pentru a rezolva matematica. Găsiți repede rezolvarea unei ecuații matematiceîn mod pe net. Site-ul www.site permite rezolva ecuatia aproape orice dat algebric, trigonometric sau ecuația transcendentală online. Când studiezi aproape orice ramură a matematicii în diferite etape, trebuie să te decizi ecuații online. Pentru a obține un răspuns imediat și, cel mai important, un răspuns precis, aveți nevoie de o resursă care vă permite să faceți acest lucru. Multumesc site-ului www.site rezolva ecuatii online va dura câteva minute. Principalul avantaj al www.site-ului atunci când rezolvăm matematică ecuații online- aceasta este viteza și acuratețea răspunsului oferit. Site-ul este capabil să rezolve orice ecuații algebrice online, ecuații trigonometrice online, ecuații transcendentale online, și ecuații cu parametri necunoscuți în modul pe net. Ecuații servesc ca un puternic aparat matematic solutii probleme practice. Cu ajutorul ecuatii matematice este posibil să se exprime fapte și relații care pot părea confuze și complexe la prima vedere. Cantitati necunoscute ecuații poate fi găsit prin formularea problemei în matematic limba în formă ecuațiiȘi decide sarcină primită în modul pe net pe site-ul www.site. Orice ecuație algebrică, ecuație trigonometrică sau ecuații conținând transcendental caracteristici pe care le puteți ușor decide online și obțineți răspunsul exact. Când studiezi științele naturii, întâmpinați inevitabil nevoia rezolvarea ecuatiilor. În acest caz, răspunsul trebuie să fie corect și trebuie obținut imediat în modul pe net. Prin urmare pentru rezolvarea de ecuații matematice online vă recomandăm site-ul www.site, care va deveni calculatorul dumneavoastră indispensabil pentru rezolva ecuații algebrice online, ecuații trigonometrice online, și ecuații transcendentale online sau ecuații cu parametri necunoscuți. Pentru probleme practice de găsire a rădăcinilor diverselor ecuatii matematice resursa www.. Rezolvarea ecuații online singur, este util să verificați răspunsul primit folosind rezolvarea de ecuații online pe site-ul www.site. Trebuie să scrieți corect ecuația și să obțineți instantaneu soluție online, după care tot ce rămâne este să compari răspunsul cu soluția ta la ecuație. Verificarea răspunsului nu va dura mai mult de un minut, este suficient rezolva ecuația onlineși comparați răspunsurile. Acest lucru vă va ajuta să evitați greșelile în decizieși corectează răspunsul la timp când rezolvarea de ecuații online fie algebric, trigonometric, transcendental sau ecuația cu parametri necunoscuți.

Ecuațiile cuadratice sunt studiate în clasa a VIII-a, așa că nu este nimic complicat aici. Capacitatea de a le rezolva este absolut necesară.

O ecuație pătratică este o ecuație de forma ax 2 + bx + c = 0, unde coeficienții a, b și c sunt numere arbitrare și a ≠ 0.

Înainte de a studia metode specifice de soluție, rețineți că toate ecuațiile pătratice pot fi împărțite în trei clase:

  1. Nu au rădăcini;
  2. Au exact o rădăcină;
  3. Au două rădăcini diferite.

Aceasta este o diferență importantă între ecuațiile pătratice și cele liniare, unde rădăcina există întotdeauna și este unică. Cum se determină câte rădăcini are o ecuație? Există un lucru minunat pentru asta - discriminant.

Discriminant

Să fie dată ecuația pătratică ax 2 + bx + c = 0. Atunci discriminantul este pur și simplu numărul D = b 2 − 4ac.

Trebuie să știi această formulă pe de rost. De unde vine nu este important acum. Un alt lucru este important: prin semnul discriminantului poți determina câte rădăcini are o ecuație pătratică. Și anume:

  1. Daca D< 0, корней нет;
  2. Dacă D = 0, există exact o rădăcină;
  3. Dacă D > 0, vor exista două rădăcini.

Vă rugăm să rețineți: discriminantul indică numărul de rădăcini și deloc semnele acestora, așa cum cred din anumite motive mulți oameni. Aruncă o privire la exemple și vei înțelege totul singur:

Sarcină. Câte rădăcini au ecuațiile pătratice:

  1. x 2 − 8x + 12 = 0;
  2. 5x 2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

Să scriem coeficienții pentru prima ecuație și să găsim discriminantul:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 1 12 = 64 − 48 = 16

Deci discriminantul este pozitiv, deci ecuația are două rădăcini diferite. Analizăm a doua ecuație într-un mod similar:
a = 5; b = 3; c = 7;
D = 3 2 − 4 5 7 = 9 − 140 = −131.

Discriminantul este negativ, nu există rădăcini. Ultima ecuație rămasă este:
a = 1; b = −6; c = 9;
D = (−6) 2 − 4 1 9 = 36 − 36 = 0.

Discriminantul este zero - rădăcina va fi una.

Vă rugăm să rețineți că au fost notați coeficienți pentru fiecare ecuație. Da, este lung, da, este plictisitor, dar nu vei amesteca șansele și nu vei face greșeli stupide. Alege pentru tine: viteza sau calitate.

Apropo, dacă înțelegi, după un timp nu va mai fi nevoie să notezi toți coeficienții. Vei efectua astfel de operații în capul tău. Majoritatea oamenilor încep să facă asta undeva după 50-70 de ecuații rezolvate - în general, nu atât de mult.

Rădăcinile unei ecuații pătratice

Acum să trecem la soluția în sine. Dacă discriminantul D > 0, rădăcinile pot fi găsite folosind formulele:

Formula de bază pentru rădăcinile unei ecuații pătratice

Când D = 0, puteți folosi oricare dintre aceste formule - veți obține același număr, care va fi răspunsul. În sfârșit, dacă D< 0, корней нет — ничего считать не надо.

  1. x 2 − 2x − 3 = 0;
  2. 15 − 2x − x 2 = 0;
  3. x 2 + 12x + 36 = 0.

Prima ecuație:
x 2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2) 2 − 4 1 (−3) = 16.

D > 0 ⇒ ecuația are două rădăcini. Să le găsim:

A doua ecuație:
15 − 2x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ ecuația are din nou două rădăcini. Să le găsim

\[\begin(align) & ((x)_(1))=\frac(2+\sqrt(64))(2\cdot \left(-1 \right))=-5; \\ & ((x)_(2))=\frac(2-\sqrt(64))(2\cdot \left(-1 \right))=3. \\ \end(align)\]

În sfârșit, a treia ecuație:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 1 36 = 0.

D = 0 ⇒ ecuația are o rădăcină. Se poate folosi orice formulă. De exemplu, primul:

După cum puteți vedea din exemple, totul este foarte simplu. Dacă știi formulele și poți număra, nu vor fi probleme. Cel mai adesea, erorile apar la înlocuirea coeficienților negativi în formulă. Din nou, tehnica descrisă mai sus vă va ajuta: uitați-vă la formula literal, notați fiecare pas - și foarte curând veți scăpa de greșeli.

Ecuații patratice incomplete

Se întâmplă ca o ecuație pătratică să fie ușor diferită de ceea ce este dat în definiție. De exemplu:

  1. x 2 + 9x = 0;
  2. x 2 − 16 = 0.

Este ușor de observat că acestor ecuații lipsește unul dintre termeni. Astfel de ecuații pătratice sunt chiar mai ușor de rezolvat decât cele standard: nici măcar nu necesită calcularea discriminantului. Deci, să introducem un nou concept:

Ecuația ax 2 + bx + c = 0 se numește ecuație pătratică incompletă dacă b = 0 sau c = 0, adică. coeficientul variabilei x sau al elementului liber este egal cu zero.

Desigur, un caz foarte dificil este posibil când ambii acești coeficienți sunt egali cu zero: b = c = 0. În acest caz, ecuația ia forma ax 2 = 0. Evident, o astfel de ecuație are o singură rădăcină: x = 0.

Să luăm în considerare cazurile rămase. Fie b = 0, atunci obținem o ecuație pătratică incompletă de forma ax 2 + c = 0. Să o transformăm puțin:

Deoarece rădăcina pătrată aritmetică există doar dintr-un număr nenegativ, ultima egalitate are sens doar pentru (−c /a) ≥ 0. Concluzie:

  1. Dacă într-o ecuație pătratică incompletă de forma ax 2 + c = 0 este satisfăcută inegalitatea (−c /a) ≥ 0, vor exista două rădăcini. Formula este dată mai sus;
  2. Dacă (−c /a)< 0, корней нет.

După cum puteți vedea, nu a fost necesar un discriminant - nu există deloc calcule complexe în ecuațiile pătratice incomplete. De fapt, nici nu este necesar să ne amintim inegalitatea (−c /a) ≥ 0. Este suficient să exprimăm valoarea x 2 și să vedem ce este de cealaltă parte a semnului egal. Dacă există un număr pozitiv, vor exista două rădăcini. Dacă este negativ, nu vor exista deloc rădăcini.

Acum să ne uităm la ecuații de forma ax 2 + bx = 0, în care elementul liber este egal cu zero. Totul este simplu aici: vor exista întotdeauna două rădăcini. Este suficient să factorizezi polinomul:

Scoaterea factorului comun din paranteze

Produsul este zero atunci când cel puțin unul dintre factori este zero. De aici vin rădăcinile. În concluzie, să ne uităm la câteva dintre aceste ecuații:

Sarcină. Rezolvarea ecuațiilor pătratice:

  1. x 2 − 7x = 0;
  2. 5x 2 + 30 = 0;
  3. 4x 2 − 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. Nu există rădăcini, pentru că un pătrat nu poate fi egal cu un număr negativ.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.

Să ne amintim proprietățile de bază ale gradelor. Fie a > 0, b > 0, n, m orice numere reale. Apoi
1) a n a m = a n+m

2) \(\frac(a^n)(a^m) = a^(n-m) \)

3) (a n) m = a nm

4) (ab) n = a n b n

5) \(\left(\frac(a)(b) \right)^n = \frac(a^n)(b^n) \)

7) a n > 1, dacă a > 1, n > 0

8) a n 1, n
9) a n > a m dacă 0

În practică, funcțiile de forma y = a x sunt adesea folosite, unde a este un număr pozitiv dat, x este o variabilă. Astfel de funcții sunt numite indicativ. Acest nume se explică prin faptul că argumentul funcției exponențiale este exponentul, iar baza exponentului este numărul dat.

Definiție. O funcție exponențială este o funcție de forma y = a x, unde a este un număr dat, a > 0, \(a \neq 1\)

Funcția exponențială are următoarele proprietăți

1) Domeniul de definiție al funcției exponențiale este mulțimea tuturor numerelor reale.
Această proprietate rezultă din faptul că puterea a x unde a > 0 este definită pentru toate numerele reale x.

2) Setul de valori ale funcției exponențiale este mulțimea tuturor numerelor pozitive.
Pentru a verifica acest lucru, trebuie să arătați că ecuația a x = b, unde a > 0, \(a \neq 1\), nu are rădăcini dacă \(b \leq 0\) și are o rădăcină pentru orice b > 0 .

3) Funcția exponențială y = a x crește pe mulțimea tuturor numerelor reale dacă a > 1 și descrește dacă 0. Aceasta rezultă din proprietățile gradului (8) și (9)

Să construim grafice ale funcțiilor exponențiale y = a x pentru a > 0 și pentru 0. Folosind proprietățile considerate, observăm că graficul funcției y = a x pentru a > 0 trece prin punctul (0; 1) și este situat deasupra axa Ox.
Dacă x 0.
Dacă x > 0 și |x| crește, graficul crește rapid.

Graficul funcției y = a x la 0 Dacă x > 0 și crește, atunci graficul se apropie rapid de axa Ox (fără a o traversa). Astfel, axa Ox este asimptota orizontală a graficului.
Dacă x

Ecuații exponențiale

Să luăm în considerare câteva exemple de ecuații exponențiale, i.e. ecuații în care necunoscutul este conținut în exponent. Rezolvarea ecuațiilor exponențiale se reduce adesea la rezolvarea ecuației a x = a b unde a > 0, \(a \neq 1\), x este o necunoscută. Această ecuație este rezolvată folosind proprietatea puterii: puterile cu aceeași bază a > 0, \(a \neq 1\) sunt egale dacă și numai dacă exponenții lor sunt egali.

Rezolvați ecuația 2 3x 3 x = 576
Deoarece 2 3x = (2 3) x = 8 x, 576 = 24 2, ecuația poate fi scrisă ca 8 x 3 x = 24 2, sau ca 24 x = 24 2, din care x = 2.
Răspuns x = 2

Rezolvați ecuația 3 x + 1 - 2 3 x - 2 = 25
Luând factorul comun 3 x - 2 din paranteze din partea stângă, obținem 3 x - 2 (3 3 - 2) = 25, 3 x - 2 25 = 25,
de unde 3 x - 2 = 1, x - 2 = 0, x = 2
Răspuns x = 2

Rezolvați ecuația 3 x = 7 x
Deoarece \(7^x \neq 0 \) , ecuația poate fi scrisă sub forma \(\frac(3^x)(7^x) = 1 \), din care \(\left(\frac(3) )( 7) \right) ^x = 1 \), x = 0
Răspuns x = 0

Rezolvați ecuația 9 x - 4 3 x - 45 = 0
Prin înlocuirea 3 x = t, această ecuație se reduce la ecuația pătratică t 2 - 4t - 45 = 0. Rezolvând această ecuație, găsim rădăcinile ei: t 1 = 9, t 2 = -5, de unde 3 x = 9, 3 x = -5 .
Ecuația 3 x = 9 are rădăcină x = 2, iar ecuația 3 x = -5 nu are rădăcini, deoarece funcția exponențială nu poate lua valori negative.
Răspuns x = 2

Rezolvați ecuația 3 2 x + 1 + 2 5 x - 2 = 5 x + 2 x - 2
Să scriem ecuația sub forma
3 2 x + 1 - 2 x - 2 = 5 x - 2 5 x - 2, de unde
2 x - 2 (3 2 3 - 1) = 5 x - 2 (5 2 - 2)
2 x - 2 23 = 5 x - 2 23
\(\left(\frac(2)(5) \right) ^(x-2) = 1 \)
x - 2 = 0
Răspuns x = 2

Rezolvați ecuația 3 |x - 1| = 3 |x + 3|
Deoarece 3 > 0, \(3 \neq 1\), atunci ecuația inițială este echivalentă cu ecuația |x-1| = |x+3|
Punând la pătrat această ecuație, obținem corolarul ei (x - 1) 2 = (x + 3) 2, din care
x 2 - 2x + 1 = x 2 + 6x + 9, 8x = -8, x = -1
Verificarea arată că x = -1 este rădăcina ecuației originale.
Răspuns x = -1

O ecuație cu o necunoscută, care, după ce deschide parantezele și aduce termeni similari, ia forma

ax + b = 0, unde a și b sunt numere arbitrare, se numește ecuație liniară cu unul necunoscut. Astăzi ne vom da seama cum să rezolvăm aceste ecuații liniare.

De exemplu, toate ecuațiile:

2x + 3= 7 – 0,5x; 0,3x = 0; x/2 + 3 = 1/2 (x – 2) - liniar.

Se numește valoarea necunoscutului care transformă ecuația într-o egalitate adevărată decizie sau rădăcina ecuației .

De exemplu, dacă în ecuația 3x + 7 = 13 în loc de necunoscutul x înlocuim numărul 2, obținem egalitatea corectă 3 2 +7 = 13. Aceasta înseamnă că valoarea x = 2 este soluția sau rădăcina a ecuației.

Iar valoarea x = 3 nu transformă ecuația 3x + 7 = 13 într-o egalitate adevărată, deoarece 3 2 +7 ≠ 13. Aceasta înseamnă că valoarea x = 3 nu este o soluție sau o rădăcină a ecuației.

Rezolvarea oricăror ecuații liniare se reduce la rezolvarea ecuațiilor de forma

ax + b = 0.

Să mutăm termenul liber din partea stângă a ecuației la dreapta, schimbând semnul din fața lui b la opus, obținem

Dacă a ≠ 0, atunci x = ‒ b/a .

Exemplul 1. Rezolvați ecuația 3x + 2 =11.

Să mutăm 2 din partea stângă a ecuației la dreapta, schimbând semnul din fața lui 2 în opus, obținem
3x = 11 – 2.

Să facem scăderea, atunci
3x = 9.

Pentru a găsi x, trebuie să împărțiți produsul la un factor cunoscut, adică
x = 9:3.

Aceasta înseamnă că valoarea x = 3 este soluția sau rădăcina ecuației.

Răspuns: x = 3.

Dacă a = 0 și b = 0, atunci obținem ecuația 0x = 0. Această ecuație are infinit de soluții, deoarece atunci când înmulțim orice număr cu 0 obținem 0, dar și b este egal cu 0. Soluția acestei ecuații este orice număr.

Exemplul 2. Rezolvați ecuația 5(x – 3) + 2 = 3 (x – 4) + 2x ‒ 1.

Să extindem parantezele:
5x – 15 + 2 = 3x – 12 + 2x ‒ 1.


5x – 3x ‒ 2x = – 12 ‒ 1 + 15 ‒ 2.

Iată câțiva termeni similari:
0x = 0.

Răspuns: x - orice număr.

Dacă a = 0 și b ≠ 0, atunci obținem ecuația 0x = - b. Această ecuație nu are soluții, deoarece atunci când înmulțim orice număr cu 0 obținem 0, dar b ≠ 0.

Exemplul 3. Rezolvați ecuația x + 8 = x + 5.

Să grupăm termeni care conțin necunoscute în partea stângă și termeni liberi în partea dreaptă:
x – x = 5 – 8.

Iată câțiva termeni similari:
0х = ‒ 3.

Răspuns: fără soluții.

Pe figura 1 prezintă o diagramă pentru rezolvarea unei ecuații liniare

Să întocmim o schemă generală de rezolvare a ecuațiilor cu o variabilă. Să luăm în considerare soluția exemplului 4.

Exemplul 4. Să presupunem că trebuie să rezolvăm ecuația

1) Înmulțiți toți termenii ecuației cu cel mai mic multiplu comun al numitorilor, egal cu 12.

2) După reducere obținem
4 (x – 4) + 3 2 (x + 1) ‒ 12 = 6 5 (x – 3) + 24x – 2 (11x + 43)

3) Pentru a separa termenii care conțin termeni necunoscuți și cei liberi, deschideți parantezele:
4x – 16 + 6x + 6 – 12 = 30x – 90 + 24x – 22x – 86.

4) Să grupăm într-o parte termenii care conțin necunoscute, iar în cealaltă - termeni liberi:
4x + 6x – 30x – 24x + 22x = ‒ 90 – 86 + 16 – 6 + 12.

5) Să prezentăm termeni similari:
- 22x = - 154.

6) Împărțiți la – 22, obținem
x = 7.

După cum puteți vedea, rădăcina ecuației este șapte.

In general asa ecuațiile pot fi rezolvate folosind următoarea schemă:

a) aduceți ecuația la forma sa întreagă;

b) deschideți parantezele;

c) grupează termenii care conțin necunoscutul într-o parte a ecuației, iar termenii liberi în cealaltă;

d) aduce membri similari;

e) rezolvați o ecuație de forma aх = b, care s-a obținut după aducerea unor termeni similari.

Cu toate acestea, această schemă nu este necesară pentru fiecare ecuație. Când rezolvați multe ecuații mai simple, trebuie să începeți nu de la prima, ci de la a doua ( Exemplu. 2), al treilea ( Exemplu. 13) și chiar din etapa a cincea, ca în exemplul 5.

Exemplul 5. Rezolvați ecuația 2x = 1/4.

Aflați necunoscutul x = 1/4: 2,
x = 1/8
.

Să ne uităm la rezolvarea unor ecuații liniare găsite în examenul de stat principal.

Exemplul 6. Rezolvați ecuația 2 (x + 3) = 5 – 6x.

2x + 6 = 5 – 6x

2x + 6x = 5 – 6

Răspuns: - 0,125

Exemplul 7. Rezolvați ecuația – 6 (5 – 3x) = 8x – 7.

– 30 + 18x = 8x – 7

18x – 8x = – 7 +30

Răspuns: 2.3

Exemplul 8. Rezolvați ecuația

3(3x – 4) = 4 7x + 24

9x – 12 = 28x + 24

9x – 28x = 24 + 12

Exemplul 9. Aflați f(6) dacă f (x + 2) = 3 7

Soluţie

Deoarece trebuie să găsim f(6) și știm f (x + 2),
atunci x + 2 = 6.

Rezolvăm ecuația liniară x + 2 = 6,
obținem x = 6 – 2, x = 4.

Dacă x = 4 atunci
f(6) = 3 7-4 = 3 3 = 27

Raspuns: 27.

Dacă mai aveți întrebări sau doriți să înțelegeți mai bine rezolvarea ecuațiilor, înscrieți-vă la lecțiile mele din PROGRAM. Voi fi bucuros să vă ajut!

TutorOnline vă recomandă, de asemenea, să vizionați o nouă lecție video de la profesorul nostru Olga Alexandrovna, care vă va ajuta să înțelegeți atât ecuațiile liniare, cât și altele.

site-ul web, atunci când copiați materialul integral sau parțial, este necesar un link către sursă.

Utilizarea ecuațiilor este larg răspândită în viața noastră. Ele sunt folosite în multe calcule, construcție de structuri și chiar sport. Omul a folosit ecuații în antichitate, iar de atunci utilizarea lor a crescut. Rezolvarea ecuațiilor de clasa a IX-a implică utilizarea multor metode de rezolvare diferite: metode grafice, de adunare algebrică, introducerea de noi variabile, utilizarea funcțiilor și conversia ecuațiilor de la un tip la unul mai simplu și multe altele. Metoda de rezolvare a ecuației este selectată pe baza datelor inițiale, așa că cel mai bine este să înțelegeți clar metodele folosind exemple.

Să presupunem că ni se dă o ecuație de următoarea formă:

\[\frac (18)(x^2-6x)-\frac(12)(x^2+6x)=\frac (1)(x)\]

Pentru a rezolva această ecuație, împărțiți laturile stânga și dreapta la \

\[\frac(18)(x-6)-\frac(12)(x+6)=1\]

\[\frac (6x+180)(x^2-36)=1\]

Cele două rădăcini rezultate sunt soluția acestei ecuații.

Să rezolvăm ecuația:

\[ (x^2-2x)^2-3x^2+6x-4=0 \]

Este necesar să se găsească suma tuturor rădăcinilor acestei ecuații. Pentru a face acest lucru, trebuie să înlocuiți:

Rădăcinile acestei ecuații vor fi 2 numere: -1 și 4. Prin urmare:

\[\begin(bmatrix) x^2-2x=-1\\ x^2-2x=4 \end(bmatrix)\] \[\begin(bmatrix) x=1\\ x=1\pm\sqrt5 \end(bmatrix)\]

Suma tuturor celor 3 rădăcini este egală cu 4, care va fi răspunsul la rezolvarea acestei ecuații.

Unde pot rezolva ecuații online pentru clasa a 9-a?

Puteți rezolva ecuația pe site-ul nostru https://site. Rezolvatorul online gratuit vă va permite să rezolvați ecuații online de orice complexitate în câteva secunde. Tot ce trebuie să faceți este să introduceți pur și simplu datele dvs. în soluție. De asemenea, puteți viziona instrucțiuni video și puteți afla cum să rezolvați ecuația pe site-ul nostru. Și dacă mai aveți întrebări, le puteți adresa în grupul nostru VKontakte http://vk.com/pocketteacher. Alăturați-vă grupului nostru, suntem întotdeauna bucuroși să vă ajutăm.