есть оси z системы координат), то вещество магнитострикционного материала не смачивает поверхность, собираясь в капли, которые потом вырастают в столбики, в то время как пьезоэлектрическая фаза смачивает подложку и обволакивает столбики, образуя матрицу. На подложке (111) всё происходит наоборот: внутри магнитострикционной матрицы растет столбчатая структура из пьезоэлектрика.

Когда характерные размеры наноструктур составляют несколько межатомных расстояний, фазы композита начинают влиять на внутреннее строение и свойства друг друга. Если слои титаната бария перемежать магнитным материалом с похожей кристаллической структурой, например манганита лантана с замещением кальцием La 0.7 Ca 0.3 MnO 3 , то получается искусственная магнитоэлектрическая среда: благодаря близкому соседству кристаллические структуры двух материалов подвергаются взаимным искажениям, что приводит к взаимодействию электрической и магнитной подсистем. То есть удалось не только создать наноструктурированный материал, но и осуществлять инженерию на атомном уровне, изменяя сами свойства веществ-компонентов.

А как же первоначальная идея Кюри о магнитоэлектрических молекулах? Ее можно реализовать в органических молекулярных нанокластерах Dy 3 , в которых магнитными атомами являются три атома диспрозия, образующие правильный треугольник (рис. 5а). В состоянии молекулы с наименьшей энергией (в основном состоянии) магнитные стрелки (моменты) ионов диспрозия ориентированы параллельно противолежащей стороне треугольника (рис. 5а). Если бы магнитных ионов было больше (как, например, в недавно синтезированном кластере Dy 6), они бы образовали «карусель» из магнитных моментов (рис. 5б). Такое упорядочение называют «тороидным», поскольку круговой электромагнит можно создать, намотав провод на магнитный сердечник в форме бублика (тора). Структуры с тороидным упорядочением, следуя традиции обозначать любое упорядочение словом «ферро», называют «ферротороиками». Они обладают магнитоэлектрическим эффектом - приложение магнитного поля вызывает перераспределение магнитных моментов: число ионов, у которых магнитные моменты направлены по магнитному полю, возрастает. Смещение магнитных ионов влечет перераспределение зарядов, так что возникает электрическая поляризация. Однако с равной вероятностью реализуются и состояния молекулы, в которых магнитные моменты направлены по часовой стрелке, и состояния с направлением моментов против часовой стрелки, а в этих случаях магнитоэлектрический эффект будет противоположным. Так что остается проблема, как получать тороидные структуры с одним направлением вращения магнитных моментов.

Из монитора память не получится

Идея Теллегена о композите, состоящем из магнитоэлектрических частиц, которые вращаются в жидкости, была реализована с появлением первой модели электронных чернил - гирикона (от греч. «вращающееся изображение»). Гирикон - полимерная среда, в которую внедрены двухцветные сферические частицы из полиэтилена, вращающиеся внутри полостей с жидкостью (рис. 6). Полусферы частицы отличались не только цветом, но и электрическим зарядом. Поэтому их можно было ориентировать, прикладывая электрическое поле, и на белом фоне появлялись черные буквы. Когда же в частицы ввели магнитные примеси, электрическое поле стало управлять намагниченностью системы. Однако на вращение уходило около секунды, поэтому возникла идея «омагнитить» не электронную бумагу, а главную составляющую другого типа дисплеев - жидкие кристаллы.

В жидких кристаллах нематиках (от греч. «нить») продолговатые молекулы располагаются вдоль одного направления (рис. 7а). Жидкокристаллические мониторы работают благодаря свойству молекул нематика ориентироваться вдоль поля (рис. 7б), но если примешать к жидкому кристаллу магнитные наностолбики, то они будут поворачиваться вместе с молекулами. Получился магнитный материал, управляемый с помощью электрического поля, причем он откликался на изменение электрического поля намного быстрее - частота переключения составляла килогерцы.

Это уже быстрее, но гирикон и жидкокристаллическая ячейка ни по размерам, ни по быстродействию не могут соперничать с элементами полупроводниковых микросхем, а значит, для устройств магнитной памяти не годятся. Вместо жидкого кристалла в устройствах магнитной памяти между электродами предлагали помещать слой твердотельного магнитоэлектрика, однако из-за малочисленности высокотемпературных магнитоэлектриков и больших токов утечки магнитоэлектрическая память пока еще далека от реализации.

«Умная пыль» собирает энергию

Миниатюризация электронных устройств - путь к созданию беспроводных сенсорных сетей, состоящих из множества датчиков, способных собирать, обрабатывать информацию и обмениваться ею между собой. Такие структуры иногда называют «умная пыль». Наиболее очевидные области применения - экологический и медицинский мониторинг, охранные системы. Но датчикам нужно питание, а с ним проблемы: если датчик находится внутри объекта (например, во вращающейся детали или в теле человека), то провод к нему не подведешь, батарейки недостаточно миниатюрны и долговечны, а солнечные батареи в темноте бесполезны.

Интересной альтернативой представляется energy harvesting - получение энергии из окружающей среды. Это могут быть системы, накапливающие энергию механических, температурных колебаний или радиоволн, но поток энергии, поступающий от естественных источников, мал - меньше 1 мкВт/см 2 . Однако можно создать источник излучения, создающий в месте расположения датчиков переменное магнитное поле. Преобразовать энергию магнитного поля в электростатическую энергию заряженных конденсаторов можно с помощью магнитоэлектрического элемента, который состоит из слоев магнитострикционного и пьезоэлектрических материалов, расположенных на общей металлической подложке в форме сужающейся к одному концу пластины (рис. 8). Переменное магнитное поле вызывает периодическую деформацию магнитострикционной пластины на резонансной частоте. Эти механические колебания передаются подложке и распространяются по ней, так что при подходе к узкому концу возрастают концентрация акустической энергии и амплитуда колебаний. Колебания подложки передаются пластинкам пьезоэлектрика, и в них возникает переменное электрическое напряжение. Эта конструкция - разновидность магнитоэлектрического композиционного материала, однако при помощи акустического концентратора удается получить выигрыш в два раза по сравнению с традиционной многослойной структурой из скрепленных магнитных и пьезоэлектрических слоев.

Для электропитания имплантатов в медицине, автономных датчиков, а также средств связи и мобильной электроники лучше использовать механическое движение или вибрации, например колебания упругой пластинки (в современных микромеханике и нанотехнологиях такие пластинки называют кантилеверами) из пьезоэлектрического материала (рис. 9а). Когда кантилевер, изготовленный из магнитоэлектрического композиционного материала, колеблется в магнитном поле Земли, магнитострикционный слой испытывает дополнительные деформации, которые передаются пьезоэлектрическому слою, и в результате амплитуда переменного напряжения достигает десятка вольт. Такое устройство предлагается использовать на подводных аппаратах и буях, где всегда есть океанские волны и магнитное поле Земли.

Здесь надо сделать еще одно замечание: частоты колебаний, встречающиеся в естественных условиях, невелики - герцы, максимум десятки герц. Это означает, с одной стороны, малую мощность, вырабатываемую агрегатом (мощность пропорциональна кубу частоты), с другой стороны - совсем не микроскопические размеры устройств, способных вибрировать на этих низких частотах. В результате зарядные устройства дают лишь микроватт в пересчете на кубический сантиметр. Лучших результатов ожидают от использования других видов колебательного движения: человеческого тела при ходьбе (расположенные в ботинке пьезоэлементы (рис. 9б) уже позволяют получать до 1 мВт/см 3) и еще более высокочастотных вибраций мотора автомобиля - до 30 мВт/см 3 . Но в любом случае о замене аккумуляторов в сотовых телефонах речь пока не идет. Сам сбор урожая даровой энергии («energy harvesting ») напоминает известный процесс «по сусекам поскрести, по амбарам помести», и это объясняет, почему в таких случаях часто используют другой термин: «energy scavenging » (scavenging - уборка, утилизация мусора).

Проблема взаимосвязи магнитных и электрических явлений в твердом теле чрезвычайно многогранна, и в этой статье показаны лишь некоторые ее стороны. Эта область науки сейчас активно развивается, остается много непонятного, и неизвестные эффекты ждут своих первооткрывателей.

Литература:
1. Смоленский Г.А., Чупис И.Е. Сегнето-магнетики. «Успехи физических наук», 1982, 137, 415–448.
2. Eerenstein W., Mathur N.D., Scott J.F. Multiferroic and magnetoelectric materials. «Nature», 2006, 442, 7104, 759–765, doi:10.1038/nature05023 .
3. Пятаков А.П., Звездин А.К. Магнитоэлектрические материалы и мульти-ферроики. «Успехи физических наук», 2012, 182, 593–620.

Постоянные Магниты и Электромагниты
— особенности и действие.

Тема

Использование свойств магнитов очень широко. Их можно встретить во многих электротехнических, механических и прочих устройствах. Но многим ли известно, как магниты устроены и по какому принципу они работают? В данной статье мы постараемся разобраться с этим и выяснить, как и почему магниты обладают подобными свойствами.

Для начала следует учесть, что в основе действия любого магнита (постоянного или электромагнита) лежит одно и тот же явление. Оно заключается во взаимодействии магнитных полей, которые окружают сам магнит (тело, обладающее магнитными свойствами). А откуда берётся магнитное поле у магнита? Для ответа давайте вспомним физику. Магнитное поле — это особый вид материи, которая возникает вокруг движущихся заряженных частиц. Как Вы должны помнить, любое тело состоит из атомов и молекул (сложная структура из атомов). У любого атома есть ядро, вокруг которого вращаются электроны.

Электрон представляет собой отрицательную электрически заряженную частицу. Поскольку электрон всегда находится в движении, то и вокруг него всегда существует магнитное поле. Но почему тогда все тела не проявляют магнитных свойств? А потому что атомы, находясь в неодинаковом расположении, компенсируют (уравновешивают) магнитные поля друг друга. Но некоторые вещества (ферромагнетики), всё же, способны при воздействии на них интенсивного магнитного импульса развернуть свою внутреннюю структуру таким образом, что магнитные поля имеющихся в нём частиц поворачиваются в одну и туже сторону. Это способствует суммированию всех магнитных полей и появлению внешнего усиленного магнитного поля. Таким образом, появляется постоянный магнит. Но данное свойство у магнита не постоянно.

При определённых условиях имеющаяся однонаправленность частиц постоянного магнита может быть нарушена. К примеру, если постоянный магнит подвергнуть высокой температуре, сильным ударам, перемагничиванию переменным током то его магнитные поля частичек изменят свою структуру и опять тело вернётся в первостепенное состояние (вокруг него уже не будет магнитного поля).

У постоянного магнита имеются свои недостатки: относительно слабая сила магнитного поля, отсутствие возможности управлять, как самой силой магнитного поля, так и его состояниями проявления (когда нужно он магнитит, а когда не нужно, он не магнитит). Данных недостатков лишёны электромагниты. Давайте теперь перейдём к ним.

Электромагниты — это электротехнические устройства, которые при пропускании через них тока способны проявлять магнитные свойства. В основе устройства любого электромагнита лежит простая электрическая катушка, которая намотана на стальной сердечник. Как известно, при подаче на катушку напряжения в ней возникает электрический ток (появляется поток движущихся упорядоченно электронов). А как мы выяснили выше, любая движущаяся электрически заряженная частица способна вокруг себя иметь магнитное поле. Значит, при прохождении электрического тока по катушки вокруг неё возникает магнитное поле.

Для усиления магнитного поля катушки электромагнита у внутрь неё устанавливается стальной сердечник. При появлении магнитного поля в катушки оно способствует изменению внутренней структуры стали (поворачивая внутренние частицы в одном направлении, подобно процессу с постоянным магнитом при его намагничивании).

В итоге магнитные поля самой катушки суммируются с магнитными полями стального сердечника, что усиливает действие электромагнита примерно в тысячу раз. При отключении питания от электромагнита катушка перестаёт магнитить, в результате чего в стальном сердечнике (в силу своих свойств) структура частиц снова меняется на первоначальную, что ведёт к полному его размагничиванию. Силу магнитного поля электромагнита можно легко регулировать путём изменения силы тока, который протекает по катушки электромагнита.

Важнейшим вопросом эффективного использования магнит­нотвердых материалов является высокое качество намагничива­ния систем с постоянными магнитами.

Обычно магниты (кроме магнитов из феррита бария) намаг­ничиваются после сборки системы, так как при этом после маг­нитной стабилизации значение индукции в зазоре оказывается больше, чем при намагничивании без системы, с последующей сборкой и магнитной стабилизацией (рис. 57). На рисунке OA - линия коэффициента размагничивания, характеризующая маг­нитную систему после сборки; ОС - ли­ния коэффициента размагничивания для магнита без арматуры; В\ и Ва - индук­ции в зазоре, получаемые после магнит­ной стабилизации соответственно для си­стемы, намагниченной до и после сборки.

Намагничивание до сборки связано также и с трудностями технологического характера, возникающими при сборке устройства с намагниченным магнитом (необходимость иметь немагнитный ин­струмент. возможность засорения ферро­магнитной пылью и т. п.).

Исследования показали, что для по­нятного состояния при лучения предельных магнитных характе-

Намагничивании до и пИСТИК напряженность намагничивающе - после сборки г г, г п ґ

Го поля должна быть в 5-7 раз больше

Коэрцитивной силы. Эти данные относят­ся к тому случаю, когда весь объем магнита пронизывается по­лем указанной величины, что имеет место, например, при намаг­ничивании магнита с плоскопараллельными полюсами, зажатого между полюсами электромагнита постоянного тока. В большин­стве случаев из-за влияния потоков рассеивания, магнитного сопротивления воздушных промежутков, вихревых токов (при намагничивании переменным полем) значение намагничивающе­го поля должно быть больше указанного и соответствовать 3000-10 000 э.

Для создания полей такой величины в объеме, достаточном для помещения в зазор магнитной системы, требуются значи­тельные намагничивающие ампервитки. При одновитковом на­магничивании, которое применяется в ряде случаев, для этого необходимо иметь токи в десятки тысяч ампер.

Применяется намагничивание в установках, питаемых по­стоянным током, переменным, при одновременном действии по­стоянного и переменного токов, а также импульсное.

Рис. 57. Изменение маг-

Намагничивание постоянным током производится в электро­
магнитах . Такие электромагниты получаются громоздкими и для них требуются мощные источники питания.

Например, пермеаметр сильных полей установки типа У-541, создающий поле, равное 4000 э в зазоре 50 мм, имеет массу, равную 250 кг, а электромагнит, созданный для намагничивания постоянных магнитов, при поле в 40 000 э и зазоре 12 мм потреб­ляет мощность, равную 28 кет.

На переменном токе требуемое значение тока в результате применения трансформаторов полу­чить относительно просто. Однако в этом случае возникают другие труд­ности: нельзя гарантировать высо­кое качество намагничивания, так как в зависимости от того, при ка­ком мгновенном значении тока про­изойдет выключение, магнит может оказаться намагниченным хуже, лучіпе и даже совсем не намагни­ченным. Для устранения этого недо­статка надо или обеспечить выклю­чение тока при достижении им максимального значения, или иметь большой запас по намагничивающему току, что умень­шает вероятность плохого намагничивания.

Следует также иметь в виду влияние вихревых токов, дейст­вие которых приводит к тому, что в результате затухания элек­тромагнитной волны при ее проникновении в глубь металла внутренний объем магнита может оказаться ненамагни - ченным.

Связь между минимальной продолжительностью импульса Т, при которой весь объем магнита промагничивается, размерами магнита и его физическими свойствами может быть представле­на следующей эмпирической формулой:

Т= 8K^-D2-\0~10 [сек], (62)

Рис. 58. Схематическое устройство ударного транс­форматора

Где К - удельная проводимость материала магнита (для желе- зоникельалюминиевых сплавов К= 1,7-104 ом~1)\ В - индукция в магните, гс\ Н - напряженность намагничивающего поля, э\ D - эффективный диаметр магнита, см.

Практическое осуществление метод намагничивания пере­менным током нашел в ударном трансформаторе (рис. 58).

Трансформатор состоит из первичной обмотки W\ с большим числом витков и вторичной обмотки ®2 = 1 в виде короткозамк - нутой толстой медной шины. При размыкании ключом К цепи первичной обмотки во вторичной возникает импульс тока в не­сколько десятков тысяч ампер, который и используется для на­магничивания магнита.

Б. М. Яновский предложил производить намагничивание по идеальной кривой, для получения которой магнит помещают в постоянное поле и одновременно воздействуют на него перемен­ным полем с убывающей до нуля амплитудой. При этом значе­ние постоянного тока, необходимое для намагничивания до на­сыщения, может быть взято приблизительно в три раза меньше, чем при отсутствии переменного поля.

Для намагничивания широкое применение находят схемы, в которых используется явление заряда и разряда мощной бата­реи конденсаторов. Для исключения колебаний в таких схемах применяют различные выпрямляющие устройства, позволяющие пропускать ток в одном направлении, т. е. производить импульс­ное намагничивание.

Установки с импульсным намагничиванием накапливают энергию в конденсаторе длительно, а отдают ее в процессе раз­ряда за короткий промежуток времени. Поэтому для создания мощного импульса не требуется большого тока потребления, что позволяет использовать для питания установки обычную осве­тительную сеть. К достоинствам импульсных установок надо от­нести также их малые габариты и относительную простоту уст­ройства.

Одна из возможных схем импульсной намагничивающей установки приведена на рис. 59.

Рассматриваемое устройство может быть использовано не только для намагничивания магнитных систем, но также и для их размагничивания. В первом случае должен быть замкнут штепсельный разъем НУ и разомкнут штепсельный разъем РУ, во втором случае - наоборот.

Рассмотрим работу схемы в качестве намагничивающего устройства. При замыкании ключа К напряжение сети подается через трансформатор Тр в обмотку реле Р\, которое срабатыва­ет и замыкает контакт К\, создавая тем самым цепь заряда кон­денсаторов С, и С2 (через выпрямитель В, зарядное сопротивле­ние 7*ь контакт /Сі и штепсельный разъем НУ). Емкости конден­саторов С] и С2 равны 700 мкф.

Вольтметр V, включенный через делитель напряжения (со­противления г2 и г3), измеряет текущее напряжение на емкостях. В зависимости от необходимой величины тока в импульсе схема позволяет при помощи сопротивления г4 устанавливать макси­мальное значение зарядного напряжения от 600 до 1000 в. При достижении заданного значения напряжения срабатывает реле

Рг и размыкает через контакт К.2 цепь питания реле Контакт Ki размыкается, и процесс заряда емкостей заканчивается.

Нажатием кнопки А подается питание на реле Яз, которое, замкнув контакты /Сз, создает цепь питания игнитрона И. Игни­трон зажигается, и батарея конденсаторов разряжается через намагничивающую катушку, подключенную к зажимам 1 и 2. В цепь разряда входят также сопротивления r5 = Ю-2 ом и г6. Первое сопротивление используется при включении осциллогра­фа для наблюдения намагничивающего импульса. Второе со­противление необходимо для исключения возможности возник-

Рис. 59. Принципиальная схема установки для импуль­сного намагничивания

Новения обратной полуволны и устанавливается в зависимости от индуктивности намагничивающей обмотки с магнитом.

При использовании схемы для размагничивания штепсель переставляется из гнезда НУ в гнездо РУ, а к зажимам 1, 2 и 3 подключается размагничивающее устройство. Оно представляет собой воздушный трансформатор с двумя обмотками. Начала обмоток соединяются с зажимами 1 и 3, а концы - с зажимом 2. В данном случае при включении питания заряжается только конденсатор Сг. Во время его разряда через игнитрон и первич­ную обмотку размагничивающего трансформатора во вторичной цепи, представляющей собой колебательный контур, состоящий из индуктивности обмотки и емкости Сь возникают затухающие колебания. Они создают переменное поле с убывающей до нуля амплитудой, которое и используется для размагничивания.

Техника намагничивания зависит от формы и размеров маг­нита.

Подковообразные магниты можно намагничивать, например, так, как показано на рис. 60.

Устройство для намагничивания состоит из железной плиты с малым магнитным сопротивлением, на котором располагается катушка с большим числом витков. Магниты ставят на плиту, охватывая катушку и замыкая полюса через железо. Установка позволяет осуществить одновременное намагничивание большо­го числа магнитов.


Рис. 60. Намагничивание подко - Рис. 61. Намагничивание рогооб - вообразных магнитов на плите разных массивных магнитов

Для намагничивания массивных магнитов рогообразной фор­мы массой до 50-100 кг применяют метод последовательного намагничивания, заключающийся в следующем. На магниты одевают плоские катушки и полюса замыкают железными пере­мычками (рис. 61).

Катушки рассчитывают так, чтобы при включении тока маг­нит промагнитился в месте их расположения до насыщения. Включают ток, т. е. промагничивают участок под катушками. Ток выключают, катушки передвигают по магниту, включают ток, снова передвигают катушки и так до полного сближения катушек.

Приведенные примеры показывают, что каждый раз, исходя из конкретных условий задачи, надо продумывать вопрос о ме­тоде намагничивания и выборе конструкции намагничивающего устройства.