В физике такое понятие, как электродвижущая сила (сокращенно – ЭДС ) используется в качестве основной энергетической характеристики источников тока.

Электродвижущая сила (ЭДС)

Электродвижущая сила (ЭДС ) – способность источника энергии создавать и поддерживать на зажимах разность потенциалов.

ЭДС – измеряется в Вольтах

Напряжение на зажимах источника всегда меньше ЭДС на величину падения напряжения.


Электродвижущая сила

U RH = E – U R0

U RH – напряжение на зажимах источника. Измеряется при замкнутой внешней цепи.

Е – ЭДС – измеряется на заводе изготовителе.

Электродвижущая сила (ЭДС ) представляет собой физическую величину , которая равна частному от деления той работы, которая при перемещении электрического заряда совершается сторонними силами в условиях замкнутой цепи, к самому этому заряду.

Следует заметить, что электродвижущая сила в источнике тока возникает и при отсутствии самого тока, то есть тогда, когда цепь является разомкнутой. Такую ситуацию принято именовать «холостым ходом», а сама величина ЭДС при ней равняется разнице тех потенциалов, которые имеются на зажимах источника тока.

Химическая электродвижущая сила

Химическая электродвижущая сила наличествует в аккумуляторах, гальванических батареях при протекании коррозионных процессов. В зависимости от того, на каком именно принципе построена работа того или иного источника питания, они именуются либо аккумуляторами, либо гальваническими элементами.

Одной из основных отличительных характеристик гальванических элементов является то, что эти источники тока являются, так сказать, одноразовыми. При их функционировании те активные вещества, благодаря которым выделяется электрическая энергия, в результате протекания химических реакций распадаются практически полностью. Именно поэтому если гальванический элемент разряжен полностью, то в качестве источника тока использовать его далее невозможно.

В отличие от гальванических элементов аккумуляторы предполагают многократное использование. Это возможно потому, что те химические реакции, которые в них протекают, имеют обратимый характер.

Электромагнитная электродвижущая сила

Электромагнитная ЭДС возникает при функционировании таких устройств, как динамо-машины, электродвигатели, дроссели, трансформаторы и т.п.

Суть ее состоит в следующем: при помещении проводников в магнитное поле и их перемещении в нем таким образом, чтобы происходило пересечение магнитных силовых линий, происходит наведение ЭДС . Если цепь замкнута, то в ней возникает электрический ток.

В физике описанное выше явление называется электромагнитной индукцией. Электродвижущую силу , которая при этом индуктируется, именуют ЭДС индукции.

Следует заметить, что наведение ЭДС индукции происходит не только в тех случаях, когда в магнитном поле проводник перемещается, но и тогда, когда он остается неподвижным, но при этом осуществляется изменение величины самого магнитного поля.

Фотоэлектрическая электродвижущая сила

Эта разновидность электродвижущей силы возникает тогда, когда наличествует или внешний, или внутренний фотоэффект.

В физике под фотоэффектом (фотоэлектрическим эффектом) подразумевается та группа явлений, которая возникает тогда, когда на вещество воздействует свет, и при этом в нем происходит эмиссия электронов. Это называют внешним фотоэффектом. Если же при этом появляется электродвижущая сила или изменяется электропроводимость вещества, то говорят о внутреннем фотоэффекте.

Сейчас и внешний, и внутренний фотоэффекты очень широко используются для проектирования и производства огромного количества таких приемников светового излучения, которые преобразуют световые сигналы в электрические. Все эти устройства называются фотоэлементами и используются как в технике, так и при проведении разнообразных научных исследований. В частности, именно фотоэлементы используются для того, чтобы производить наиболее объективные оптические измерения.

Электростатическая движущая сила

Что касается этого типа электродвижущей силы , то она, к примеру, возникает при механическом трении, возникающем в электрофорных агрегатах (специальных лабораторных демонстрационных и вспомогательных приборах), она же имеет место быть и в грозовых облаках.

Генераторы Вимшурста (это еще одно название электрофорных машин) для своего функционирования используют такое явление, как электростатическая индукция. При их работе электрические заряды накапливаются на полюсах, в лейденских банках, причем разность потенциалов может достигать очень солидных величин (до нескольких сотен тысяч вольт).

Природа статического электричества заключается в том, что оно возникает тогда, когда из-за потери или приобретения электронов нарушается внутримолекулярное или внутриатомное равновесие.

Пьезоэлектрическая электродвижущая сила

Эта разновидность электродвижущей силы возникает тогда, когда происходит или сдавливание, или растяжение веществ, называемых пьезоэлектриками. Они широко используются в таких конструкциях, как пьезодатчики, кварцевых генераторах, гидрофонах и некоторых другиех.

Именно пьезоэлектрический эффект положен в основу работы пьезоэлектрических датчиков. Сами они относятся к датчикам так называемого генераторного типа. В них входной величиной является прилагаемая сила, а выходной – количество электричества.

Что касается таких устройств, как гидрофоны, то в основу их функционирования заложен принцип так называемого прямого пьезоэлектрического эффекта, который имеют пьезокерамические материалы. Суть его состоит в том, что если на поверхность этих материалов оказывается звуковое давление, то на их электродах возникает разность потенциалов. При этом она пропорциональна величине звукового давления.

Одной из основных сфер применения пьезоэлектрических материалов является производство кварцевых генераторов, имеющих в своей конструкции кварцевые резонаторы. Предназначены такие устройства для того, чтобы получать колебания строго фиксированной частоты, которые стабильны как по времени, так и при изменении температуры, а также имеют совсем невысокий уровень фазовых шумов.

Термоионная электродвижущая сила

Эта разновидность электродвижущей силы возникает тогда, когда с поверхности разогретых электродов происходит термоэмиссия заряженных частиц. Термоионная эмиссия на практике применяется достаточно широко, например, на ней основана работа практически всех радиоламп.

Термоэлектрическая электродвижущая сила

Эта разновидность ЭДС возникает тогда, когда на различных концах разнородных проводников или же просто на различных участках цепи температура распределяется очень неоднородно.

Термоэлектрическая электродвижущая сила используется в таких устройствах, как пирометры, термопары и холодильные машины. Датчики, работа которых основана на этом явлении, называются термоэлектрическими, и являются, по сути дела, термопарами, состоящими из спаянных между собой электродов, изготовленных из разных металлов. Когда эти элементы или нагреваются, или охлаждаются, между ними возникает ЭДС , которая по своей величине пропорциональна изменению температуры.

Электрическая цепь состоит из источника тока, потребителей электроэнергии, соединительных проводов и ключа, служащего для размыкания и замыкания цепи и других элементов (рис. 1).

Рисунки, на которых изображены способы соединения электрических приборов в цепь, называются электрическими схемами . Приборы на схемах обозначаются условными знаками.

Как отмечалось, для поддержания в цепи электрического тока необходимо, чтобы на концах ее (рис. 2) существовала постоянная разность потенциалов φ A - φ B . Пусть в начальный момент времени φ A > φ B , тогда перенос положительного заряда q из точки А в точку В приведет к уменьшению разности потенциалов между ними. Для сохранения постоянной разности потенциалов необходимо перенести точно такой же заряд из B в A . Если в направлении А В заряды движутся под действием сил электростатического поля, то в направлении В А перемещение зарядов происходит против сил электростатического поля, т.е. под действием сил неэлектростатической природы, так называемых сторонних сил. Это условие выполняется в источнике тока, который поддерживает движение электрических зарядов. В большинстве источников тока движутся только электроны, в гальванических элементах - ионы обоих знаков.

Источники электрического тока могут быть различны по своей конструкции, но в любом из них совершается работа по разделению положительно и отрицательно заряженных частиц. Разделение зарядов происходит под действием сторонних сил . Сторонние силы действуют лишь внутри источника тока и могут быть обусловлены химическими процессами (аккумуляторы, гальванические элементы), действием света (фотоэлементы), изменяющимися магнитными полями (генераторы) и т.д.

Любой источник тока характеризуют электродвижущей силой - ЭДС.

Электродвижущей силой ε источника тока называют физическую скалярную величину, равную работе сторонних сил по перемещению единич ного положительного заряда вдоль замкнутой цепи

Единицей электродвижущей силы в СИ является вольт (В).

ЭДС является энергетической характеристикой источника тока.

В источнике тока в процессе работы по разделению заряженных частиц происходит превращение механической, световой, внутренней и т.п. энергии в электрическую. Разделенные частицы накапливаются на полюсах источника тока (места, к которым с помощью клемм или зажимов подсоединяют потребители). Один полюс источника тока заряжается положительно, другой - отрицательно. Между полюсами источника тока создается электростатическое поле. Если полюса источника тока соединить проводником, то в такой электрической цепи возникает электрический ток. При этом характер поля меняется, оно перестает быть электростатическим.


На рисунке 3 схематично в виде сферического проводника изображена отрицательная клемма источника тока и сечение присоединенного к ней конца металлического провода. Пунктиром показаны некоторые линии напряженности поля клеммы до внесения в него провода, а стрелками - силы, действующие на свободные электроны провода, находящиеся в точках, помеченных цифрами. Электроны в различных точках поперечного сечения провода под действием кулоновских сил поля клеммы приобретают движение не только вдоль оси провода. Например, электрон, находящийся в точке 1 , оказывается вовлеченным в "токовое" движение. Но вблизи точек 2, 3, 4, 5 электроны имеют возможность скапливаться на поверхности провода. Причем поверхностное распределение электронов по длине провода не будет равномерным. Следовательно, подключение провода к клемме источника тока приведет к тому, что некоторые электроны начнут двигаться вдоль провода, а часть электронов будет скапливаться на поверхности. Неравномерное распределение электронов на его поверхности обеспечивает неэквипотенциальность этой поверхности, наличие составляющих напряженности электрического поля, направленных вдоль поверхности проводника. Это поле перераспределенных электронов самого проводника и обеспечивает упорядоченное движение других электронов. Если распределение электронов по поверхности проводника с течением времени не изменяется, то такое поле называют стационарным электрическим полем . Таким образом, главную роль в создании стационарного электрического поля играют заряды, находящиеся на полюсах источника тока. При замыкании электрической цепи взаимодействие именно этих зарядов со свободными зарядами проводника приводит к появлению на всей поверхности проводника нескомпенсированных поверхностных зарядов. Именно эти заряды создают стационарное электрическое поле внутри проводника по всей его длине. Это поле внутри проводника однородное, и линии напряженности направлены вдоль оси проводника (рис. 4). Процесс установления электрического поля вдоль проводника происходит со скоростью c ≈ 3·10 8 м/с.

Как и электростатическое поле, оно потенциально. Но между этими полями имеются существенные отличия:

1. электростатическое поле - поле неподвижных зарядов. Источником стационарного электрического поля являются движущиеся заряды, причем общее число зарядов и картина их распределения в данном пространстве с течением времени не изменяются;

2. электростатическое поле существует вне проводника. Напряженность электростатического поля всегда равна 0 внутри объема проводника, а в каждой точке внешней поверхности проводника направлена перпендикулярно к этой поверхности. Стационарное электрическое поле существует и вне и внутри проводника. Напряженность стационарного электрического поля не равна нулю внутри объема проводника, а на поверхности и внутри объема имеются составляющие напряженности, не перпендикулярные к поверхности проводника;

3. потенциалы разных точек проводника, по которому проходит постоянный ток, разные (поверхность и объем проводника не эквипотенциальны). Потенциалы всех точек поверхности проводника, находящегося в электростатическом поле, одинаковы (поверхность и объем проводника эквипотенциальны);

4. электростатическое поле не сопровождается появлением магнитного поля, а стационарное электрическое поле сопровождается его появлением и неразрывно с ним связано.

В электротехнике источники питания электрических цепей характеризуются электродвижущей силой (ЭДС).

Что такое ЭДС

Во внешней цепи электрического контура электрические заряды двигаются от плюса источника к минусу и создают электрический ток. Для поддержания его непрерывности в цепи источник должен обладать силой, которая смогла бы перемещать заряды от более низкого к более высокому потенциалу. Такой силой неэлектрического происхождения и является ЭДС источника. Например, ЭДС гальванического элемента.

В соответствии с этим, ЭДС (E) можно вычислить как:

E=A/q, где:

  • A –работа в джоулях;
  • q - заряд в кулонах.

Величина ЭДС в системе СИ измеряется в вольтах (В).

Формулы и расчеты

ЭДС представляет собой работу, которую совершают сторонние силы для перемещения единичного заряда по электрической цепи

Схема замкнутой электрической цепи включает внешнюю часть, характеризуемую сопротивлением R, и внутреннюю часть с сопротивлением источника Rвн. Непрерывный ток (Iн) в цепи будет течь в результате действия ЭДС, которая преодолевает как внешнее, так и внутреннее сопротивление цепи.

Ток в цепи определяется по формуле (закон Ома):

Iн= E/(R+Rвн).

При этом напряжение на клеммах источника (U 12) будет отличаться от ЭДС на величину падения напряжения на внутреннем сопротивлении источника.

U 12 = E - Iн*Rвн.

Если цепь разомкнута и ток в ней равен 0, то ЭДС источника будет равна напряжению U 12 .

Разработчики источников питания стараются уменьшать внутренние сопротивление Rвн, так как это может позволить получить от источника больший ток.

Где применяется

В технике применяются различные виды ЭДС:

  • Химическая. Используется в батарейках и аккумуляторах.
  • Термоэлектрическая. Возникает при нагревании контактов разнородных металлов. Используется в холодильниках, термопарах.
  • Индукционная. Образуется при пересечении проводником магнитного поля. Эффект используется в электродвигателях, генераторах, трансформаторах.
  • Фотоэлектрическая. Применяется для создания фотоэлементов.
  • Пьезоэлектрическая. При растяжении или сжатии материала. Используется для изготовления датчиков, кварцевых генераторов.

Таким образом, ЭДС необходима для поддержания постоянного тока и находит применений в различных видах техники.

Сторонних (непотенциальных) сил в источниках пост. или перем. тока; в замкнутом проводящем контуре равна работе этих сил по перемещению единичного положит. заряда вдоль всего контура. Если через Есгр обозначить напряжённость поля сторонних сил, то эдс? в замкнутом контуре L равна

где dl - элемент длины контура.

Потенц. силы электростатич. поля не могут поддерживать пост. этих сил на замкнутом пути равна нулю. Прохождение же тока по проводникам сопровождается выделением энергии - нагреванием проводников. Сторонние силы приводят в заряж. ч-цы внутри генераторов, гальванич. элементов, аккумуляторов и др. источников тока. Происхождение сторонних сил может быть различным: в генераторах - это силы со стороны вихревого электрич. поля, возникающего при изменении магн. поля со временем, или Лоренца , действующая со стороны магн. поля на эл-ны в движущемся проводнике; в гальванич. элементах и аккумуляторах - это хим. силы и т. д. Эдс источника равна электрическому напряжению на его зажимах при разомкнутой цепи. Эдс определяет силу тока в цепи при заданном её сопротивлении (см. ОМА ЗАКОН). Измеряется, как и электрич. , в вольтах.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ЭЛЕКТРОДВИЖУЩАЯ СИЛА

(эдс) - феноменологическая характеристика источников тока. Введена Г. Омом (G. Ohm) в 1827 для цепей пост. тока и определена Г. Кирхгофом (G. Kirchhoff) в 1857 как работа "сторонних" сил при переносе единичного электрич. заряда вдоль замкнутого контура. Затем понятие эдс стали трактовать более широко - как меру удельных (на единицу переносимого током заряда) преобразований энергии, осуществляемых в квазистационарных [см. Квазистационарное (квазистатическое) приближение ]электрич. цепях не только "сторонними" источниками (гальванич. батареями, аккумуляторами, генераторами и т. п.), но и "нагрузочными" элементами (электромоторами, аккумуляторами в режиме зарядки, дросселями, трансформаторами и т. п.).

Полное назв. величины - Э. с.- связано с механич. аналогиями процессов в электрич. цепях и применяется редко; более употребительным является сокращение - эдс. В СИ эдс измеряется в вольтах (В); в гауссовой системе (СГСЭ) единица эдс спец. названия не имеет (1 СГСЭ 300 В).

В случае квазилинейного пост. тока в замкнутой (без разветвлений) цепи суммарного притока эл.-магн. энергии, вырабатываемой источниками, полностью расходуется на выделение тепла (см. Джоулевы потери):

где -эдс в проводящем контуре, I -ток, R - сопротивление (знак эдс, как и знак тока, зависит от выбора направления обхода по контуру).

При описании квазистационарных процессов в электрич. цепях в ур-нии энергетич. баланса (*) необходим учёт изменений накопленной магнитной W m и электрической W e энергий:

При изменении магн. поля во времени возникает вихревое электрич. E s , циркуляцию к-рого вдоль проводящего контура принято называть эдс электромагнитной индукции:

Изменения электрич. энергии существенны, как правило, в тех случаях, когда цепь содержит с большой электрич. ёмкостью, напр. конденсаторы. Тогда dW e /dt = DU . I, где DU- разность потенциалов между об-кладками конденсатора.

Допустимы, однако, и др. интерпретации энергетич. превращений в электрич. цепи. Так, напр., если в цепь перем. гармонич. тока включён с индуктивностью L, то взаимные превращения электрич. и магн. энергий в нём могут быть охарактеризованы как эдс эл.-магн. индукции так и падением напряжения на эффективном реактивном сопротивлении Z L (см. Импеданс): В движущихся в магн. поле телах (напр., в якоре униполярного индуктора) даже работа сил сопротивления может давать вклад в эдс.

В разветвлённых цепях квазилинейных токов соотношение между эдс и падениями напряжения на участках цепи, составляющих замкнутый контур, определяется вторым Кирхгофа правилом.

Эдс является интегральной характеристикой замкнутого контура, и в общем случае нельзя строго указать место её "приложения". Однако довольно часто эдс можно считать приближённо локализованной в определённых устройствах или элементах цепи. В таких случаях её принято считать характеристикой устройства (гальванич. батареи, аккумулятора, динамо-машины и т. п.) и определять через разность потенциалов между его разомкнутыми полюсами. По типу преобразований энергии в этих устройствах различают следующие виды эдс: х и м и ч е с к а я эдс в гальванич. батареях, ваннах, аккумуляторах, при коррозионных процессах (гальваноэффекты), ф о т о э л е к т р и ч ес к а я эдс (фотоэдс) при внеш. и внутр. фотоэффекте (фотоэлементы, фотодиоды); э л е к т р о м а г н и т н а я эдс - эдс эл.-магн. индукции (динамо-машины, трансформаторы, дроссели, электромоторы и т. п.); э л е к т р ос т а т и ч е с к а я эдс, возникающая, напр., при механич. трении (электрофорные машины, электризация грозовых облаков и т. п.); п ь е з о э л е к т р и ч е с к а я эдс - при сдавливании или растяжении пьезоэлектриков (пьезодатчики, гидрофоны, стабилизаторы частоты и т. п.); т е р м о и о нн а я эдс, связанная с термоэмиссией заряж. частиц с поверхности разогретых электродов; т е р м о э л е к т р и ч ес к а я эдс ( термоэдс)- на контактах разнородных проводников (Зеебека эффект и Пельтье эффект )либо на участках цепи с неоднородным распределением темп-ры ( Томсона эффект). Термоэдс используют в термопарах, пирометрах, холодильных машинах.

М. А. Миллер, Г. В. Пермитин.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ЭЛЕКТРОДВИЖУЩАЯ СИЛА" в других словарях:

    электродвижущая сила - Скалярная величина, характеризующая способность стороннего поля и индуктированного электрического поля вызывать электрический ток. Примечание — Электродвижущая сила равна линейному интегралу напряженности стороннего поля и индуктированного… … Справочник технического переводчика Современная энциклопедия - скалярная величина, характеризующая способность стороннего поля и индуктированного электрического поля вызывать электрический ток...