Инструкция

Атом любого вещества состоит из электронной оболочки и ядра. Ядро состоит из двух типов частиц - нейтронов и протонов. Нейтроны не имеют электрического заряд а, то есть электрический заряд нейтронов равен нулю. Протоны являются положительно заряженными частицами и имеют электрический заряд , равный +1. Количество протонов характеризует атомный номер данного атома.

Электронная оболочка атома состоит из электронных орбиталей, на которых расположено разное количество электронов. Электрон - отрицательно заряженная элементарная частица. Ее электрический заряд равен -1.
При помощи связей атомы могут также соединяться в молекулы.

В нейтральном атоме количество протонов равно количеству электронов. Поэтому его заряд равен нулю.
Чтобы определить заряд иона , необходимо знать его структуру, а именно количество протонов в ядре и количество электронов на электронных орбиталях.

Суммарный заряд иона получается в результате алгебраического суммирования заряд ов входящих в него протонов и электронов. Число электронов в ионе может превышать число протонов, и тогда ион будет отрицательным. Если число электронов меньше числа протонов, то ион будет положительным.

Зная химический элемент, по таблице Менделеева мы можем определить его атомный номер, который равен количеству протонов в ядре атома этого элемента (например 11 у натрия). Если один из электронов покинул атом натрия, то у атома натрия будет уже не 11, а 10 электронов. Атом натрия станет положительно заряженным ионом с заряд ом Z = 11+(-10) = +1.
Обозначаться такой ион будет символом Na с плюсом сверху, в случае заряд а +2 - двумя плюсами и.т.д. Соответственно для отрицательного иона используется знак «минус».

Атом химического элемента состоит из ядра и электронной оболочки. Ядро - это центральная часть атома, в котором сосредоточена почти вся его масса. В отличие от электронной оболочки, ядро имеет положительный заряд .

Вам понадобится

  • Атомный номер химического элемента, закон Мозли

Инструкция

Ядро атома состоит из двух типов частиц - протонов и нейтронов. Нейтроны являются электронейтральными частицами, то есть их электрический заряд равен нуля. Протоны являются положительно заряженными частицами и их электрический заряд равен +1.

Таким образом, заряд ядра равен количеству протонов. В свою очередь, количество протонов в ядре равно атомному номеру химического элемента. К примеру, атомный номер водорода - 1, то есть ядро водорода состоит из одного протона имеет заряд +1. Атомный номер натрия - 11, заряд его ядра равен +11.

При альфа-распаде ядра его его атомный номер уменьшается на два за счет испускания альфа-частицы (ядра атома гелия). Таким образом, количество протонов в ядре, испытавшем альфа-распад, также уменьшается на два.
Бета-распад может происходить в трех различных видах. В случае распада «бета-минус» нейтрон превращается в протон при испускании электрона и антинейтрино. Тогда заряд ядра увеличивается на единицу.
В случае распада «бета-плюс» протон превращается в нейтрон, позитрон и нйтрино, заряд ядра уменьшается на единицу.
В случае электронного захвата заряд ядра также уменьшается на единицу.

Заряд ядра можно также определить по частоте спектральных линий характеристического излучения атома. Согласно закону Мозли: sqrt(v/R) = (Z-S)/n, где v - спектральная частота характеристического излучения, R - постоянная Ридберга, S - постоянная экранирования, n - главное квантовое число.
Таким образом, Z = n*sqrt(v/r)+s.

Видео по теме

Источники:

  • как изменяется заряд ядра

Впереди лабораторная работа, а нужные навыки и умения по распознаванию химических веществ не наработаны. А может в химической лаборатории случайно отклеились этикетки с названиями соединений. Умение правильно определять химические вещества в силу своей специфичности может уже не потребоваться после окончания учебных заведений. Но зато эти знания могут понадобиться собственному ребенку, который придет за помощью. Что тогда ему ответить?



Вам понадобится

  • Штатив с пробирками, реагенты для определения веществ, спиртовка, проволочка с петелькой, индикаторы

Инструкция

Химические вещества состоят из положительно и отрицательно заряженных ионов, образуя в целом электронейтральное соединение. Чтобы определить состав вещества необходимо руководствоваться качественными реакциями на различные ионы . И не обязательно их учить наизусть, а достаточно знать, что существуют такие реагенты, с помощью которых можно определить практически любое химическое соединение.

Кислоты. Все кислоты объединяет то, что в их состав входит ион водорода. Именно его присутствие обусловливает кислые свойства. Качественной реакцией на эту группу веществ можно считать индикаторы, то есть в кислой среде лакмус становится красным, а метиловый оранжевый - розовым.

Основания. Вещества этой группы также можно определить с помощью индикатора. Характерную реакцию дает фенолфталеин, который в щелочной среде становится малиновым. Это происходит за счет присутствия гидроксид-ионов.

Металлы. Чтобы определить ионы металлов, для этого нужно воспользоваться спиртовкой или горелкой. Возьмите медную проволочку, на одном конце сделайте петельку 6-10 мм в диаметре и внесите в пламя. Практически сразу увидите, что оно приобрело окраску красивого зеленого цвета. Это происходит как раз за счет ионов меди. Тот же самый результат будет наблюдаться, если проволочку сначала обмакнуть в соли меди (хлорид меди, нитрат меди, сульфат меди), а потом внести в пламя.

Чтобы определить наличие ионов щелочных металлов (натрия и калия) и щелочно-земельных (кальция и бария) нужно также внести соответствующие растворы солей в пламя спиртовки. Ионы натрия окрасят пламя в ярко-желтый цвет, ионы кальция – в кирпично-красный. Ионы бария, входящие в состав веществ дадут желто-зеленое окрашивание, а ионы калия – фиолетовое.

Для определения ионов кислотных остатков существует целый ряд качественных реакций. Сульфат-ион можно определить, выбрав в качестве реагента ион хлора, что в результате даст белый осадок. Чтобы узнать, что в пробирке находится карбонат-ион, возьмите любую разбавленную кислоту и в итоге увидите вскипание. Дополнительно пропустите образовавшийся углекислый газ через известковую воду, наблюдая при этом помутнение.

Мы уже кратко рассматривали , в которой из-за незначительного различия в электроотрицательности атомов (0.4-2.0) электронная пара распределяется между ними не равномерно. Для тех, кто забыл, напоминаю, что электроотрицательность - это способность атомов притягивать к себе электроны.


Однако, если электроотрицательность атомов различается больше чем на 2 по таблице электроотрицательности, то электронная пара полностью переходит к более электроотрицательному атому, и в результате образуется ионная химическая связь . Ионная химическая связь образуется только между атомами типичных металлов (т.к. они легко теряют внешние электроны) и неметаллов (т.к. они обладают большой электроотрицательностью).


Положительные и отрицательные ионы

Наглядным примером ионной химической связи может служить обычная поваренная соль NaCl, которая присутствует на каждой кухне. Атомы натрия (и вообще всех металлов) слабо удерживают внешние электроны, тогда как атомы хлора напротив, обладают очень большой способностью притягивать к себе электроны, т.е обладают большой электроотрицательностью.


Поэтому при образовании молекулы NaCl каждый атом Na теряет один электрон (e -), образуя положительный ион натрия Na + , а каждый атом Cl, наоборот, приобретает этот потерянный электрон натрия, образуя отрицательный ион хлора Cl - . Это записывается в виде двух реакций:

  • Na → Na + + e - и ½Cl 2 + e - → Cl -

Записать ½Cl 2 пришлось потому, что газообразный хлор в природе состоит из двухатомных молекул, а не из свободных одиночных атомов хлора.


На рисунке выше, изображена кристаллическая решетка NaCl, где каждый хлорид-ион Cl - окружен со всех сторон соседними положительными ионами натрия Na + ; ионы натрия Na + точно также окружены ближайшими хлорид-ионами Cl - . Подобное расположение ионов обладает высокой устойчивостью.

Положительно заряженные ионы называются катионами . К ним в основном относятся металлы, так как они легко отдают от одного до трех электронов. Ниже приведены примеры катионов:


Анионами являются неметаллы, поскольку с радостью присоединяют к себе электроны, превращаясь в отрицательно заряженные ионы. Примеры анионов:


Заряд простого, одноатомного иона, например Mg 2+ или F 2- , называется его степенью окисления. Степень окисления - это такое число электронов, которое необходимо прибавить (восстановить) к иону или отнять (окислить) у него, чтобы он превратился обратно в нейтральный атом.

  • Реакция восстановления: Mg 2+ + 2e - → Mg
  • Реакция окисления: F 2- → F + 2e -

Процесс присоединения электронов к атому или просто их смещение в сторону данного атома называется реакцией восстановления , а оттягивание электронов от атома или их полное удаление называется реакцией окисления . Вот вам отличная шпаргалка со степенями окисления простых ионов:


Пример 12. Окисляется или восстанавливается хлор при образовании хлорид-иона? Какова степень окисления этого иона?
Решение: Хлор восстанавливается, поскольку к каждому атому хлора необходимо присоединить один электрон, чтобы образовался хлорид-ион. Хлорид-ион, Сl - , имеет степень окисления -1.

Пример 13. Окисляются или восстанавливаются металлы при образовании ими ионов? Какова степень окисления иона алюминия?
Решение: При образовании ионов металлов последние окисляются, поскольку при этом происходит удаление электронов от атомов металла. Ион алюминия, Аl 3+ , имеет степень окисления +3.

Валентность химических элементов

Валентностью называют число химических связей, которые данный атом образует с другими атомами в молекуле. Однако, если говорить простыми словами, то под валентностью понимается все та же степень окисления, но в отличии от нее валентность не имеет знака и не равна нулю.

Название ионов

Ионы металлов, которые имеют различные (переменные) степени окисления, записываются следующим образом:

  • Fe 2+ железо(II) или ион двухвалентного железа
  • Fe 3+ железо(III) или ион трехвалентного железа
  • Сu + медь(I) или ион одновалентной меди
  • Cu 2+ медь (II) или ион двухвалентной меди
  • Sn 2+ олово(II) или двухвалентного олова
  • Sn 4+ олово(IV) или ион четырехвалентного олова

Пример 2: Окисление или восстановление происходит при превращении иона трехвалентного железа в ион двухвалентного? Запишите уравнение этого процесса.

Решение: Уравнение реакции имеет следующий вид: Fe 3+ + e - → Fe 2+ . Она представляет собой процесс восстановления, поскольку к исходному иону присоединяется электрон.

Надеюсь урок 6 «» оказался для вас понятным и полезным. Если у вас возникли вопросы, пишите их в комментарии. Если вопросов нет, то переходите к уроку 7 « ».

Познавательное видео по теме

Впервые термин "ион" был введен в 1834 году, в чем заслуга Майкла Фарадея. После изучения действия электрического тока на растворы солей, щелочей и кислот он пришел к выводу, что в них содержатся частицы, имеющие некий заряд. Катионами Фарадей назвал ионы, которые в электрическом поле двигались к катоду, имеющему отрицательный заряд. Анионы - отрицательно заряженные неэлементарные ионные частицы, которые в электрическом поле движутся к плюсу - аноду.

Данная терминология применяется и сейчас, а частицы изучаются далее, что позволяет рассматривать химическую реакцию как результат электростатического взаимодействия. Многие реакции протекают по этому принципу, что позволило понять их ход и подобрать катализаторы и ингибиторы для ускорения их протекания и для угнетения синтеза. Также стало известно, что многие вещества, особенно в растворах, всегда находятся в виде ионов.

Номенклатура и классификация ионов

Ионы - это заряженные атомы или группа атомов, которая в ходе химической реакции потеряла или приобрела электроны. Они составляют внешние слои атома и могут теряться из-за низкой силы притяжения ядра. Тогда результатом отсоединения электрона является положительный ион. Также если атом имеет сильный ядерный заряд и узкую электронную оболочку, ядро является акцептором дополнительных электронов. В результате этого образуется отрицательная ионная частица.

Сами ионы - это не только атомы с избыточной или недостаточной электронной оболочкой. Это может быть и группа атомов. В природе чаще всего существуют именно групповые ионы, которые присутствуют в растворах, биологических жидкостях тел организмов и в морской воде. Имеется огромное количество видов ионов, названия которых вполне традиционны. Катионы - это ионные частицы, заряженные положительно, а заряженные отрицательно ионы - это анионы. В зависимости от состава их называют по-разному. Например, катион натрия, катион цезия и другие. Анионы называются по-другому, так как чаще всего состоят из многих атомов: сульфат-анион, ортофосфат-анион и другие.

Механизм образования ионов

Химические элементы в составе соединений редко являются электрически нейтральными. То есть они почти никогда не находятся в состоянии атомов. В образовании ковалентной связи, которая считается самой распространенной, атомы также имеют некий заряд, а электронная плотность смещается вдоль связей внутри молекулы. Однако заряд иона здесь не формируется, потому как энергия ковалентной связи меньше, нежели энергия ионизации. Потому, несмотря на различную электроотрицательность, одни атомы не могут полностью притянуть электроны внешнего слоя других.

В ионных реакциях, где разница электроотрицательности между атомами достаточно большая, один атом может забирать электроны внешнего слоя у другого атома. Тогда созданная связь сильно поляризуется и разрывается. Затраченная на это энергия, которая создает заряд иона, называется энергией ионизации. Для каждого атома она различная и указывается в стандартных таблицах.

Ионизация возможна только в том случае, когда атом или группа атомов способен либо отдавать электроны, либо акцептировать их. Чаще всего это наблюдается в растворе и кристаллах солей. В кристаллической решетке также присутствуют почти неподвижные заряженные частицы, лишенные кинетической энергии. А поскольку в кристалле нет возможности для передвижения, то реакция ионов протекают чаще всего в растворах.

Ионы в физике и химии

Физики и химики активно изучают ионы по нескольким причинам. Во-первых, эти частицы присутствуют во всех известных агрегатных состояниях вещества. Во-вторых, энергию отрыва электронов от атома можно измерить, чтобы использовать это в практической деятельности. В-третьих, в кристаллах и растворах ионы ведут себя по-разному. И, в-четвертых, ионы позволяют проводить электрический ток, а физико-химические свойства растворов меняются в зависимости от концентраций ионов.


Ионные реакции в растворе

Сами растворы и кристаллы следует рассмотреть детальнее. В кристаллах солей существуют отдельно расположенные положительные ионы, к примеру, катионы натрия и отрицательные, анионы хлора. Структура кристалла удивительна: за счет сил электростатического притяжения и отталкивания ионы ориентируются особым образом. В случае с хлоридом натрия они образуют так называемую алмазную кристаллическую решетку. Здесь каждый натриевый катион окружен 6 хлоридными анионами. В свою очередь, каждый хлоридный анион окружает 6 анионов хлора. Из-за этого простая поваренная соль и в холодной и горячей воде растворяется почти с одинаковой скоростью.


В растворе тоже не существует цельной молекулы хлорида натрия. Каждый из ионов здесь окружается диполями воды и хаотично передвигается в ее толще. Наличие зарядов и электростатических взаимодействий приводит к тому, что солевые растворы воды замерзают при температуре чуть меньше нуля, а кипят при температуре выше 100 градусов. Более того, если в растворе присутствуют другие вещества, способные вступить в химическую связь, то реакция протекает не с участием молекул, а ионов. Это создало учение о стадийности химической реакции.

Те продукты, которые получаются в конце, не образуются сразу в ходе взаимодействия, а постепенно синтезируются из промежуточных продуктов. Изучение ионов позволило понять, что реакция протекает как раз по принципам электростатических взаимодействий. Их результатом является синтез ионов, которые электростатически взаимодействуют с другими ионами, создавая конечный равновесный продукт реакции.

Резюме

Такая частица, как ион, это электрически заряженный атом или группа атомов, которая получается в ходе потери или приобретения электронов. Самым простым ионом является водородный: если он теряет один электрон, то представляет собой лишь ядро с зарядом +1. Он обуславливает кислую среду растворов и сред, что важно для функционирования биологических систем и организмов.

Ионы могут иметь как положительные, так и отрицательные заряды. За счет этого в растворах каждая частица вступает в электростатическое взаимодействие с диполями воды, что также создает условия для жизни и передачи сигналов клетками. Более того, в ионные технологии развиваются дальше. К примеру, созданы ионные двигатели, которыми оснащалось уже 7 космических миссий NASA.