«Первые три минуты»

Появились протоны и нейтроны , вроде бы горячо и плотно. И с протона и нейтрона можно начать термоядерные реакции, как в недрах звёзд. Но на самом деле, ещё слишком горячо и плотно. Поэтому надо чуть-чуть подождать и где-то с первых секунд жизни Вселенной и до первых минут. Есть книжка Вайнберга известная, называется «Первые три минуты» и она посвящена вот этому этапу в жизни Вселенной .

Происхождение химического элемента - гелия

В первые минуты начинают идти термоядерные реакции, потому что вся Вселенная похожа на недра звезды и термоядерные реакции могут идти. Начинают образовываться изотопы водорода дейтерий и соответственно тритий . Начинают образовываться более тяжелые химические элементы гелий . А вот дальше двигаться трудно, потому что стабильных ядер с числом частиц 5 и 8 нет. И получается такая вот сложная затыка.

Представьте, что у вас комната усыпана детальками от лего и вам нужно бегать и собирать структуры. Но детальки разбегаются или комната расширяется, то есть, как-то всё движется. Вам трудно собирать детальки, да ещё вдобавок, например, вот две вы сложили, потом ещё две сложили. А вот приткнуть пятую не получается. И поэтому за эти первые минуты жизни Вселенной , в основном, успевает сформироваться только гелий , немножко лития , немножко дейтерия остаётся. Он просто сгорает в этих реакциях, превращается в тот же гелий .

Так, что в основном Вселенная оказывается, состоящей из водорода и гелия , спустя первые минуты своей жизни. Плюс совсем небольшое количество элементов немножко более тяжёлых. И как бы всё, на этом первоначальный этап формирования таблицы Менделеева закончился. И наступает пауза, пока не появятся первые звезды. В звёздах опять получается горячо и плотно. Создаются условия для продолжения термоядерного синтеза . И звёзды большую часть своей жизни, занимаются синтезом гелия из водорода . То есть всё равно игра с первыми двумя элементами. Поэтому из-за существования звёзд, водорода становится меньше, гелия становится больше. Но важно понимать, что по большей части, вещество во Вселенной находится не в звёздах. В основном обычное вещество разбросано по всей Вселенной в облаках горячего газа, в скоплениях галактик, в волокнах между скоплений. И этот газ может быть никогда не превратится в звёзды, то есть в этом смысле, Вселенная всё равно останется, в основном, состоящей из водорода и гелия . Если мы говорим об обычном веществе, но на фоне этого, на уровне процентов, количество лёгких химических элементов падает, а количество тяжёлых элементов растет.

Звёздный нуклеосинтез

И так после эпохи первоначального нуклеосинтеза , наступает эпоха звёздного нуклеосинтеза , который идёт и в наши дни. В звезде, в начале водород превращается в гелий . Если условия позволят, а условия это температура и плотность, то пойдут следующие реакции. Чем дальше мы продвигаемся по таблице Менделеева, тем труднее начинать эти реакции, тем более экстремальные условия нужны. Условия создаются в звезде сами по себе. Звезда сама на себя давит, ее гравитационная энергия уравновешивается с её внутренней энергией, связанной с давлением газа и изучением. Соответственно, чем тяжелее звезда, тем сильнее она себя сдавливает и получает более высокую температуру и плотность в центре. И там могут идти следующие атомные реакции .

Химическая эволюция звёзд и галактик

В Солнце после синтеза гелия , запустится следующая реакция, будет образовываться углерод и кислород . Дальше реакции не пойдут и Солнце превратится в кислородно-углеродный белый карлик . Но при этом внешние слои Солнца, уже обогащённые реакция синтеза, будут сброшены. Солнце превратится в планетарную туманность, внешние слои разлетятся. И по большей части, вот так сброшенное вещество, после того, как она перемешается с веществом межзвёздной среды, сможет войти в состав следующего поколения звёзд. Так что у звёзд есть такая вот эволюция. Есть химическая эволюция галактик , каждые следующие образующиеся звёзды, в среднем, содержат всё больше и больше тяжелых элементов. Поэтому самые первые звёзды, которые образовывались из чистого водорода и гелия , они, например, не могли иметь каменных планет. Потому что их не из чего было делать. Нужно было, чтобы прошел цикл эволюции первых звёзд и здесь важно, что быстрее всего эволюционируют массивные звёзды.

Происхождение тяжёлых химических элементов во Вселенной

Происхождение химического элемента - железа

Солнце и его полное время жизни почти 12 млрд лет. А массивные звезды живут несколько миллионов лет. Они доводят реакции до железа , и в конце своей жизни взрываются. При взрыве, кроме самого внутреннего ядра, всё вещество оказывается сброшено и поэтому наружу сбрасывается большое количество, естественно, и водорода , который остался не переработанным во внешних слоях. Но важно, что выбрасывается большое количество кислорода , кремния , магния , то есть уже достаточно тяжелых химических элементов , чуть-чуть не доходящих до железа и, родственных ему, никеля и кобальта . Очень выделенные элементы. Может быть, со школьных времен памятна такая картинка: номер химического элемента и выделение энергии при реакциях синтеза или распада и там получается такой максимум. И железо, никель, кобальт находятся на самой верхушке. Это означает, что распад тяжелых химических элементов выгоден до железа , синтез из лёгких тоже выгоден до железа. Дальше энергию нужно тратить. Соответственно мы двигаемся со стороны водорода, со стороны лёгких элементов и реакция термоядерного синтеза в звездах могут доходить до железа. Они должны идти с выделением энергии.

При взрыве массивной звезды, железо , в основном, не выбрасывается. Оно остается в центральном ядре и превращается в нейтронную звезду или чёрную дыру . Но выбрасываются химические элементы тяжелее железа . Железо выбрасывается при других взрывах. Взрываться могут белые карлики, то что остается, например, от Солнца. Сам по себе белый карлик очень стабильный объект. Но у него есть предельная масса, когда он эту устойчивость теряет. Начинается термоядерная реакция горения углерода .

Взрыв Сверхновой

И если обычная звезда, это очень стабильный объект. Вы её чуть-чуть нагрели в центре, она на это отреагирует, она расширится. Упадет температура в центре, и всё она себя отрегулирует. Как бы в её ни грели или ни охлаждали. А вот белый карлик так не умеет. Вы запустили реакцию, он хочет расшириться, а не может. Поэтому термоядерная реакция быстро охватывает весь белый карлик и он целиком взрывается. Получается взрыв Сверхновой типа 1А и это очень хорошая очень важная Сверхновая. Они позволили открыть ускоренное расширение Вселенной . Но самое главное, что при этом взрыве карлик разрушается полностью и там синтезируется много железа . Всё желез о вокруг, все гвозди, гайки, топоры и все железо внутри нас, можно уколоть палец и посмотреть на него или попробовать на вкус. Так вот всё это железо взялось из белых карликов.

Происхождение тяжёлых химических элементов

Но есть ещё более тяжелые элементы. Где же синтезируется они? Долгое время считалось, что основное место синтеза более тяжелых элементов , это взрывы Сверхновых , связанных с массивными звёздами. Во время взрыва, то есть когда есть много лишней энергии, когда летают всякие лишние нейтроны , можно проводить реакции, которые энергетически невыгодны. Просто условия так сложились и в этом, разлетающемся веществе, могут идти реакции, синтезирующие достаточно тяжёлые химические элементы . И они действительно идут. Многие химические элементы , тяжелее железа, образуются именно таким способом.

Кроме того, даже не взрывающиеся звезды, на определенном этапе своей эволюции, когда они превратились в красных гигантов могут синтезировать тяжелые элементы . В них идут термоядерные реакции, в результате которых образуется немножко свободных нейтронов. Нейтрон , в этом смысле, очень хорошая частица, поскольку заряд у неё нет, она может легко проникать в атомное ядро. И проникнув в ядро, потом нейтрон может превратиться в протон . И соответственно элемент перепрыгнет на следующую клеточку в таблице Менделеева . Этот процесс довольно медленный. Он называется s-процесс , от слова slow-медленный. Но он достаточно эффективный и многие химические элементы синтезируются в красных гигантах именно способом. А в Сверхновых идет r- процесс , то есть быстрый. По сколько, действительно всё происходит за очень короткое время.

Недавно оказалось, что есть ещё одно хорошее место для r-процесса, несвязанное со взрывом Сверхновой . Есть ещё одно очень интересное явление - это слияние двух нейтронных звёзд. Звёзды очень любят рождаться парами, а массивные звезды рождаются, по большей части, парами. 80-90% массивных звезд рождаются в двойных системах. В результате эволюции, двойные могут разрушаться, но какие-то доходят до конца. И если у нас в системе было 2 массивных звезды, мы можем получить систему из двух нейтронных звёзд. После этого они будут сближаться за счет излучения гравитационных волн и в конце концов сольются.

Представьте, вы берите объект размером 20 км с массой полторы массы Солнца, и почти со скоростью света , роняете его на другой такой же объект. Даже по простой формуле кинетическая энергия равняется (mv 2)/2 . Если в качестве m вы подставить скажем 2 массы Солнца, в качестве v поставить треть скорости света , вы можете посчитать и получите совершенно фантастическую энергию . Она будет выделяться и в виде гравитационных волн, по всей видимости в установке LIGO уже видят такие события, но мы ещё об этом не знаем. Но при этом, поскольку сталкиваются реальные объекты, происходит действительно взрыв. Выделяется много энергии в гамма-диапазоне , в рентгеновском диапазоне. В общем-то всех диапазонах и часть этой энергии идет на синтез химических элементов .

Была выяснена механика движения планет и звёзд. После того как этот рубеж остался позади, мифотворческие концепции происхождения энергии Солнца и звёзд уже не могли восприниматься всерьёз, и хорошо, казалось бы, но изученное астроно́мами небо вдруг покрылось вопросительными знаками. Для проникновения в недра звёзд учёные располагали единственным орудием - «аналитической бурово́й машиной» собственного мозга, по выражению английского астрофизика Артура Стэнли Э́ддингтона (1882-1944).

Первым выдвинул идею о возможности «перекачки» звёздной массы в энергию через термоядерные реакции синтеза гелия и водорода (1920 г.). Он писал: «Внутренние области звезды представляют собой смесь из атомов, электронов и волн эфира (так учёный называет электромагнитные волны). Мы должны призвать на помощь новейшие достижения атомной физики для того́, чтобы понять законы этого хаоса. Мы начали исследовать внутреннее строение звезды; вскоре мы обнаружили, что исследуем внутреннее строение атома». И далее: «...необходимая энергия может освободиться при перегруппировке протонов и электронов в атомных я́драх (превращение элементов) и гораздо бо́льшая энергия - при их аннигиляции... Тот или другой процесс может быть использован для получения солнечного тепла...».

О каких же этапах звёздных биографий может рассказать современная наука?

Сразу оговоримся: существующие представления о происхождении и развитии звёзд, несмотря на широкое признание, пока не вступили в права незы́блемой теории. Много сложных вопросов ещё ждут ответа. Однако эти представления, по-видимому, достаточно правильно обрисо́вывают контуры звёздной эволюции. Бытие звезды начинается с огромного холодного облака газа, состоящего в основном из водорода. Под действием сил тяготения оно постепенно сжима́ется. Потенциальная гравитационная энергия частичек газа переходит в кинетическую, т.е. тепловую, около половины которой расходуется на излучение. Остальная идёт на разогрев образующегося в центре плотного сгустка - ядра́. Когда температура и давление в ядре возрастают настолько, что становятся возможными термоядерные реакции, начинается самый долгий этап эволюции звезды - термоядерный. Часть энергии, выделяющейся в её ядре при синтезе гелия из водорода, уно́сится в мировое пространство всепроника́ющими нейтрино, а основная доля переносится к поверхности светила γ-квантами и частицами сильно ионизованного газа. Этот истекающий от центра поток энергии противостоит давлению внешних слоёв и препятствует дальнейшему сжатию. Такое равновесное состояние звезды с массой, вдвое превышающей массу Солнца, длится почти 10 млрд. лет.

После того как большая часть водорода в ядре вы́горела, энергии для поддержания равновесия уже не хватает. «Термоядерный реактор» звезды постепенно переходит на новый режим. Звезда сжима́ется, давление и температура в её центре возрастают, и примерно при 100 млн. градусов в реакции наряду́ с протонами вступают я́дра гелия. Синтезируются более тяжёлые элементы - углерод, азот, кислород, а от центра звезды к поверхности, подобно одному из кругов, разбега́ющихся по воде от брошенного камня, движется слой, в котором продолжает сгорать водород.

Со временем исчерпываются и ресурсы гелия. Звезда ещё сильнее сжима́ется, температура в её центре повышается до 600 млн. градусов. Теперь в реакциях участвуют ядра с Z > 2 . А к периферии движется слой сгорающего гелия.

Шаг за шагом вещество в ядре занимает всё новые клетки в таблице Менделеева и при 4 млрд. градусов «добирается» наконец до желе́за и элементов, близких к нему по массе ядра́. У этих элементов максимальный дефект масс, т.е. энергия связи в я́драх наибольшая, и они представляют собой «шлак» «термоядерных звёздных реакторов»: никакие ядерные реакции более не способны извлечь из них энергию. А раз так, невозможно и дальнейшее выделение энергии за счёт реакций синтеза - термоядерный период звезды закончился. Дальнейший ход эволюции вновь определяется гравитационными силами, сжима́ющими звезду. Начинается её гибель.

Как именно будет умирать звезда, зависит от её массы. Например, звёздам с массой, превышающей две солнечные, уготован самый драматический конец. Силы тяготения оказываются настолько мощными, что осколки раздавленных атомов - электроны и я́дра - образуют как бы два растворённых друг в друге газа - электронный и ядерный. Хотя ход эволюции таких звёзд на стадиях, следующих за выгора́нием лёгких элементов, не может считаться точно установленным, тем не менее существующая теория признаётся большинством астрофизиков. Своим успехом эта теория прежде всего обязана тому, что предлагаемый ею механизм образования химических элементов и предска́зываемая распространённость элементов во Вселенной хорошо согласуются с данными наблюдений.

Итак, массивная звезда исчерпа́ла все запасы ядерного горючего. Последовательно нагрева́ясь до нескольких миллиардов градусов, она обратила основную часть вещества в ядерную золу́ - элементы группы желе́за с атомными массами от 50 до 65 (от вана́дия до цинка). Дальнейшее сжатие звезды приводит к нарушению стабильности образовавшихся я́дер, которые начинают разрушаться. Их осколки - alfa -частицы, протоны и нейтроны - вступают в реакции с я́драми группы желе́за и соединяются с ними. Образуются более тяжёлые элементы, тоже вступающие в реакции, - заполняются следующие клетки периодической таблицы. Из-за чрезвычайно высоких температур эти процессы протекают очень быстро - в течение нескольких тысячелетий.

«Тяжёлая» область таблицы Менделеева

При делении я́дер группы желе́за, как и при слиянии с ними нуклонов и лёгких я́дер (в реакциях синтеза, приводящих к заполнению «тяжёлой» области таблицы Менделеева), энергия не выделяется, а, наоборот, поглощается. В результате сжатие звезды всё убыстряется. Электронный газ более не способен противостоять давлению газа ядерного. Наступает коллапс - за несколько секунд ядро звезды претерпевает катастрофическое сжатие: оболочка звезды обрушивается, «взрывается внутрь». Плотность вещества увеличивается настолько, что даже нейтри́но не могут покинуть звезду. Однако «пленение» мощного нейтринного потока, уносящего большую часть энергии коллапси́рующего ядра звезды, не длится долго. Рано или поздно импульс «запертых» нейтри́но сообщается оболочке, и она сбрасывается, увеличивая в миллиарды раз свечение звезды.

Астрофизики считают, что именно так вспыхивают сверхновые звёзды. Гигантские взрывы, сопровождающие эти события, выбрасывают в межзвёздное пространство значительную часть вещества звезды: до 90% её массы.

Крабовидная туманность, например, представляет собой взорва́вшуюся и расширя́ющуюся оболочку одной из самых ярких сверхновых. Вспышка её произошла, как свидетельствуют звёздные летописи китайских и японских астрономов, в 1054 г. и была необычайно яркой: звезду видели даже днём в течение 23 суток. Измерения скорости расширения Крабовидной туманности показали, что за девять веков она могла достигнуть своих нынешних размеров, т. е. подтвердили дату её рождения. Однако гораздо более весомое доказательство правильности изложенной модели и основанных на ней теоретических предсказаний мощности нейтринного потока было получено 23 февраля 1987 г. Тогда астрофизики зарегистрировали нейтринный импульс, которым сопровождалось рождение сверхновой в Большом Магеллановом Облаке.

В них обнаружили линии тяжёлых элементов, на основании чего немецкий астроном Ва́льтер Бааде (1893-1960 г.) пришёл к выводу, что Солнце и большинство звёзд представляют собой по крайней мере второе поколение звёздного населения. Материалом для этого второго поколения послужили межзвёздный газ и космическая пыль, в которую превратилось вещество сверхновых более раннего поколения, рассеянное их взрывами.

Не могут ли во взрывах звёзд рождаться я́дра сверхтяжёлых элементов? Ряд теоретиков такую возможность допускают.

Уважаемые посетители!

У вас отключена работа JavaScript . Включите пожалуйста скрипты в браузере, и вам откроется полный функционал сайта! Водород, Hydrogenium, Н (1)

Как горючий (воспламеняемый) воздух водород известен довольно давно. Его получали действием кислот на металлы, наблюдали горение и взрывы гремучего газа Парацельс, Бойль, Лемери и другие ученые XVI - XVIII вв. С распространением теории флогистона некоторые химики пытались получить водород в качестве "свободного флогистона". В диссертации Ломоносова "О металлическом блеске" описано получение водорода действием "кислотных спиртов" (например, "соляного спирта", т. е. соляной кислоты) на железо и другие металлы; русский ученый первым (1745) выдвинул гипотезу о том, что водород ("горючий пар" - vapor inflammabilis) представляет собой флогистон. Кавендиш, подробно исследовавший свойства водорода, выдвинул подобную же гипотезу в 1766 г. Он называл водород "воспламеняемым воздухом", полученным из "металлов" (inflammable air from metals), и полагал, как и все флогистики, что при растворении в кислотах металл теряет свой флогистон. Лавуазье, занимавшийся в 1779 г. исследованием состава воды путем ее синтеза и разложения, назвал водород Hydrogine (гидроген), или Hydrogene (гидрожен), от греч. гидро - вода и гайноме - произвожу, рождаю.

Номенклатурная комиссия 1787 г. приняла словопроизводство Hydrogene от геннао - рождаю. В "Таблице простых тел" Лавуазье водород (Hydrogene) упомянут в числе пяти (свет, теплота, кислород, азот, водород) "простых тел, относящихся ко всем трем царствам природы и которые следует рассматривать как элементы тел"; в качестве старых синонимов названия Hydrogene Лавуазье называет горючий газ (gaz inflammable), основание горючего газа. В русской химической литературе конца XVIII и начала XIX в. встречаются два рода названий водорода: флогистические (горючий газ, горючий воздух, воспламенительный воздух, загораемый воздух) и антифлогистические (водотвор, водотворное существо, водотворный газ, водородный газ, водород). Обе группы слов представляют собой переводы французских названий водорода.

Изотопы водорода были открыты в 30-x годах текущего столетия и быстро приобрели большое значение в науке и технике. В конце 1931 г. Юри, Брекуэдд и Мэрфи исследовали остаток после длительного выпаривания жидкого водорода и обнаружили в нем тяжелый водород с атомным весом 2. Этот изотоп назвали дейтерием (Deuterium, D) от греч. - другой, второй. Спустя четыре года в воде, подвергнутой длительному электролизу, был обнаружен еще более тяжелый изотоп водорода 3Н, который назвали тритием (Tritium, Т), от греч. - третий.
Гелий, Helium, Не (2)

В 1868 г. французский астроном Жансен наблюдал в Индии полное солнечное затмение и спектроскопически исследовал хромосферу солнца. Он обнаружил в спектре солнца яркую желтую линию, обозначенную им D3, которая не совпадала с желтой линией D натрия. Одновременно с ним эту же линию в спектре солнца увидел английский астроном Локьер, который понял, что она принадлежит неизвестному элементу. Локьер совместно с Франкландом, у которого он тогда работал, решил назвать новый элемент гелием (от греч. гелиос - солнце). Затем новая желтая линия была обнаружена другими исследователями в спектрах "земных" продуктов; так, в 1881 г. итальянец Пальмиери обнаружил ее при исследовании пробы газа, отобранного в кратере Везувия. Американский химик Гиллебранд, исследуя урановые минералы, установил, что они при действии крепкой серной кислоты выделяют газы. Сам Гиллебранд считал, что это азот. Рамзай, обративший внимание на сообщение Гиллебранда, подверг спектроскопическому анализу газы, выделяемые при обработке кислотой минерала клевеита. Он обнаружил, что в газах содержатся азот, аргон, а также неизвестный газ, дающий яркую желтую линию. Не имея в своем распоряжении достаточно хорошего спектроскопа, Рамзай послал пробы нового газа Круксу и Локьеру, которые вскоре идентифицировали газ как гелий. В том же 1895 г. Рамзай выделил гелий из смеси газов; он оказался химически инертным, подобно аргону. Вскоре после этого Локьер, Рунге и Пашен выступили с заявлением, что гелий состоит из смеси двух газов - ортогелий и парагелий; один из них дает желтую линию спектра, другой - зеленую. Этот второй газ они предложили назвать астерием (Asterium) от греч.- звездный. Совместно с Траверсом Рамзай проверил это утверждение и доказал, что оно ошибочно, так как цвет линии гелия зависит от давления газа.
Литий, Lithium, Li (3)

Когда Дэви производил свои знаменитые опыты по электролизу щелочных земель, о существовании лития никто и не подозревал. Литиевая щелочная земля была открыта лишь в 1817 г. талантливым химиком-аналитиком, одним из учеников Берцелиуса Арфведсоном. В 1800 г. бразильский минералог де Андрада Сильва, совершая научное путешествие по Европе, нашел в Швеции два новых минерала, названных им петалитом и сподуменом, причем первый из них через несколько лет был вновь открыт на острове Уте. Арфведсон заинтересовался петалитом, произвел полный его анализ и обнаружил необъяснимую вначале потерю около 4% вещества. Повторяя анализы более тщательно, он установил, что в петалите содержится "огнепостоянная щелочь до сих пор неизвестной природы". Берцелиус предложил назвать ее литионом (Lithion), поскольку эта щелочь, в отличие от кали и натра, впервые была найдена в "царстве минералов" (камней); название это произведено от греч.- камень. Позднее Арфведсон обнаружил литиевую землю, или литину, и в некоторых других минералах, однако его попытки выделить свободный металл не увенчались успехом. Очень небольшое количество металлического лития было получено Дэви и Бранде путем электролиза щелочи. В 1855 г. Бунзен и Маттессен разработали промышленный способ получения металлического лития электролизом хлорида лития. В русской химической литературе начала XIX в. встречаются названия: литион, литин (Двигубский, 1826) и литий (Гесс); литиевую землю (щелочь) называли иногда литина.
Бериллий, Beryllium, Be (4)

Содержащие бериллий минералы (драгоценные камни) - берилл, смарагд, изумруд, аквамарин и др.- известны с глубокой древности. Некоторые из них добывались на Синайском полуострове еще в XVII в. до н. э. В Стокгольмском папирусе (III в.) описываются способы изготовления поддельных камней. Название берилл встречается у греческих и латинских (Beryll) античных писателей и в древнерусских произведениях, например в "Изборнике Святослава" 1073 г., где берилл фигурирует под названием вируллион. Исследование химического состава драгоценных минералов этой группы началось, однако, лишь в конце XVIII в. с наступлением химико-аналитического периода. Первые анализы (Клапрот, Биндгейм и др.) не обнаружили в берилле ничего особенного. В конце XVIII в. известный минералог аббат Гаюи обратил внимание на полное сходство кристаллического строения берилла из Лиможа и смарагда из Перу. Вокелен произвел химический анализ обоих минералов (1797) и обнаружил в обоих новую землю, отличную от алюмины. Получив соли новой земли, он установил, что некоторые из них обладают сладким вкусом, почему и назвал новую землю глюцина (Glucina) от греч. - сладкий. Новый элемент, содержащийся в этой земле, был назван соответственно глюцинием (Glucinium). Это название употреблялось во Франции в XIX в., существовал даже символ - Gl. Клапрот, будучи противником наименования новых элементов по случайным свойствам их соединений, предложил именовать глюциний бериллием (Beryllium), указав, что сладким вкусом обладают соединения и других элементов. Металлический бериллий был впервые получен Велером и Бусси в 1728 г. путем восстановления хлорида бериллия металлическим калием. Отметим здесь выдающиеся исследования русского химика И. В. Авдеева по атомному весу и составу окисла бериллия (1842). Авдеев установил атомный вес бериллия 9,26 (совр. 9,0122), тогда как Берцелиус принимал его равным 13,5, и правильную формулу окисла.

О происхождении названия минерала берилл, от которого образовано слово бериллий, существует несколько версий. А. М. Васильев (по Диргарту) приводит следующее мнение филологов: латинское и греческое названия берилла могут быть сопоставлены с пракритским veluriya и санскритским vaidurya. Последнее является названием некоторого камня и происходит от слова vidura (очень далеко), что, по-видимому, означает какую-то страну или гору. Мюллер предложил другое объяснение: vaidurya произошло от первоначального vaidarya или vaidalya, а последнее от vidala (кошка). Иначе говоря, vaidurya означает приблизительно "кошачий глаз". Рай указывает, что в санскрите топаз, сапфир и коралл считались кошачьим глазом. Третье объяснение дает Липпман, который считает, что слово берилл обозначало какую-то северную страну (откуда поступали драгоценные камни) или народ. В другом месте Липпман отмечает, что Николай Кузанский писал, что немецкое Brille (очки) происходит от варварско-латинского berillus. Наконец, Лемери, объясняя слово берилл (Beryllus), указывает, что Berillus, или Verillus, означает "мужской камень".

В русской химической литературе начала XIX в. глюцина называлась - сладимая земля, сладозем (Севергин, 1815), сладкозем (Захаров, 1810), глуцина, глицина, основание глицинной земли, а элемент именовался глицинием, глицинитом, глицием, сладимцем и пр. Гизе предложил название бериллий (1814). Гесс, однако, придерживался названия глиций; его употреблял в качестве синонима и Менделеев (1-е изд. "Основ химии").
Бор, Borum, В (5)

Природные соединения бора (англ. Boron, франц. Воrе, нем. Bor), главным образом нечистая бура, известны с раннего средневековья. Под названиями тинкал, тинкар или аттинкар (Tinkal, Tinkar, Attinkar) бура ввозилась в Европу из Тибета; она употреблялась для пайки металлов, особенно золота и серебра. В Европе тинкал назывался чаще боракс (Воrax) от арабского слова bauraq и персидского - burah. Иногда боракс, или борако, обозначал различные вещества, например соду (нитрон). Руланд (1612) называет боракс хризоколлой - смолой, способной "склеивать" золото и серебро. Лемери (1698) тоже называет боракс "клеем золота" (Auricolla, Chrisocolla, Gluten auri). Иногда боракс обозначал нечто вроде "узды золота" (capistrum auri). В Александрийской, эллинистической и византийской химической литературе борахи и борахон, а также в арабской (bauraq) обозначали вообще щелочь, например bauraq arman (армянский борак), или соду, позже так стали называть буру.

В 1702 г. Гомберг, прокаливая буру с железным купоросом, получил "соль" (борную кислоту), которую стали называть "успокоительной солью Гомберга" (Sal sedativum Hombergii); эта соль нашла широкое применение в медицине. В 1747 г. Барон синтезировал буру из "успокоительной соли" и натрона (соды). Однако состав буры и "соли" оставался неизвестным до начала XIX в. В "Химической номенклатуре" 1787 г. фигурирует название horacique асid (борная кислота). Лавуазье в "Таблице простых тел" приводит radical boracique. В 1808 г. Гей-Люссаку и Тенару удалось выделить свободный бор из борного ангидрида, нагревая последний с металлическим калием в медной трубке; они предложили назвать элемент бора (Воrа) или бор (Воrе). Дэви, повторивший опыты Гей-Люссака и Тенара, тоже получил свободный бор и назвал его бораций (Boracium). В дальнейшем у англичан это название было сокращено до Boron. В русской литературе слово бура встречается в рецептурных сборниках XVII - XVIII вв. В начале XIX в. русские химики называли бор буротвором (Захаров, 1810), буроном (Страхов,1825), основанием буровой кислоты, бурацином (Севергин, 1815), борием (Двигубский, 1824). Переводчик книги Гизе называл бор бурием (1813). Кроме того, встречаются названия бурит, борон, буронит и др.
Углерод, Carboneum, С (6)

Углерод (англ. Carbon, франц. Carbone, нем. Kohlenstoff) в виде угля, копоти и сажи известен человечеству с незапамятных времен; около 100 тыс. лет назад, когда наши предки овладели огнем, они каждодневно имели дело с углем и сажей. Вероятно, очень рано люди познакомились и с аллотропическими видоизменениями углерода - алмазом и графитом, а также с ископаемым каменным углем. Не удивительно, что горение углеродсодержащих веществ было одним из первых химических процессов, заинтересовавших человека. Так как горящее вещество исчезало, пожираемое огнем, горение рассматривали как процесс разложения вещества, и поэтому уголь (или углерод) не считали элементом. Элементом был огонь - явление, сопровождающее горение; в учениях об элементах древности огонь обычно фигурирует в качестве одного из элементов. На рубеже XVII - XVIII вв. возникла теория флогистона, выдвинутая Бехером и Шталем. Эта теория признавала наличие в каждом горючем теле особого элементарного вещества - невесомого флюида - флогистона, улетучивающегося в процессе горения. Так как при сгорании большого количества угля остается лишь немного золы, флогистики полагали, что уголь - это почти чистый флогистон. Именно этим объясняли, в частности, "флогистирующее" действие угля, - его способность восстанавливать металлы из "известей" и руд. Позднейшие флогистики - Реомюр, Бергман и др. - уже начали понимать, что уголь представляет собой элементарное вещество. Однако впервые таковым "чистый уголь" был признан Лавуазье, исследовавшим процесс сжигания в воздухе и кислороде угля и других веществ. В книге Гитона де Морво, Лавуазье, Бертолле и Фуркруа "Метод химической номенклатуры" (1787) появилось название "углерода" (carbone) вместо французского "чистый уголь" (charbone pur). Под этим же названием углерод фигурирует в "Таблице простых тел" в "Элементарном учебнике химии" Лавуазье. В 1791 г. английский химик Теннант первым получил свободный углерод; он пропускал пары фосфора над прокаленным мелом, в результате чего образовывался фосфат кальция и углерод. То, что алмаз при сильном нагревании сгорает без остатка, было известно давно. Еще в 1751 г. французский король Франц I согласился дать алмаз и рубин для опытов по сжиганию, после чего эти опыты даже вошли в моду. Оказалось, что сгорает лишь алмаз, а рубин (окись алюминия с примесью хрома) выдерживает без повреждения длительное нагревание в фокусе зажигательной линзы. Лавуазье поставил новый опыт по сжиганию алмаза с помощью большой зажигательной машины, и пришел к выводу, что алмаз представляет собой кристаллический углерод. Второй аллотроп углерода - графит - в алхимическом периоде считался видоизмененным свинцовым блеском и назывался plumbago; только в 1740 г. Потт обнаружил отсутствие в графите какой-либо примеси свинца. Шееле исследовал графит (1779) и, будучи флогистиком, счел его сернистым телом особого рода, особым минеральным углем, содержащим связанную "воздушную кислоту" (СО2) и большое количество флогистона.

Двадцать лет спустя Гитон де Морво путем осторожного нагревания превратил алмаз в графит, а затем в угольную кислоту.

Международное название Carboneum происходит от лат. carbo (уголь). Слово это очень древнего происхождения. Его сопоставляют с cremare - гореть; корень саr, cal, русское гар, гал, гол, санскритское ста означает кипятить, варить. Со словом "carbo" связаны названия углерода и на других европейских языках (carbon, charbone и др.). Немецкое Kohlenstoff происходит от Kohle - уголь (старогерманское kolo, шведское kylla - нагревать). Древнерусское угорати, или угарати (обжигать, опалять) имеет корень гар, или гор, с возможным переходом в гол; уголь по-древнерусски югъль, или угъль, того же происхождения. Слово алмаз (Diamante) происходит от древнегреческого - несокрушимый, непреклонный, твердый, а графит от греческого - пишу.

В начале XIX в. старое слово уголь в русской химической литературе иногда заменялось словом "углетвор" (Шерер, 1807; Севергин, 1815); с 1824 г. Соловьев ввел название углерод.

Азот, Nitrogenium, N (7)

Азот (англ. Nitrogen, франц. Azote, нем. Stickstoff) был открыт почти одновременно несколькими исследователями. Кавендиш получил азот из воздуха (1772), пропуская последний через раскаленный уголь, а затем через раствор щелочи для поглощения углекислоты. Кавендиш не дал специального названия новому газу, упоминая о нем как о мефитическом воздухе (Air mephitic от латинского mephitis - удушливое или вредное испарение земли). Вскоре Пристли установил, что если в воздухе долгое время горит свеча или находится животное (мышь), то такой воздух становится непригодным для дыхания. Официально открытие азота обычно приписывается ученику Блэка - Рутерфорду, опубликовавшему в 1772 г. диссертацию (на степень доктора медицины) - "О фиксируемом воздухе, называемом иначе удушливым", где впервые описаны некоторые химические свойства азота. В эти же годы Шееле получил азот из атмосферного воздуха тем же путем, что и Кавендиш. Он назвал новый газ "испорченным воздухом" (Verdorbene Luft). Поскольку пропускание воздуха через раскаленный уголь рассматривалось химиками-флогистиками как его флогистирование, Пристли (1775) назвал азот флогистированным воздухом (Air phlogisticated). О флогистировании воздуха в своем опыте говорил ранее и Кавендиш. Лавуазье в 1776 - 1777 гг. подробно исследовал состав атмосферного воздуха и установил, что 4/5 его объема состоят из удушливого газа (Аir mofette - атмосферный мофетт, или просто Mofett). Названия азота - флогистированный воздух, мефитический воздух, атмосферный мофетт, испорченный воздух и некоторые другие - употреблялись до признания в европейских странах новой химической номенклатуры, т. е. до выхода в свет известной книги "Метод химической номенклатуры" (1787).

Составители этой книги - члены номенклатурной комиссии Парижской академии наук - Гитон де Морво, Лавуазье, Бертолле и Фуркруа - приняли лишь несколько новых названий простых веществ, в частности, предложенные Лавуазье названия "кислород" и "водород". При выборе нового названия для азота комиссия, исходившая из принципов кислородной теории, оказалась в затруднении. Как известно, Лавуазье предлагал давать простым веществам такие названия, которые отражали бы их основные химические свойства. Соответственно, этому азоту следовало бы дать название "радикал нитрик" или "радикал селитряной кислоты". Такие названия, пишет Лавуазье в своей книге "Начала элементарной химии" (1789), основаны на старых терминах нитр или селитра, принятых в искусствах, в химии и в обществе. Они были бы весьма подходящими, но известно, что азот является также основанием летучей щелочи (аммиака), как это было незадолго до этого установлено Бертолле. Поэтому название радикал, или основание селитряной кислоты, не отражает основных химических свойств азота. Не лучше ли остановиться на слове азот, которое, по мнению членов номенклатурной комиссии, отражает основное свойство элемента - его непригодность для дыхания и жизни. Авторы химической номенклатуры предложили производить слово азот от греческой отрицательной приставки "а" и слова жизнь. Таким образом, название азот, по их мнению, отражало его нежизненность, или безжизненность.

Однако слово азот придумано не Лавуазье и не его коллегами по комиссии. Оно известно с древности и употреблялось философами и алхимиками средневековья для обозначения "первичной материи (основы) металлов", так называемого меркурия философов, или двойного меркурия алхимиков. Слово азот вошло в литературу, вероятно, в первые столетия средневековья, как и многие другие зашифрованные и имевшие мистический смысл названия. Оно встречается в сочинениях многих алхимиков, начиная с Бэкона (ХIII в.) - у Парацельса, Либавия, Валентина и др. Либавий указывает даже, что слово азот (azoth) происходит от старинного испано-арабского слова азок (azoque или azoc), обозначавшего ртуть. Но более вероятно, что эти слова появились в результате искажений переписчиками коренного слова азот (azot или azoth). Теперь происхождение слова азот установлено более точно. Древние философы и алхимики считали "первичную материю металлов" альфой и омегой всего существующего. В свою очередь, это выражение заимствовано из Апокалипсиса - последней книги Библии: "я - альфа и омега, начало и конец, первый и последний". В древности и в средние века христианские философы считали приличным употреблять при написании своих трактатов только три языка, признававшихся "священными", - латинский, греческий и древнееврейский (надпись на кресте при распятии Христа по евангельскому рассказу была сделана на этих трех языках). Для образования слова азот были взяты начальные и конечные буквы алфавитов этих трех языков (а, альфа, алеф и зэт, омега, тов - АААZОТ).

Составители новой химической номенклатуры 1787 г., и прежде всего инициатор ее создания Гитон де Морво, хорошо знали о существовании с древних времен слова азот. Морво отметил в "Методической энциклопедии" (1786) алхимическое значение этого термина. После опубликования "Метода химической номенклатуры" противники кислородной теории - флогистики - выступили с резкой критикой новой номенклатуры. Особенно, как отмечает сам Лавуазье в своем учебнике химии, критиковалось принятие "древних наименований". В частности, Ламетри - издатель журнала "Observations sur la Physique" - оплота противников кислородной теории, указывал на то, что слово азот употреблялось алхимиками в другом смысле.

Несмотря на это, новое название было принято во Франции, а также и в России, заменив собою ранее принятые названия "флогистированный газ", "мофетт", "основание мофетта" и т. д.

Словообразование азот от греческого тоже вызвало справедливые замечания. Д. Н. Прянишников в своей книге "Азот в жизни растений и в земледелии СССР" (1945) совершенно правильно заметил, что словообразование от греческого "вызывает сомнения". Очевидно, эти сомнения имелись и у современников Лавуазье. Сам Лавуазье в своем учебнике химии (1789) употребляет слово азот наряду с названием "радикал нитрик" (radical nitrique).

Интересно отметить, что более поздние авторы, пытаясь, видимо, как-то оправдать неточность, допущенную членами номенклатурной комиссии, производили слово азот от греческого - дающий жизнь, животворный, создав искусственное слово "азотикос", отсутствующее в греческом языке (Диргарт, Реми и др.). Однако этот путь образования слова азот едва ли может быть признан правильным, так как производное слово для названия азот должно было бы звучать "азотикон".

Неудачность названия азот была очевидной для многих современников Лавуазье, вполне сочувствовавших его кислородной теории. Так, Шапталь в своем учебнике химии "Элементы химии" (1790) предложил заменить слово азот словом нитроген (нитрожен) и называл газ, соответственно воззрениям своего времени (каждая молекула газа представлялась окруженной атмосферой теплорода), "газ нитрожен" (Gas nitrogene). Свое предложение Шапталь подробно мотивировал. Одним из доводов послужило указание, что название, означающее безжизненный, могло бы с большими основаниями быть дано другим простым телам (обладающим, например, сильными ядовитыми свойствами). Название нитроген, принятое в Англии и в Америке, стало в дальнейшем основой международного названия элемента (Nitrogenium) и символа азота - N. Во Франции в начале ХIХ в. вместо символа N употребляли символ Az. В 1800 г. один из соавторов химической номенклатуры - Фуркруа предложил еще одно название - алкалиген (алкалижен - alcaligene), исходя из того, что азот является "основанием" летучей щелочи (Alcali volatil) - аммиака. Но это название не было принято химиками. Упомянем, наконец, название азота, которое употребляли химики-флогистики и, в частности, Пристли, в конце ХVIII в. - септон (Septon от французского Septique - гнилостный). Это название предложено, по-видимому, Митчелом - учеником Блэка, впоследствии работавшим в Америке. Дэви отверг это название. В Германии с конца ХVIII в. и до настоящего времени азот называют Stickstoff, что означает "удушливое вещество".

Что касается старых русских названий азота, фигурировавших в разнообразных сочинениях конца XVIII - начала ХIХ в., то они таковы: удушливый гас, нечистый гас; мофетический воздух (все это переводы французского названия Gas mofette), удушливое вещество (перевод немецкого Stickstoff), флогистированный воздух, гас огорюченный, огорюченный воздух (флогистические названия - перевод термина, предложенного Пристли - Рlogisticated air). Употреблялись также названия; испорченный воздух (перевод термина Шееле Verdorbene Luft), селитротвор, селитротворный гас, нитроген (перевод названия, предложенного Шапталем - Nitrogene), алкалиген, щелочетвор (термины Фуркруа, переведенные на русский язык в 1799 и 1812 гг.), септон, гнилотвор (Septon) и др. Наряду с этими многочисленными названиями употреблялись и слова азот и азотический гас, особенно с начала ХIХ в.

В.Севергин в своем "Руководстве к удобнейшему разумению химических книг иностранных" (1815) объясняет слово азот следующим образом: "Azoticum, Azotum, Azotozum - азот, удушливое вещество"; "Azote - Азот, селитротвор"; "селитротворный газ, азотовый газ". Окончательно слово азот вошло в русскую химическую номенклатуру и вытеснило все другие названия после выхода в свет "Оснований чистой химии" Г. Гесса (1831).
Производные названия соединений, содержащих азот, образованы на русском и других языках либо от слова азот (азотная кислота, азосоединения и др.), либо от международного названия нитрогениум (нитраты, нитросоединения и др.). Последний термин происходит от древних названий нитр, нитрум, нитрон, обозначавших обычно селитру, иногда - природную соду. В словаре Руланда (1612) сказано: "Нитрум, борах (baurach), селитра (Sal petrosum), нитрум, у немцев - Salpeter, Веrgsalz - то же, что и Sal реtrae".



Кислород, Oxygenium, O (8)

Открытие кислорода (англ. Oxygen, франц. Oxygene, нем. Sauerstoff) ознаменовало начало современного периода развития химии. С глубокой древности было известно, что для горения необходим воздух, однако многие века процесс горения оставался непонятным. Лишь в XVII в. Майов и Бойль независимо друг от друга высказали мысль, что в воздухе содержится некоторая субстанция, которая поддерживает горение, но эта вполне рациональная гипотеза не получила тогда развития, так как представление о горении, как о процессе соединения горящего тела с некой составной частью воздуха, казалось в то время противоречащим столь очевидному факту, как то, что при горении имеет место разложение горящего тела на элементарные составные части. Именно на этой основе на рубеже XVII в. возникла теория флогистона, созданная Бехером и Шталем. С наступлением химико-аналитического периода развития химии (вторая половина XVIII в.) и возникновением "пневматической химии" - одной из главных ветвей химико-аналитического направления - горение, а также дыхание вновь привлекли к себе внимание исследователей. Открытие различных газов и установление их важной роли в химических процессах явилось одним из главных стимулов для систематических исследований процессов горения веществ, предпринятых Лавуазье. Кислород был открыт в начале 70-х годов XVIII в. Первое сообщение об этом открытии было сделано Пристли на заседании Английского королевского общества в 1775 г. Пристли, нагревая красную окись ртути большим зажигательным стеклом, получил газ, в котором свеча горела более ярко, чем в обычном воздухе, а тлеющая лучина вспыхивала. Пристли определил некоторые свойства нового газа и назвал его дефлогистированным воздухом (daphlogisticated air). Однако двумя годами ранее Пристли (1772) Шееле тоже получал кислород разложением окиси ртути и другими способами. Шееле назвал этот газ огненным воздухом (Feuerluft). Сообщение же о своем открытии Шееле смог сделать лишь в 1777 г. Между тем в 1775 г. Лавуазье выступил перед Парижской академией наук с сообщением, что ему удалось получить "наиболее чистую часть воздуха, который нас окружает", и описал свойства этой части воздуха. Вначале Лавуазье называл этот "воздух" эмпирейным, жизненным (Air empireal, Air vital), основанием жизненного воздуха (Base dе l"air vital). Почти одновременное открытие кислорода несколькими учеными в разных странах вызвало споры о приоритете. Особенно настойчиво признания себя первооткрывателем добивался Пристли. По существу споры эти не окончились до сих пор. Подробное изучение свойств кислорода и его роли в процессах горения и образования окислов привело Лавуазье к неправильному выводу о том, что этот газ представляет собой кислотообразующее начало. В 1779 г. Лавуазье в соответствии с этим выводом ввел для кислорода новое название - кислотообразующий принцип (principe acidifiant ou principe oxygine). Фигурирующее в этом сложном названии слово oxygine Лавуазье произвел от греч. - кислота и "я произвожу".
Фтор, Fluorum, F (9)

Фтор (англ. Fluorine, франц. и нем. Fluor) получен в свободном состоянии в 1886 г., но его соединения были известны давно и широко применялись в металлургии и производстве стекла. Первые упоминания о флюорите (CaF2) под названием плавиковый шпат (Fliisspat) относятся к XVI в. В одном из сочинений, приписываемых легендарному Василию Валентину, упоминаются окрашенные в различные цвета камни - флюссе (Fliisse от лат. fluere - течь, литься), которые применялись в качестве плавней при выплавке металлов. Об этом же пишут Агрикола и Либавиус. Последний вводит особые названия для этого плавня - плавиковый шпат (Flusspat) и минеральный плавик. Многие авторы химико-технических сочинений XVII и XVIII вв. описывают разные виды плавикого шпата. В России эти камни именовались плавик, спалт, спат; Ломоносов относил эти камни к разряду селенитов и называл шпатом или флусом (флус хрустальный). Русские мастера, а также собиратели коллекций минералов (например, в XVIII в. князь П. Ф. Голицын) знали, что некоторые виды шпатов при нагревании (например, в горячей воде) светятся в темноте. Впрочем, еще Лейбниц в своей истории фосфора (1710) упоминает в связи с этим о термофосфоре (Thermophosphorus).

По-видимому, химики и химики-ремесленники познакомились с плавиковой кислотой не позднее XVII в. В 1670 г. нюрнбергский ремесленник Шванхард использовал плавиковый шпат в смеси с серной кислотой для вытравливания узоров на стеклянных бокалах. Однако в то время природа плавикового шпата и плавиковой кислоты была совершенно неизвестна. Полагали, например, что протравливающее действие в процессе Шванхарда оказывает кремневая кислота. Это ошибочное мнение устранил Шееле, доказав, что при взаимодействии плавикового шпата с серной кислотой кремневая кислота получается в результате разъедания стеклянной реторты образующейся плавиковой кислотой. Кроме того, Шееле установил (1771), что плавиковый шпат представляет собой соединение известковой земли с особой кислотой, которая получила название "шведская кислота". Лавуазье признал радикал плавиковой кислоты (radical fluorique) простым телом и включил его в свою таблицу простых тел. В более или менее чистом виде плавиковая кислота была получена в 1809 г. Гей-Люссаком и Тенаром путем перегонки плавикового шпата с серной кислотой в свинцовой или серебряной реторте. При этой операции оба исследователя получили отравление. Истинную природу плавиковой кислоты установил в 1810 г. Ампер. Он отверг мнение Лавуазье о том, что в плавиковой кислоте должен содержаться кислород, и доказал аналогию этой кислоты с хлористоводородной кислотой. О своих выводах Ампер сообщил Дэви, который незадолго до этого установил элементарную природу хлора. Дэви полностью согласился с доводами Ампера и затратил немало усилий на получение свободного фтора электролизом плавиковой кислоты и другими путями. Принимая во внимание сильное разъедающее действие плавиковой кислоты на стекло, а также на растительные и животные ткани, Ампер предложил назвать элемент, содержащийся в ней, фтором (греч. - разрушение, гибель, мор, чума и т. д.). Однако Дэви не принял этого названия и предложил другое - флюорин (Fluorine) по аналогии с тогдашним названием хлора - хлорин (Chlorine), оба названия до сих пор употребляются в английском языке. В русском языке сохранилось название, данное Ампером.

Многочисленные попытки выделить свободный фтор в XIX в. не привели к успешным результатам. Лишь в 1886 г. Муассану удалось сделать это и получить свободный фтор в виде газа желто-зеленого цвета. Так как фтор является необычайно агрессивным газом, Муассану пришлось преодолеть множество затруднений, прежде чем он нашел материал, пригодный для аппаратуры в опытах со фтором. U-образная трубка для электролиза фтористоводородной кислоты при минус 55oС (охлаждаемая жидким хлористым метилом) была сделана из платины с пробками из плавикового шпата. После того, как были исследованы химические и физические свойства свободного фтора, он нашел широкое применение. Сейчас фтор - один из важнейших компонентов синтеза фторорганических веществ широкого ассортимента. В русской литературе начала XIX в. фтор именовался по-разному: основание плавиковой кислоты, флуорин (Двигубский, 1824), плавиковость (Иовский), флюор (Щеглов, 1830), флуор, плавик, плавикотвор. Гесс с 1831 г. ввел в употребление название фтор.
Неон, Neon, Nе (10)

Этот элемент открыт Рамзаем и Траверсом в 1898 г., через несколько дней после открытия криптона. Ученые отобрали первые пузырьки газа, образующегося при испарении жидкого аргона, и установили, что спектр этого газа указывает на присутствие нового элемента. Рамзай так рассказывает о выборе названия для этого элемента:

"Когда мы в первый раз рассматривали его спектр, при этом находился мой 12-летний сын.
- Отец,- сказал он, - как называется этот красивый газ?
- Это еще не решено, - ответил я.
- Он новый? - полюбопытствовал сын.
- Новооткрытый, - возразил я.
- Почему бы в таком случае не назвать его Novum, отец?
- Это не подходит, потому что novum не греческое слово, - ответил я. - Мы назовем его неоном, что по-гречески значит новый.
Вот таким то образом газ получил свое название".
Автор: Фигуровский Н.А.
Химия и Химики № 1 2012

Продолжение следует...

14.1 Этапы синтеза элементов

Для объяснения распространенности в природе различных химических элементов и их изотопов в 1948 году Гамовым была предложена модель Горячей Вселенной. По этой модели все химические элементы образовывались в момент Большого Взрыва. Однако это утверждение впоследствии было опровергнуто. Доказано, что только легкие элементы могли образоваться в момент Большого Взрыва, а более тяжелые возникли в процессах нуклеосинтеза. Эти положения сформулированы в модели Большого Взрыва (см. п. 15).
По модели Большого Взрыва формирование химических элементов началось с первоначального ядерного синтеза легких элементов (Н, D, 3 Не, 4 Не, 7 Li) спустя 100 секунд после Большого Взрыва при температуре Вселенной 10 9 K.
Экспериментальную основу модели составляют расширение Вселенной, наблюдаемое на базе красного смещения, первоначальный синтез элементов и космическое фоновое излучение.
Большим достоинством модели Большого Взрыва является предсказание о распространенности D, Не и Li, отличающихся друг от друга на много порядков.
Экспериментальные данные о распространенности элементов в нашей Галактике показали, что атомов водорода 92%, гелия − 8%, и более тяжелых ядер − 1 атом на 1000, что согласуется с предсказаниями модели Большого Взрыва.

14.2 Ядерный синтез − синтез легких элементов (Н, D, 3 Не, 4 Не, 7 Li) в ранней Вселенной.

  • Распространенность 4 Не или его относительная доля в массе Вселенной Y = 0.23 ±0.02. По крайней мере половина гелия, образованного в результате Большого Взрыва, содержится в межгалактическом пространстве.
  • Первоначальный дейтерий существует только внутри Звезд и быстро превращается в 3 Не.
    Из данных наблюдений получаются следующие ограничения на распространенность дейтерия и Не относительно водорода:

10 -5 ≤ D/H ≤ 2·10 -4 и
1.2·10 -5 ≤ 3 Не/H ≤ 1.5·10 -4 ,

причем наблюдаемое отношение D/H составляет лишь долю ƒ от первоначального значения: D/H = ƒ(D/H) первонач. Поскольку дейтерий быстро превращается в 3 Не, получается следующая оценка для распространенности:

[(D + 3 Не)/H] первонач ≤ 10 -4 .

  • Распространенность 7 Li измерить трудно, однако используются данные по изучению атмосфер звезд и зависимость распространенности 7 Li от эффективной температуры. Оказывается, что, начиная с температуры 5.5·10 3 K, количество 7 Li остается постоянным. Наилучшая оценка средней распространенности 7 Li имеет вид:

7 Li/H = (1.6±0.1)·10 -10 .

  • Распространенность более тяжелых элементов, таких как 9 Be, 10 В и 11 В, меньше на несколько порядков. Так, распространенность 9 Ве/Н < 2.5·10 -12 .

14.3 Синтез ядер в звездах Главной Последовательности при Т < 108 K

Синтез гелия в звездах Главной Последовательности в рр- и CN-циклах происходит при температуре Т ~ 10 7 ÷7·10 7 K. Водород перерабатывается в гелий. Возникают ядра легких элементов: 2 Н, 3 Не, 7 Li, 7 Be, 8 Ве, но их мало из-за того, что в дальнейшем они вступают в ядерные реакции, а ядро 8 Be практически мгновенно распадается из-за малого времени жизни (~ 10 -16 с)

8 Ве → 4 Не + 4 Не.

Процесс синтеза, казалось, должен был бы прекратиться, но природа нашла обходной путь.
Когда Т > 7·10 7 K, гелий "сгорает" , превращаясь в ядра углерода. Происходит тройная гелиевая реакция − "Гелиевая вспышка" − 3α → 12 С, но ее сечение очень мало и процесс образования 12 С идет в два этапа.
Происходит реакция слияния ядер 8 Ве и 4 Не с образованием ядра углерода 12 С* в возбужденном состоянии, которое возможно благодаря наличию у ядра углерода уровня 7.68 МэВ, т.е. происходит реакция:

8 Ве + 4 Не → 12 С* → 12 С + γ.

Существование уровня энергии ядра 12 С (7.68 МэВ) помогает обойти малое время жизни 8 Be. Благодаря наличию этого уровня у ядра 12 С происходит Брейт-Вигнеровский резонанс . Ядро 12 С переходит на возбужденный уровень с энергией ΔW = ΔМ + ε,
где εM = (M 8Be − М 4Hе)− M 12C = 7.4 МэВ, а ε компенсируется за счет кинетической энергии.
Эта реакция была предсказана астрофизиком Хойлом, а затем воспроизведена в лабораторных условиях. Затем начинают идти реакции:

12 С + 4 Не → 16 0 + γ
16 0 + 4 Не → 20 Ne + γ и так до А ~ 20.

Так нужный уровень ядра 12 С позволил пройти узкое место в термоядерном синтезе элементов.
У ядра 16 О нет таких уровней энергии и реакция образования 16 О идет очень медленно

12 С + 4 Не → 16 0 + γ.

Эти особенности протекания реакций привели к важнейшим следствиям: благодаря им оказалось одинаковое число ядер 12 С и 16 0, что создало благоприятные условия для образования органических молекул, т.е. жизни.
Изменение уровня 12 С на 5% привело бы к катастрофе − дальнейший синтез элементов прекратился бы. Но так как этого не произошло, то образуются ядра с A в диапазоне

А = 25÷32

Это приводит к значениям А

Все ядра Fe, Co, Сr образуются за счет термоядерного синтеза.

Можно вычислить распространенность ядер во Вселенной, исходя из существования этих процессов.
Сведения о распространенности элементов в природе получаются из спектрального анализа Солнца и Звезд, а также космических лучей. На рис. 99 представлена интенсивность ядер при разных значениях А.

Рис. 99: Распространенность элементов во Вселенной.

Водород Н − самый распространенный элемент во Вселенной. Лития Li, бериллия Be и бора В на 4 порядка меньше соседних ядер и на 8 порядков меньше, чем Н и Не.
Li, Be, В − хорошее горючее, они быстро сгорают уже при Т ~ 10 7 K.
Труднее объяснить, почему они все же существуют − скорее всего, благодаря процессу фрагментации более тяжелых ядер на стадии протозвезды.
В космических лучах ядер Li, Be, В много больше, что также является следствием процессов фрагментации более тяжелых ядер при взаимодействии их с межзвездной средой.
12 С÷ 16 О − результат Гелиевой вспышки и существования резонансного уровня у 12 С и отсутствия такового у 16 О, ядро которого является также дважды магическим. 12 С − полумагическое ядро.
Таким образом, максимум распространенности у ядер железа 56 Fe, a затем − резкий спад.
Для А > 60 синтез энергетически невыгоден.

14.5 Образование ядер тяжелее железа

Доля ядер с А > 90 невелика − 10 -10 от ядер водорода. Процессы образования ядер связаны с побочными реакциями, происходящими в звездах. Таких процессов известно два:
s (slow) − медленный процесс,
г (rapid) − быстрый процесс.
Оба эти процесса связаны с захватом нейтронов т.е. надо, чтобы возникли такие условия, при которых образуется много нейтронов. Нейтроны образуются во всех реакциях горения.

13 С + 4 Не → 16 0 + n − горение гелия,
12 С + 12 С → 23 Mg + n − углеродная вспышка,
16 O + 16 O → 31 S + n − кислородная вспышка,
21 Ne + 4 Не → 24 Mg + n − реакция с α-частицами.

В результате накапливается нейтронный фон и могут протекать s-и r-процессы − захват нейтронов. При захвате нейтронов образуются нейтроно-избыточные ядра, а затем происходит β-распад. Он превращает их в более тяжелые ядра.

В таблице Менделеева, принятой у нас, приводятся русские названия элементов. У подавляющего числа элементов они фонетически близки к латинским: аргон - argon, барий - barium, кадмий - cadmium и т.д. Аналогично называются эти элементы и в большинстве западноевропейских языков. У некоторых же химических элементов названия в разных языках совершенно различны.

Всё это не случайно. Наибольшие отличия в названиях тех элементов (либо их самых распространённых соединений), с которыми человек познакомился в древности или в начале средних веков. Это семь металлов древних (золото, серебро, медь, свинец, олово, железо, ртуть, которые сопоставлялись с известными тогда планетами, а также сера и углерод). Они встречаются в природе в свободном состоянии, и многие получили названия, соответствующие их физическим свойствам.

Вот наиболее вероятное происхождение этих названий:

Золото

С древнейших времен блеск золота сопоставлялся с блеском солнца (sol). Отсюда - русское «золото». Слово gold в европейских языках связано с греческим богом Солнца Гелиосом. Латинское aurum означает «жёлтое» и родственно с «Авророй» (Aurora) - утренней зарёй.

Серебро

По-гречески серебро - «аргирос», от «аргос» - белый, блистающий, сверкающий (индоевропейский корень «арг» - пылать, быть светлым). Отсюда - argentum. Интересно, что единственная страна, названная по химическому элементу (а не наоборот), - это Аргентина. Слова silver, Silber, a также серебро восходят к древнегерманскому silubr, происхождение которого неясно (возможно, слово пришло из Малой Азии, от ассирийского sarrupum - белый металл, серебро).

Железо

Происхождение этого слова доподлинно неизвестно; по одной из версий, оно родственно слову «лезвие». Европейские iron, Eisen происходят от санскритского «исира» - крепкий, сильный. Латинское ferrum происходит от fars - быть твёрдым. Название природного карбоната железа (сидерита) происходит от лат. sidereus - звёздный; действительно, первое железо, попавшее в руки людям, было метеоритного происхождения. Возможно, это совпадение не случайно.

Сера

Происхождение латинского sulfur неизвестно. Русское название элемента обычно производят от санскритского «сира» - светло-желтый. Интересно было бы проследить, нет ли родства у серы с древнееврейским серафим - множительным числом от сераф; буквально «сераф» означает «сгорающий», а сера хорошо горит. В древнерусском и старославянском сера - вообще горючее вещество, в том числе и жир.

Свинец

Происхождение слова неясно; во всяком случае, ничего общего со свиньей. Самое удивительное здесь то, что на большинстве славянских языков (болгарском, сербско-хорватском, чешском, польском) свинец называется оловом! Наш «свинец» встречается только в языках балтийской группы: svinas (литовский), svin (латышский).

Английское название свинца lead и голландское lood, возможно, связаны с нашим «лудить», хотя лудят опять же не ядовитым свинцом, а оловом. Латинское же plumbum (тоже неясного происхождения) дало английское слово plumber - водопроводчик (когда-то трубы зачеканивали мягким свинцом), и название венецианской тюрьмы со свинцовой крышей - Пьомбе. Из этой тюрьмы по некоторым данным ухитрился бежать Казанова. А вот мороженое здесь ни при чём: пломбир произошёл от названия французского курортного городка Пломбьер.

Олово

В Древнем Риме олово называли «белым свинцом» (plumbum album), в отличие от plumbum nigrum - чёрного, или обыкновенного, свинца. По-гречески белый - алофос. По-видимому, от этого слова и произошло «олово», что указывало на цвет металла. В русский язык оно попало в XI веке и означало как олово, так и свинец (в древности эти металлы плохо различали). Латинское stannum связано с санскритским словом, означающим стойкий, прочный. Происхождение английского (а также голландского и датского) tin неизвестно.

Ртуть

Латинское hydrargirum произошло от греческих слов «хюдор» - вода и «аргирос» - серебро. «Жидким» (или «живым», «быстрым») серебром ртуть называется также в немецком (Quecksilber) и в староанглийском (quicksilver) языках, а по-болгарски ртуть - живак: действительно, шарики ртути блестят, как серебро, и очень быстро «бегают» - как живые. Современное английское (mercury) и французское (mercure) названия ртути произошли от имени латинского бога торговли Меркурия. Меркурий был также вестником богов, и его обычно изображали с крылышками на сандалиях или на шлеме. Так что бог Меркурий бегал так же быстро, как переливается ртуть. Ртути соответствовала планета Меркурий, которая быстрее других передвигается по небосводу.

Русское название ртути, по одной из версий, - это заимствование из арабского (через тюркские языки); по другой версии, «ртуть» связана с литовским ritu - качу, катаю, происшедшим от индоевропейского рет(х) - бежать, катиться. Литва и Русь были тесно связаны, а во 2-й половине XIV века русский язык был языком делопроизводства великого княжества Литовского, а также языком первых письменных памятников Литвы.

Углерод

Международное название происходит от латинского carbo - уголь, связанного с древним корнем kar - огонь. Этот же корень в латинском cremare - гореть, а возможно, и в русском «гарь», «жар», «угореть» (в древнерусском «угорати» - обжигать, опалять). Отсюда - и «уголь». Вспомним здесь также игру горелки и украинскую горшку.

Медь

Слово того же происхождения, что и польское miedz, чешское med. У этих слов два источника - древненемецкое smida - металл (отсюда немецкие, английские, голландские, шведские и датские кузнецы - Schmied, smith, smid, smed) и греческое «металлон» - рудник, копь. Так что медь и металл - родственники сразу по двум линиям. Латинское cuprum (от него произошли и другие европейские названия) связано с островом Кипр, где уже в III веке до н.э. существовали медные рудники и производилась выплавка меди. Римляне называли медь cyprium aes - металл из Кипра. В позднелатинском cyprium перешло в cuprum. С местом добычи или с минералом связаны названия многих элементов.

Кадмий

Открыт в 1818 году немецким химиком и фармацевтом Фридрихом Штромейером в карбонате цинка, из которого на фармацевтической фабрике получали медицинские препараты. Греческим словом «кадмейа» с древних времён называли карбонатные цинковые руды. Название восходит к мифическому Кадму (Кадмосу) - герою греческой мифологии, брату Европы, царю Кадмейской земли, основателю Фив, победителю дракона, из зубов которого выросли воины. Кадм будто бы первым нашёл цинковый минерал и открыл людям его способность изменять цвет меди при совместной выплавке их руд (сплав меди с цинком - латунь). Имя Кадма восходит к семитскому «Ка-дем» - Восток.

Кобальт

В XV веке в Саксонии среди богатых серебряных руд обнаруживали блестящие, как сталь, белые или серые кристаллы, из которых не удавалось выплавить металл; их примесь к серебряной или медной руде мешала выплавке этих металлов. «Нехорошая» руда получила у горняков имя горного духа Коболда. По всей видимости, это были содержащие мышьяк кобальтовые минералы - кобальтин CoAsS, или сульфиды кобальта скуттерудит, сафлорит или смальтин. При их обжиге выделяется летучий ядовитый оксид мышьяка. Вероятно, имя злого духа восходит к греческому «кобалос» - дым; он образуется при обжиге руд, содержащих сульфиды мышьяка. Этим же словом греки называли лживых людей. В 1735 году шведский минералог Георг Бранд сумел выделить из этого минерала не известный ранее металл, который и назвал кобальт. Он выяснил также, что соединения именно этого элемента окрашивают стекло в синий цвет - этим свойством пользовались ещё в древних Ассирии и Вавилоне.

Никель

Происхождение названия сходно с кобальтом. Средневековые горняки называли Никелем злого горного духа, а «купферникелем» (Kupfernickel, медный чёрт) - фальшивую медь. Эта руда внешне походила на медную и применялась в стекловарении для окрашивания стекол в зелёный цвет. А вот медь из неё никому получить не удавалось - её там не было. Эту руду - медно-красные кристаллы никелина (красного никелевого колчедана NiAs) в 1751 году исследовал шведский минералог Аксель Кронштедт и выделил из неё новый металл, назвав его никелем.

Ниобий и тантал

В 1801 году английский химик Чарлз Хатчет проанализировал чёрный минерал, хранившийся в Британском музее и найденный ещё в 1635 году на территории современного штата Массачусетс в США. Хатчет обнаружил в минерале оксид неизвестного элемента, который получил название Колумбии - в честь страны, где он был найден (в то время США ещё не имели устоявшегося названия, и многие называли их Колумбией по имени первооткрывателя континента). Минерал же назвали колумбитом. В 1802 году шведский химик Андерс Экеберг выделил из колумбита ещё один оксид, который упорно не хотел растворяться (как тогда говорили - насыщаться) ни в одной кислоте. «Законодатель» в химии тех времён шведский химик Йене Якоб Берцелиус предложил назвать содержащийся в этом оксиде металл танталом. Тантал - герой древнегреческих мифов; в наказание за свои противоправные действия он стоял по горло в воде, к которой склонялись ветви с плодами, но не мог ни напиться, ни насытиться. Аналогично и тантал не мог «насытиться» кислотой - она отступала от него, как вода от Тантала. По свойствам этот элемент настолько был похож на колумбий, что в течение длительного времени шли споры о том, являются ли Колумбий и тантал одним и тем же или всё же разными элементами. Только в 1845 году немецкий химик Генрих Розе разрешил спор, проанализировав несколько минералов, в том числе и колумбит из Баварии. Он установил, что на самом деле существуют два близких по свойствам элемента. Колумбий Хатчета оказался их смесью, а формула колумбита (точнее, манганоколумбита) - (Fe,Mn)(Nb,Ta)2O6. Второй элемент Розе назвал ниобием, по имени дочери Тантала Ниобы. Однако символ Cb до середины XX века оставался в американских таблицах химических элементов: там он стоял на месте ниобия. А имя Хатчета увековечено в названии минерала хатчита.

Прометий

Его много раз «открывали» в различных минералах при поисках недостающего редкоземельного элемента, который должен был занимать место между неодимом и самарием. Но все эти открытия оказались ложными. Впервые недостающее звено в цепи лантанидов обнаружили в 1947 году американские исследователи Дж. Маринский, Л. Гленденин и Ч. Кориэлл, разделив хроматографически продукты деления урана в ядерном реакторе. Жена Кориэлла предложила назвать открытый элемент прометием, по имени Прометея, похитившего у богов огонь и передавшего его людям. Этим подчеркивалась грозная сила, заключенная в ядерном «огне». Жена исследователя оказалась права.

Торий

В 1828 году Й.Я. Берцелиус обнаружил в редком минерале, присланном ему из Норвегии, соединение нового элемента, который он назвал торием - в честь древнескандинавского бога Тора. Правда, название это Берцелиус придумал ещё в 1815 году, когда ошибочно «открыл» торий в другом минерале из Швеции. Это был тот редкий случай, когда сам исследователь «закрыл» якобы обнаруженный им элемент (в 1825 году, когда оказалось, что ранее у Берцелиуса был фосфат иттрия). Новый же минерал назвали торитом, это был силикат тория ThSiO4. Торий радиоактивен; период его полураспада 14 млрд. лет, конечный продукт распада - свинец. По количеству свинца в ториевом минерале можно определить его возраст. Так, возраст одного из минералов, найденного в штате Вирджиния, оказался равным 1,08 млрд. лет.

Титан

Считается, что этот элемент открыл немецкий химик Мартин Клапрот. В 1795 году он обнаружил в минерале рутиле оксид неизвестного металла, который назвал титаном. Титаны - в древнегреческой мифологии гиганты, с которыми боролись боги-олимпийцы. Через два года выяснилось, что элемент «менакин», который обнаружил в 1791 году английский химик Уильям Грегор в минерале ильмените (FeTiO3), тождествен титану Клапрота.

Ванадий

Открыт в 1830 году шведским химиком Нильсом Сефстремом в шлаке доменных печей. Назван в честь древнескандинавской богини красоты Ванадис, или Вана-Дис. В этом случае тоже выяснилось, что ванадий открывали и раньше, и даже не один раз - мексиканский минералог Андрее Мануэль дель Рио в 1801 году и немецкий химик Фридрих Вёлер незадолго до открытия Сефстрема. Но дель Рио сам отказался от своего открытия, решив, что имеет дело с хромом, а Вёлеру завершить работу помешала болезнь.

Уран, нептуний, плутоний

В 1781 году английский астроном Уильям Гершель открыл новую планету, которую назвали Ураном - по имени древнегреческого бога неба Урана, деда Зевса. В 1789 году М. Клапрот выделил из минерала смоляной обманки чёрное тяжёлое вещество, которое он принял за металл и, по традиции алхимиков, «привязал» его название к недавно открытой планете. А смоляную обманку он переименовал в урановую смолку (именно с ней работали супруги Кюри). Лишь спустя 52 года выяснилось, что Клапрот получил не сам уран, а его оксид UO2.

В 1846 году астрономы открыли предсказанную незадолго до этого французским астрономом Леверье новую планету. Её назвали Нептуном - по имени древнегреческого бога подводного царства. Когда в 1850 году в минерале, привезенном в Европу из США, обнаружили, как полагали, новый металл, его, под впечатлением открытия астрономов, предложили назвать нептунием. Однако вскоре выяснилось, что это был уже открытый ранее ниобий. О «нептунии» забыли почти на целое столетие, пока в продуктах облучения урана нейтронами не обнаружили новый элемент. И как в Солнечной системе за Ураном следует Нептун, так и в таблице элементов за ураном (№ 92) появился нептуний (№ 93).

В 1930 году была открыта девятая планета Солнечной системы, предсказанная американским астрономом Ловеллом. Её назвали Плутоном - по имени древнегреческого бога подземного царства. Поэтому было логично назвать следующий за нептунием элемент плутонием; он был получен в 1940 году в результате бомбардировки урана ядрами дейтерия.

Гелий

Обычно пишут, что его открыли спектральным методом Жансен и Локьер, наблюдая полное солнечное затмение в 1868 году. На самом деле всё было не так просто. Спустя несколько минут после окончания солнечного затмения, которое французский физик Пьер Жюль Жансен наблюдал 18 августа 1868 года в Индии, ему впервые удалось увидеть спектр солнечных протуберанцев. Аналогичные наблюдения провёл английский астроном Джозеф Норман Локьер 20 октября того же года в Лондоне, особо подчеркнув, что его способ позволяет изучать солнечную атмосферу во вне-затменное время. Новые исследования солнечной атмосферы произвели большое впечатление: в честь этого события Парижская академия наук вынесла постановление о чеканке золотой медали с профилями учёных. При этом ни о каком новом элементе речи не было.

Итальянский астроном Анджело Секки 13 ноября того же года обратил внимание на «замечательную линию» в солнечном спектре вблизи известной жёлтой D-линии натрия. Он предположил, что эту линию испускает водород, находящийся в экстремальных условиях. И только в январе 1871 года Локьер высказал идею, что эта линия может принадлежать новому элементу. Впервые слово «гелий» произнёс в своей речи президент Британской ассоциации содействия наукам Уильям Томсон в июле того же года. Название было дано по имени древнегреческого бога солнца Гелиоса. В 1895 году английский химик Уильям Рамзай собрал выделенный из уранового минерала клевеита при его обработке кислотой неизвестный газ и с помощью Локьера исследовал его спектральным методом. В результате «солнечный» элемент был обнаружен и на Земле.

Цинк

Слово «цинк» ввёл в русский язык М.В. Ломоносов - от немецкого Zink. Вероятно оно происходит от древнегерманского tinka - белый, действительно, самый распространённый препарат цинка - оксид ZnO («философская шерсть» алхимиков) имеет белый цвет.

Фосфор

Когда в 1669 году гамбургский алхимик Хеннинг Бранд открыл белую модификацию фосфора, он был поражён его свечением в темноте (на самом деле светится не фосфор а его пары при их окислении кислородом воздуха). Новое вещество получило название, которое в переводе с греческого означает «несущий свет». Так что «светофор» - лингвистически то же самое, что и «Люцифер». Кстати, греки называли Фосфоросом утреннюю Венеру, которая предвещала восход солнца.

Мышьяк

Русское название, наиболее вероятно, связано с ядом которым травили мышей, помимо прочего, по цвету серый мышьяк напоминает мышь. Латинское arsenicum восходит к греческому «арсеникос» - мужской, вероятно, по сильному действию соединений этого элемента. А для чего их использовали, благодаря художественной литературе знают все.

Сурьма

В химии у этого элемента три названия. Русское слово «сурьма» происходит от турецкого «сюрме» - натирание или чернение бровей в древности краской для этого служил тонко размолотый чёрный сульфид сурьмы Sb2S3 («Ты постом говей, не сурьми бровей». - М. Цветаева). Латинское название элемента (stibium) происходит от греческого «стиби» - косметического средства для подведения глаз и лечения глазных болезней. Соли сурьмяной кислоты называют антимонитами, название, возможно, связано с греческим «антемон» - цветок сростки игольчатых кристаллов сурьмяного блеска Sb2S2 похожи на цветы.

Висмут

Вероятно это искажённое немецкое «weisse Masse» - белая масса с древности были известны белые с красноватым оттенком самородки висмута. Кстати в западноевропейских языках (кроме немецкого) название элемента начинается на «b» (bismuth). Замена латинского «b» русским «в» - распространённое явление Abel - Авель, Basil - Василий, basilisk - василиск, Barbara - Варвара, barbarism - варварство, Benjamin - Вениамин, Bartholomew - Варфоломей, Babylon - Вавилон, Byzantium - Византия, Lebanon - Ливан, Libya - Ливия, Baal - Ваал, alphabet - алфавит… Возможно переводчики полагали, что греческая «бета» - это русская «в».