Функция y=f(x) называется бесконечно малой при x→a или при x →∞, если или , т.е. бесконечно малая функция – это функция, предел которой в данной точке равен нулю.

Примеры.

1. Функция f(x) =(x -1) 2 является бесконечно малой при x →1, так как (см. рис.).

2. Функция f(x) = tgx – бесконечно малая при x →0.

3. f(x) = ln (1+x )– бесконечно малая при x →0.

4. f(x) = 1/x – бесконечно малая при x →∞.

Установим следующее важное соотношение:

Теорема. Если функция y=f(x) представима при x→a в виде суммы постоянного числа b и бесконечно малой величины α(x): f (x)=b+ α(x) то .

Обратно, если , то f (x)=b+α(x) , где a(x) – бесконечно малая при x→a.

Доказательство .

1. Докажем первую часть утверждения. Из равенства f(x)=b+α(x) следует |f(x) – b|=| α| . Но так как a(x) – бесконечно малая, то при произвольном ε найдется δ – окрестность точки a, при всех x из которой, значения a(x) удовлетворяют соотношению |α(x)|< ε. Тогда |f(x) – b|< ε. А это и значит, что .

2. Если , то при любом ε>0 для всех х из некоторой δ – окрестность точки a будет |f(x) – b|< ε. Но если обозначим f(x) – b= α , то |α(x)|< ε, а это значит, что a – бесконечно малая.

Рассмотрим основные свойства бесконечно малых функций.

Теорема 1. Алгебраическая сумма двух, трех и вообще любого конечного числа бесконечно малых есть функция бесконечно малая.

Доказательство . Приведем доказательство для двух слагаемых. Пусть f(x)=α(x)+β(x) , где и . Нам нужно доказать, что при произвольном как угодно малом ε> 0 найдетсяδ> 0, такое, что для x , удовлетворяющих неравенству |x – a|<δ , выполняется |f(x)|< ε.

Итак, зафиксируем произвольное число ε> 0. Так как по условию теоремы α(x) – бесконечно малая функция, то найдется такое δ 1 > 0, что при |x – a|< δ 1 имеем |α(x)|< ε/ 2. Аналогично, так как β(x) – бесконечно малая, то найдется такое δ 2 > 0, что при |x – a|< δ 2 имеем | β(x)|< ε/ 2.

Возьмем δ=min{ δ 1 , δ 2 } .Тогда в окрестности точки a радиуса δ будет выполняться каждое из неравенств |α(x)|< ε/ 2 и | β(x)|< ε/ 2. Следовательно, в этой окрестности будет

|f(x)|=| α(x)+β(x) | ≤ |α(x)| + | β(x)| < ε/2 + ε/2= ε,

т.е. |f(x)|< ε, что и требовалось доказать.

Теорема 2. Произведение бесконечно малой функции a(x) на ограниченную функцию f(x) при x→a (или при x→∞ ) есть бесконечно малая функция.


Доказательство . Так как функция f(x) ограничена, то существует число М такое, что при всех значениях x из некоторой окрестности точки a|f(x)|≤M. Кроме того, так как a(x) – бесконечно малая функция при x→a , то для произвольного ε> 0 найдется окрестность точки a , в которой будет выполняться неравенство |α(x)|< ε/M . Тогда в меньшей из этих окрестностей имеем | αf|< ε/M = ε. А это и значит, что af – бесконечно малая. Для случая x→∞ доказательство проводится аналогично.

Из доказанной теоремы вытекают:

Следствие 1. Если и , то .

Следствие 2. Если и c= const, то .

Теорема 3. Отношение бесконечно малой функции α(x) на функцию f(x) , предел которой отличен от нуля, есть бесконечно малая функция.

Доказательство . Пусть . Тогда 1/f(x) есть ограниченная функция. Поэтому дробь есть произведение бесконечно малой функции на функцию ограниченную, т.е. функция бесконечно малая.

Определение числовой функции. Способы задания функций.

Пусть D – множество на числовой прямой R. Если каждому х принадлежащему D поставлено в соответствие единственное число y=f(x), то говорят, что задана функция f.

Способы задания функций:

1) табличный – для функций, заданных на конечном множестве.

2) аналитический

3) графический

2 и 3 – для функций, определенных на бесконечном множестве.

Понятие обратной функции.

Если функция y=f(x) такова, что разным значениям х аргумента соответствуют разные значения у функции, то переменную х можно выразить как функцию переменной у: x=g(y). Функцию g называют обратной к f и обозначают f^(-1).

Понятие сложной функции.

Сложная функция- функция, аргументом которой является другая любая функция.

Пусть даны функции f(x) и g(x). Составим из них две сложные функции. Считая функцию f внешней (главной), а функцию g – внутренней, получаем сложную функцию u(x)=f(g(x)).

Определение предела последовательности.

Число а называется пределом последовательности {xn}, если для любого положительного существует номер n0, начиная с которого все члены посл-ти отличаются от а по модулю меньше, чем на ε (т.е. попадают в ε-окрестность точки а):

Правила вычисления пределов сходящихся последовательностей.

1.Всякая сходящаяся последовательность имеет только один предел. 2. Если все элементы последовательности {x n } равны С (постоянной), то предел последовательности {x n }, тоже равен С. 3. ; 4. ; 5. .

Определение ограниченной последовательности.

Посл-ть {x n } называется ограниченной, если множество чисел X={x n } ограниченно: .

Определение бесконечно малой последовательности.

Посл-ть {x n } наз-ют бесконечно малой, если для любого (сколь угодно малого) >0 найдется такой номер n 0 , что для всякого n>n 0 выполняется нерав-во |x n |< .

Определение бесконечно большой последовательности.

Посл-ть наз-ют бесконечно большой, если для любого (сколь угодно большого) числа А>0 найдется такой номер n 0 , что для всякого номера n>n 0 выполняется нерав-во |x n |>A.

Определение монотонных последовательностей.

Монотонные посл-ти: 1) возрастающая, еслиx n x n +1 для всех n, 4) невозрастающей, еслиx n x n +1 для всех n.

Определение предела функции в точке.

Пределом ф-ии y=f(x) в точке x 0 (или при x x 0) наз-ют число а, если для любой посл-ти{x n } значений аргумента, сходящейся к х 0 (при этом все x n x 0), посл-ть {f(x n)} значений ф-ии сходится к пределу а.

Определение бесконечно малой функции.

Ф-ия f(x) наз-ся бесконечно малой при х→А, если .

Определение бесконечно большой функции.

Ф-ия f(x) наз-ся бесконечно большой при х→А, если .

Исчисление бесконечно малых и больших

Исчисление бесконечно малых - вычисления, производимые с бесконечно малыми величинами, при которых производный результат рассматривается как бесконечная сумма бесконечно малых. Исчисление бесконечно малых величин является общим понятием для дифференциальных и интегральных исчислений , составляющих основу современной высшей математики . Понятие бесконечно малой величины тесно связано с понятием предела .

Бесконечно малая

Последовательность a n называется бесконечно малой , если . Например, последовательность чисел - бесконечно малая.

Функция называется бесконечно малой в окрестности точки x 0 , если .

Функция называется бесконечно малой на бесконечности , если либо .

Также бесконечно малой является функция, представляющая собой разность функции и её предела, то есть если , то f (x ) − a = α(x ) , .

Бесконечно большая величина

Во всех приведённых ниже формулах бесконечность справа от равенства подразумевается определённого знака (либо «плюс», либо «минус»). То есть, например, функция x sinx , неограниченная с обеих сторон, не является бесконечно большой при .

Последовательность a n называется бесконечно большой , если .

Функция называется бесконечно большой в окрестности точки x 0 , если .

Функция называется бесконечно большой на бесконечности , если либо .

Свойства бесконечно малых и бесконечно больших

Сравнение бесконечно малых величин

Как сравнивать бесконечно малые величины?
Отношение бесконечно малых величин образует так называемую неопределённость .

Определения

Допустим, у нас есть бесконечно малые при одном и том же величины α(x ) и β(x ) (либо, что не суть важно для определения, бесконечно малые последовательности).

Для вычисления подобных пределов удобно использовать правило Лопиталя .

Примеры сравнения

С использованием О -символики полученные результаты могут быть записаны в следующем виде x 5 = o (x 3). В данном случае справедливы записи 2x 2 + 6x = O (x ) и x = O (2x 2 + 6x ).

Эквивалентные величины

Определение

Если , то бесконечно малые величины α и β называются эквивалентными ().
Очевидно, что эквивалентные величины являются частным случаем бесконечно малых величин одного порядка малости.

При справедливы следующие соотношения эквивалентности (как следствия из т.н. замечательных пределов):

Теорема

Предел частного (отношения) двух бесконечно малых величин не изменится, если одну из них (или обе) заменить эквивалентной величиной .

Данная теорема имеет прикладное значение при нахождении пределов (см. пример).

Пример использования

Заменяя s i n 2x эквивалентной величиной 2x , получаем

Исторический очерк

Понятие «бесконечно малое» обсуждалось ещё в античные времена в связи с концепцией неделимых атомов, однако в классическую математику не вошло. Вновь оно возродилось с появлением в XVI веке «метода неделимых» - разбиения исследуемой фигуры на бесконечно малые сечения.

В XVII веке произошла алгебраизация исчисления бесконечно малых. Они стали определяться как числовые величины, которые меньше всякой конечной (ненулевой) величины и всё же не равны нулю. Искусство анализа заключалось в составлении соотношения, содержащего бесконечно малые (дифференциалы), и затем - в его интегрировании .

Математики старой школы подвергли концепцию бесконечно малых резкой критике. Мишель Ролль писал, что новое исчисление есть «набор гениальных ошибок »; Вольтер ядовито заметил, что это исчисление представляет собой искусство вычислять и точно измерять вещи, существование которых не может быть доказано. Даже Гюйгенс признавался, что не понимает смысла дифференциалов высших порядков.

Как иронию судьбы можно рассматривать появление в середине века нестандартного анализа , который доказал, что первоначальная точка зрения - актуальные бесконечно малые - также непротиворечива и могла бы быть положена в основу анализа.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Бесконечно малая величина" в других словарях:

    БЕСКОНЕЧНО МАЛАЯ ВЕЛИЧИНА - переменная величина в некотором процессе, если она в этом процессе безгранично приближается (стремится) к нулю … Большая политехническая энциклопедия

    Бесконечно малая величина - ■ Нечто неизвестное, но имеет отношение к гомеопатии … Лексикон прописных истин

Опр.: Функция называется бесконечно малой при , если .

В записи « » будем предполагать, что x 0 может принимать как конечное значение: x 0 = Сonst , так и бесконечное: x 0 = ∞.

Свойства бесконечно малых функций:

1) Алгебраическая сумма конечного числа бесконечно малых при функций является бесконечно малой при функцией.

2) Произведение конечного числа бесконечно малых при функций является бесконечно малой при функцией.

3) Произведение ограниченной функции на бесконечно малую функцию является бесконечно малой функцией.

4) Частное от деления бесконечно малой при функции на функцию, предел которой отличен от нуля, является бесконечно малой при функцией.

Пример : Функция y = 2 + x является бесконечно малой при , т.к. .

Опр.: Функция называется бесконечно большой при , если .

Свойства бесконечно больших функций:

1) Сумма бесконечно больших при функций является бесконечно большой при функцией.

2) Произведение бесконечно большой при функции на функцию, предел которой отличен от нуля, является бесконечно большой при функцией.

3) Сумма бесконечно большой при функции и ограниченной функции является бесконечно большой функцией.

4) Частное от деления бесконечно большой при функции на функцию, имеющую конечный предел, является бесконечно большой при функцией.

Пример : Функция y = является бесконечно большой при , т.к. .

Теорема. Связь между бесконечно малыми и бесконечно большими величинами . Если функция является бесконечно малой при , то функция является бесконечно большой при . И обратно, если функция является бесконечно большой при , то функция является бесконечно малой при .

Отношение двух бесконечно малых принято обозначать символом , двух бесконечно больших - символом . Оба отношения являются неопределёнными в том смысле, что их предел может как существовать, так и не существовать, быть равным некоторому числу или быть бесконечным в зависимости от вида конкретных функций, входящих в неопределённые выражения.

Кроме неопределённостей вида и неопределёнными являются следующие выражения:



Разность бесконечно больших одного знака;

Произведение бесконечно малой на бесконечно большую;

Показательно-степенная функция, основание которой стремится к 1, а показатель – к ;

Показательно-степенная функция, основание которой является бесконечно малой, а показатель – бесконечно большой;

Показательно-степенная функция, основание и показатель которой являются бесконечно малыми;

Показательно-степенная функция, основание которой является бесконечно большой, а показатель – бесконечно малой.

Говорят, что имеет место неопределенность соответствующего вида. Вычисление предела называют в этих случаях раскрытием неопределенности . Для раскрытия неопределенности выражение, стоящее под знаком предела, преобразуют к виду, не содержащему неопределенности.

При вычислении пределов используют свойства пределов, а также свойства бесконечно малых и бесконечно больших функций.

Рассмотрим примеры вычислений различных пределов.

1) . 2) .

4) , т.к. произведение бесконечно малой функции при на ограниченную функцию является бесконечно малой.

5) . 6) .

7) = =

. В данном случае имела место неопределенность типа , которую удалось раскрыть с помощью разложения многочленов на множители и сокращения на общий множитель .

= .

В данном случае имела место неопределенность типа , которую удалось раскрыть с помощью умножения числителя и знаменателя на выражение , использования формулы , и последующего сокращения дроби на ( +1).

9)
. В данном примере неопределенность типа была раскрыта почленным делением числителя и знаменателя дроби на старшую степень .

Замечательные пределы

Первый замечательный предел : .

Доказательство. Рассмотрим единичную окружность (рис.3).

Рис.3. Единичная окружность

Пусть х – радианная мера центрального угла МОА (), тогда ОА = R = 1, МК = sin x , AT = tg x . Сравнивая площади треугольников ОМА , ОТА и сектора ОМА , получим:

,

.

Разделим последнее неравенство на sin x , получим:

.

Так как при , то по свойству 5) пределов

Откуда и обратная величина при , что и требовалось доказать.

Замечание: Если функция является бесконечно малой при , т.е. , то первый замечательный предел имеет вид:

.

Рассмотрим примеры вычислений пределов с использованием первого замечательного предела.

При вычислении этого предела использовали тригонометрическую формулу: .

.

Рассмотрим примеры вычислений пределов с использованием второго замечательного предела.

2) .

3) . Имеет место неопределенность типа . Сделаем замену , тогда ; при .

Определения и свойства бесконечно малых и бесконечно больших функций в точке. Доказательства свойств и теорем. Связь между бесконечно малыми и бесконечно большими функциями.

Содержание

См. также: Бесконечно малые последовательности - определение и свойства
Свойства бесконечно больших последовательностей

Определение бесконечно малой и бесконечно большой функции

Пусть x 0 есть конечная или бесконечно удаленная точка: ∞ , -∞ или +∞ .

Определение бесконечно малой функции
Функция α(x) называется бесконечно малой при x стремящемся к x 0 0 , и он равен нулю:
.

Определение бесконечно большой функции
Функция f(x) называется бесконечно большой при x стремящемся к x 0 , если функция имеет предел при x → x 0 , и он равен бесконечности:
.

Свойства бесконечно малых функций

Свойство суммы, разности и произведения бесконечно малых функций

Сумма, разность и произведение конечного числа бесконечно малых функций при x → x 0 является бесконечно малой функцией при x → x 0 .

Это свойство является прямым следствием арифметических свойств пределов функции .

Теорема о произведении ограниченной функции на бесконечно малую

Произведение функции, ограниченной на некоторой проколотой окрестности точки x 0 , на бесконечно малую, при x → x 0 , является бесконечно малой функцией при x → x 0 .

Свойство о представлении функции в виде суммы постоянной и бесконечно малой функции

Для того, чтобы функция f(x) имела конечный предел , необходимо и достаточно, чтобы
,
где - бесконечно малая функция при x → x 0 .

Свойства бесконечно больших функций

Теорема о сумме ограниченной функции и бесконечно большой

Сумма или разность ограниченной функции, на некоторой проколотой окрестности точки x 0 , и бесконечно большой функции, при x → x 0 , является бесконечно большой функцией при x → x 0 .

Теорема о частном от деления ограниченной функции на бесконечно большую

Если функция f(x) является бесконечно большой при x → x 0 , а функция g(x) - ограничена на некоторой проколотой окрестности точки x 0 , то
.

Теорема о частном от деления ограниченной снизу функции на бесконечно малую

Если функция , на некоторой проколотой окрестности точки , по абсолютной величине ограничена снизу положительным числом:
,
а функция является бесконечно малой при x → x 0 :
,
и существует проколотая окрестность точки , на которой , то
.

Свойство неравенств бесконечно больших функций

Если функция является бесконечно большой при :
,
и функции и , на некоторой проколотой окрестности точки удовлетворяют неравенству:
,
то функция также бесконечно большая при :
.

Это свойство имеет два частных случая.

Пусть, на некоторой проколотой окрестности точки , функции и удовлетворяют неравенству:
.
Тогда если , то и .
Если , то и .

Связь между бесконечно большими и бесконечно малыми функциями

Из двух предыдущих свойств вытекает связь между бесконечно большими и бесконечно малыми функциями.

Если функция является бесконечно большой при , то функция является бесконечно малой при .

Если функция являются бесконечно малой при , и , то функция является бесконечно большой при .

Связь между бесконечно малой и бесконечно большой функцией можно выразить символическим образом:
, .

Если бесконечно малая функция имеет определенный знак при , то есть положительна (или отрицательна) на некоторой проколотой окрестности точки , то можно записать так:
.
Точно также если бесконечно большая функция имеет определенный знак при , то пишут:
, или .

Тогда символическую связь между бесконечно малыми и бесконечно большими функциями можно дополнить следующими соотношениями:
, ,
, .

Дополнительные формулы, связывающие символы бесконечности, можно найти на странице
«Бесконечно удаленные точки и их свойства ».

Доказательство свойств и теорем

Доказательство теоремы о произведении ограниченной функции на бесконечно малую

Для доказательства этой теоремы, мы воспользуемся . А также используем свойство бесконечно малых последовательностей, согласно которому

Пусть функция является бесконечно малой при , а функция ограничена в некоторой проколотой окрестности точки :
при .

Поскольку существует предел , то существует проколотая окрестность точки , на которой определена функция . Пусть есть пересечение окрестностей и . Тогда на ней определены функции и .


.
,
a последовательность является бесконечно малой:
.

Воспользуемся тем, что произведение ограниченной последовательности на бесконечно малую есть бесконечно малая последовательность:
.
.

Теорема доказана.

Доказательство свойства о представлении функции в виде суммы постоянной и бесконечно малой функции

Необходимость . Пусть функция имеет в точке конечный предел
.
Рассмотрим функцию:
.
Используя свойство предела разности функций , имеем:
.
То есть есть бесконечно малая функция при .

Достаточность . Пусть и . Применим свойство предела суммы функций :
.

Свойство доказано.

Доказательство теоремы о сумме ограниченной функции и бесконечно большой

Для доказательства теоремы, мы воспользуемся определением предела функции по Гейне


при .

Поскольку существует предел , то существует проколотая окрестность точки , на которой функция определена. Пусть есть пересечение окрестностей и . Тогда на ней определены функции и .

Пусть есть произвольная последовательность, сходящаяся к , элементы которой принадлежат окрестности :
.
Тогда определены последовательности и . Причем последовательность является ограниченной:
,
a последовательность является бесконечно большой:
.

Поскольку сумма или разность ограниченной последовательности и бесконечно большой
.
Тогда, согласно определению предела последовательности по Гейне,
.

Теорема доказана.

Доказательство теоремы о частном от деления ограниченной функции на бесконечно большую

Для доказательства, мы воспользуемся определением предела функции по Гейне . Также используем свойство бесконечно больших последовательностей, согласно которому является бесконечно малой последовательностью.

Пусть функция является бесконечно большой при , а функция ограничена в некоторой проколотой окрестности точки :
при .

Поскольку функция бесконечно большая, то существует проколотая окрестность точки , на которой она определена и не обращается в нуль:
при .
Пусть есть пересечение окрестностей и . Тогда на ней определены функции и .

Пусть есть произвольная последовательность, сходящаяся к , элементы которой принадлежат окрестности :
.
Тогда определены последовательности и . Причем последовательность является ограниченной:
,
a последовательность является бесконечно большой с отличными от нуля членами:
, .

Поскольку частное от деления ограниченной последовательности на бесконечно большую является бесконечно малой последовательностью, то
.
Тогда, согласно определению предела последовательности по Гейне,
.

Теорема доказана.

Доказательство теоремы о частном от деления ограниченной снизу функции на бесконечно малую

Для доказательства этого свойства, мы воспользуемся определением предела функции по Гейне . Также используем свойство бесконечно больших последовательностей, согласно которому является бесконечно большой последовательностью.

Пусть функция является бесконечно малой при , а функция ограничена по абсолютной величине снизу положительным числом, на некоторой проколотой окрестности точки :
при .

По условию существует проколотая окрестность точки , на которой функция определена и не обращается в нуль:
при .
Пусть есть пересечение окрестностей и . Тогда на ней определены функции и . Причем и .

Пусть есть произвольная последовательность, сходящаяся к , элементы которой принадлежат окрестности :
.
Тогда определены последовательности и . Причем последовательность является ограниченной снизу:
,
а последовательность является бесконечно малой с отличными от нуля членами:
, .

Поскольку частное от деления ограниченной снизу последовательности на бесконечно малую является бесконечно большой последовательностью, то
.
И пусть имеется проколотая окрестность точки , на которой
при .

Возьмем произвольную последовательность , сходящуюся к . Тогда, начиная с некоторого номера N , элементы последовательности будут принадлежать этой окрестности:
при .
Тогда
при .

Согласно определению предела функции по Гейне,
.
Тогда по свойству неравенств бесконечно больших последовательностей,
.
Поскольку последовательность произвольная, сходящаяся к , то по определению предела функции по Гейне,
.

Свойство доказано.

Использованная литература:
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.

См. также: