to solve mathematics. Find quickly solving a mathematical equation in mode online. The website www.site allows solve the equation almost any given algebraic, trigonometric or transcendental equation online. When studying almost any branch of mathematics at different stages you have to decide equations online. To get an answer immediately, and most importantly an accurate answer, you need a resource that allows you to do this. Thanks to the site www.site solve equations online will take a few minutes. The main advantage of www.site when solving mathematical equations online- this is the speed and accuracy of the response provided. The site is able to solve any algebraic equations online, trigonometric equations online, transcendental equations online, and equations with unknown parameters in mode online. Equations serve as a powerful mathematical apparatus solutions practical problems. With the help mathematical equations it is possible to express facts and relationships that may seem confusing and complex at first glance. Unknown quantities equations can be found by formulating the problem in mathematical language in the form equations And decide received task in mode online on the website www.site. Any algebraic equation, trigonometric equation or equations containing transcendental features you can easily decide online and get the exact answer. When studying natural sciences, you inevitably encounter the need solving equations. In this case, the answer must be accurate and must be obtained immediately in the mode online. Therefore for solving mathematical equations online we recommend the site www.site, which will become your indispensable calculator for solve algebraic equations online, trigonometric equations online, and transcendental equations online or equations with unknown parameters. For practical problems of finding the roots of various mathematical equations resource www.. Solving equations online yourself, it is useful to check the received answer using online equation solving on the website www.site. You need to write the equation correctly and instantly get online solution, after which all that remains is to compare the answer with your solution to the equation. Checking the answer will take no more than a minute, it’s enough solve equation online and compare the answers. This will help you avoid mistakes in decision and correct the answer in time when solving equations online either algebraic, trigonometric, transcendental or the equation with unknown parameters.

Quadratic equations are studied in 8th grade, so there is nothing complicated here. The ability to solve them is absolutely necessary.

A quadratic equation is an equation of the form ax 2 + bx + c = 0, where the coefficients a, b and c are arbitrary numbers, and a ≠ 0.

Before studying specific solution methods, note that all quadratic equations can be divided into three classes:

  1. Have no roots;
  2. Have exactly one root;
  3. They have two different roots.

This is an important difference between quadratic equations and linear ones, where the root always exists and is unique. How to determine how many roots an equation has? There is a wonderful thing for this - discriminant.

Discriminant

Let the quadratic equation ax 2 + bx + c = 0 be given. Then the discriminant is simply the number D = b 2 − 4ac.

You need to know this formula by heart. Where it comes from is not important now. Another thing is important: by the sign of the discriminant you can determine how many roots a quadratic equation has. Namely:

  1. If D< 0, корней нет;
  2. If D = 0, there is exactly one root;
  3. If D > 0, there will be two roots.

Please note: the discriminant indicates the number of roots, and not at all their signs, as for some reason many people believe. Take a look at the examples and you will understand everything yourself:

Task. How many roots do quadratic equations have:

  1. x 2 − 8x + 12 = 0;
  2. 5x 2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

Let's write out the coefficients for the first equation and find the discriminant:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 1 12 = 64 − 48 = 16

So the discriminant is positive, so the equation has two different roots. We analyze the second equation in a similar way:
a = 5; b = 3; c = 7;
D = 3 2 − 4 5 7 = 9 − 140 = −131.

The discriminant is negative, there are no roots. The last equation left is:
a = 1; b = −6; c = 9;
D = (−6) 2 − 4 1 9 = 36 − 36 = 0.

The discriminant is zero - the root will be one.

Please note that coefficients have been written down for each equation. Yes, it’s long, yes, it’s tedious, but you won’t mix up the odds and make stupid mistakes. Choose for yourself: speed or quality.

By the way, if you get the hang of it, after a while you won’t need to write down all the coefficients. You will perform such operations in your head. Most people start doing this somewhere after 50-70 solved equations - in general, not that much.

Roots of a quadratic equation

Now let's move on to the solution itself. If the discriminant D > 0, the roots can be found using the formulas:

Basic formula for the roots of a quadratic equation

When D = 0, you can use any of these formulas - you will get the same number, which will be the answer. Finally, if D< 0, корней нет — ничего считать не надо.

  1. x 2 − 2x − 3 = 0;
  2. 15 − 2x − x 2 = 0;
  3. x 2 + 12x + 36 = 0.

First equation:
x 2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2) 2 − 4 1 (−3) = 16.

D > 0 ⇒ the equation has two roots. Let's find them:

Second equation:
15 − 2x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ the equation again has two roots. Let's find them

\[\begin(align) & ((x)_(1))=\frac(2+\sqrt(64))(2\cdot \left(-1 \right))=-5; \\ & ((x)_(2))=\frac(2-\sqrt(64))(2\cdot \left(-1 \right))=3. \\ \end(align)\]

Finally, the third equation:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 1 36 = 0.

D = 0 ⇒ the equation has one root. Any formula can be used. For example, the first one:

As you can see from the examples, everything is very simple. If you know the formulas and can count, there will be no problems. Most often, errors occur when substituting negative coefficients into the formula. Here again, the technique described above will help: look at the formula literally, write down each step - and very soon you will get rid of errors.

Incomplete quadratic equations

It happens that a quadratic equation is slightly different from what is given in the definition. For example:

  1. x 2 + 9x = 0;
  2. x 2 − 16 = 0.

It is easy to notice that these equations are missing one of the terms. Such quadratic equations are even easier to solve than standard ones: they don’t even require calculating the discriminant. So, let's introduce a new concept:

The equation ax 2 + bx + c = 0 is called an incomplete quadratic equation if b = 0 or c = 0, i.e. the coefficient of the variable x or the free element is equal to zero.

Of course, a very difficult case is possible when both of these coefficients are equal to zero: b = c = 0. In this case, the equation takes the form ax 2 = 0. Obviously, such an equation has a single root: x = 0.

Let's consider the remaining cases. Let b = 0, then we obtain an incomplete quadratic equation of the form ax 2 + c = 0. Let us transform it a little:

Since the arithmetic square root exists only of a non-negative number, the last equality makes sense only for (−c /a) ≥ 0. Conclusion:

  1. If in an incomplete quadratic equation of the form ax 2 + c = 0 the inequality (−c /a) ≥ 0 is satisfied, there will be two roots. The formula is given above;
  2. If (−c /a)< 0, корней нет.

As you can see, a discriminant was not required—there are no complex calculations at all in incomplete quadratic equations. In fact, it is not even necessary to remember the inequality (−c /a) ≥ 0. It is enough to express the value x 2 and see what is on the other side of the equal sign. If there is a positive number, there will be two roots. If it is negative, there will be no roots at all.

Now let's look at equations of the form ax 2 + bx = 0, in which the free element is equal to zero. Everything is simple here: there will always be two roots. It is enough to factor the polynomial:

Taking the common factor out of brackets

The product is zero when at least one of the factors is zero. This is where the roots come from. In conclusion, let’s look at a few of these equations:

Task. Solve quadratic equations:

  1. x 2 − 7x = 0;
  2. 5x 2 + 30 = 0;
  3. 4x 2 − 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. There are no roots, because a square cannot be equal to a negative number.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1.5; x 2 = −1.5.

Let us recall the basic properties of degrees. Let a > 0, b > 0, n, m be any real numbers. Then
1) a n a m = a n+m

2) \(\frac(a^n)(a^m) = a^(n-m) \)

3) (a n) m = a nm

4) (ab) n = a n b n

5) \(\left(\frac(a)(b) \right)^n = \frac(a^n)(b^n) \)

7) a n > 1, if a > 1, n > 0

8) a n 1, n
9) a n > a m if 0

In practice, functions of the form y = a x are often used, where a is a given positive number, x is a variable. Such functions are called indicative. This name is explained by the fact that the argument of the exponential function is the exponent, and the base of the exponent is the given number.

Definition. An exponential function is a function of the form y = a x, where a is a given number, a > 0, \(a \neq 1\)

The exponential function has the following properties

1) The domain of definition of the exponential function is the set of all real numbers.
This property follows from the fact that the power a x where a > 0 is defined for all real numbers x.

2) The set of values ​​of the exponential function is the set of all positive numbers.
To verify this, you need to show that the equation a x = b, where a > 0, \(a \neq 1\), has no roots if \(b \leq 0\), and has a root for any b > 0 .

3) The exponential function y = a x is increasing on the set of all real numbers if a > 1, and decreasing if 0. This follows from the properties of degree (8) and (9)

Let's construct graphs of exponential functions y = a x for a > 0 and for 0. Using the considered properties, we note that the graph of the function y = a x for a > 0 passes through the point (0; 1) and is located above the Ox axis.
If x 0.
If x > 0 and |x| increases, the graph quickly rises.

Graph of the function y = a x at 0 If x > 0 and increases, then the graph quickly approaches the Ox axis (without crossing it). Thus, the Ox axis is the horizontal asymptote of the graph.
If x

Exponential equations

Let's consider several examples of exponential equations, i.e. equations in which the unknown is contained in the exponent. Solving exponential equations often comes down to solving the equation a x = a b where a > 0, \(a \neq 1\), x is an unknown. This equation is solved using the power property: powers with the same base a > 0, \(a \neq 1\) are equal if and only if their exponents are equal.

Solve equation 2 3x 3 x = 576
Since 2 3x = (2 3) x = 8 x, 576 = 24 2, the equation can be written as 8 x 3 x = 24 2, or as 24 x = 24 2, from which x = 2.
Answer x = 2

Solve the equation 3 x + 1 - 2 3 x - 2 = 25
Taking the common factor 3 x - 2 out of brackets on the left side, we get 3 x - 2 (3 3 - 2) = 25, 3 x - 2 25 = 25,
whence 3 x - 2 = 1, x - 2 = 0, x = 2
Answer x = 2

Solve the equation 3 x = 7 x
Since \(7^x \neq 0 \) , the equation can be written in the form \(\frac(3^x)(7^x) = 1 \), from which \(\left(\frac(3)( 7) \right) ^x = 1 \), x = 0
Answer x = 0

Solve the equation 9 x - 4 3 x - 45 = 0
By replacing 3 x = t, this equation is reduced to the quadratic equation t 2 - 4t - 45 = 0. Solving this equation, we find its roots: t 1 = 9, t 2 = -5, whence 3 x = 9, 3 x = -5 .
The equation 3 x = 9 has a root x = 2, and the equation 3 x = -5 has no roots, since the exponential function cannot take negative values.
Answer x = 2

Solve equation 3 2 x + 1 + 2 5 x - 2 = 5 x + 2 x - 2
Let's write the equation in the form
3 2 x + 1 - 2 x - 2 = 5 x - 2 5 x - 2, whence
2 x - 2 (3 2 3 - 1) = 5 x - 2 (5 2 - 2)
2 x - 2 23 = 5 x - 2 23
\(\left(\frac(2)(5) \right) ^(x-2) = 1 \)
x - 2 = 0
Answer x = 2

Solve equation 3 |x - 1| = 3 |x + 3|
Since 3 > 0, \(3 \neq 1\), then the original equation is equivalent to the equation |x-1| = |x+3|
By squaring this equation, we obtain its corollary (x - 1) 2 = (x + 3) 2, from which
x 2 - 2x + 1 = x 2 + 6x + 9, 8x = -8, x = -1
Checking shows that x = -1 is the root of the original equation.
Answer x = -1

An equation with one unknown, which, after opening the brackets and bringing similar terms, takes the form

ax + b = 0, where a and b are arbitrary numbers, is called linear equation with one unknown. Today we’ll figure out how to solve these linear equations.

For example, all equations:

2x + 3= 7 – 0.5x; 0.3x = 0; x/2 + 3 = 1/2 (x – 2) - linear.

The value of the unknown that turns the equation into a true equality is called decision or root of the equation .

For example, if in the equation 3x + 7 = 13 instead of the unknown x we ​​substitute the number 2, we obtain the correct equality 3 2 +7 = 13. This means that the value x = 2 is the solution or root of the equation.

And the value x = 3 does not turn the equation 3x + 7 = 13 into a true equality, since 3 2 +7 ≠ 13. This means that the value x = 3 is not a solution or a root of the equation.

Solving any linear equations reduces to solving equations of the form

ax + b = 0.

Let's move the free term from the left side of the equation to the right, changing the sign in front of b to the opposite, we get

If a ≠ 0, then x = ‒ b/a .

Example 1. Solve the equation 3x + 2 =11.

Let's move 2 from the left side of the equation to the right, changing the sign in front of 2 to the opposite, we get
3x = 11 – 2.

Let's do the subtraction, then
3x = 9.

To find x, you need to divide the product by a known factor, that is
x = 9:3.

This means that the value x = 3 is the solution or root of the equation.

Answer: x = 3.

If a = 0 and b = 0, then we get the equation 0x = 0. This equation has infinitely many solutions, since when we multiply any number by 0 we get 0, but b is also equal to 0. The solution to this equation is any number.

Example 2. Solve the equation 5(x – 3) + 2 = 3 (x – 4) + 2x ‒ 1.

Let's expand the brackets:
5x – 15 + 2 = 3x – 12 + 2x ‒ 1.


5x – 3x ‒ 2x = – 12 ‒ 1 + 15 ‒ 2.

Here are some similar terms:
0x = 0.

Answer: x - any number.

If a = 0 and b ≠ 0, then we get the equation 0x = - b. This equation has no solutions, since when we multiply any number by 0 we get 0, but b ≠ 0.

Example 3. Solve the equation x + 8 = x + 5.

Let’s group terms containing unknowns on the left side, and free terms on the right side:
x – x = 5 – 8.

Here are some similar terms:
0х = ‒ 3.

Answer: no solutions.

On Figure 1 shows a diagram for solving a linear equation

Let's draw up a general scheme for solving equations with one variable. Let's consider the solution to Example 4.

Example 4. Suppose we need to solve the equation

1) Multiply all terms of the equation by the least common multiple of the denominators, equal to 12.

2) After reduction we get
4 (x – 4) + 3 2 (x + 1) ‒ 12 = 6 5 (x – 3) + 24x – 2 (11x + 43)

3) To separate terms containing unknown and free terms, open the brackets:
4x – 16 + 6x + 6 – 12 = 30x – 90 + 24x – 22x – 86.

4) Let us group in one part the terms containing unknowns, and in the other - free terms:
4x + 6x – 30x – 24x + 22x = ‒ 90 – 86 + 16 – 6 + 12.

5) Let us present similar terms:
- 22x = - 154.

6) Divide by – 22, We get
x = 7.

As you can see, the root of the equation is seven.

Generally such equations can be solved using the following scheme:

a) bring the equation to its integer form;

b) open the brackets;

c) group the terms containing the unknown in one part of the equation, and the free terms in the other;

d) bring similar members;

e) solve an equation of the form aх = b, which was obtained after bringing similar terms.

However, this scheme is not necessary for every equation. When solving many simpler equations, you have to start not from the first, but from the second ( Example. 2), third ( Example. 13) and even from the fifth stage, as in example 5.

Example 5. Solve the equation 2x = 1/4.

Find the unknown x = 1/4: 2,
x = 1/8
.

Let's look at solving some linear equations found in the main state exam.

Example 6. Solve the equation 2 (x + 3) = 5 – 6x.

2x + 6 = 5 – 6x

2x + 6x = 5 – 6

Answer: - 0.125

Example 7. Solve the equation – 6 (5 – 3x) = 8x – 7.

– 30 + 18x = 8x – 7

18x – 8x = – 7 +30

Answer: 2.3

Example 8. Solve the equation

3(3x – 4) = 4 7x + 24

9x – 12 = 28x + 24

9x – 28x = 24 + 12

Example 9. Find f(6) if f (x + 2) = 3 7's

Solution

Since we need to find f(6), and we know f (x + 2),
then x + 2 = 6.

We solve the linear equation x + 2 = 6,
we get x = 6 – 2, x = 4.

If x = 4 then
f(6) = 3 7-4 = 3 3 = 27

Answer: 27.

If you still have questions or want to understand solving equations more thoroughly, sign up for my lessons in the SCHEDULE. I will be glad to help you!

TutorOnline also recommends watching a new video lesson from our tutor Olga Alexandrovna, which will help you understand both linear equations and others.

website, when copying material in full or in part, a link to the source is required.

The use of equations is widespread in our lives. They are used in many calculations, construction of structures and even sports. Man used equations in ancient times, and since then their use has only increased. Solving ninth grade equations involves the use of many different solving methods: graphical, algebraic addition methods, introducing new variables, using functions and converting equations from one type to a simpler one, and much more. The method for solving the equation is selected based on the initial data, so it is best to understand the methods clearly using examples.

Suppose we are given an equation of the following form:

\[\frac (18)(x^2-6x)-\frac(12)(x^2+6x)=\frac (1)(x)\]

To solve this equation, divide the left and right sides by \

\[\frac(18)(x-6)-\frac(12)(x+6)=1\]

\[\frac (6x+180)(x^2-36)=1\]

The resulting two roots are the solution to this equation.

Let's solve the equation:

\[ (x^2-2x)^2-3x^2+6x-4=0 \]

It is necessary to find the sum of all roots of this equation. To do this you need to replace:

The roots of this equation will be 2 numbers: -1 and 4. Therefore:

\[\begin(bmatrix) x^2-2x=-1\\ x^2-2x=4 \end(bmatrix)\] \[\begin(bmatrix) x=1\\ x=1\pm\sqrt5 \end(bmatrix)\]

The sum of all 3 roots is equal to 4, which will be the answer to solving this equation.

Where can I solve equations online for grade 9?

You can solve the equation on our website https://site. The free online solver will allow you to solve online equations of any complexity in a matter of seconds. All you need to do is simply enter your data into the solver. You can also watch video instructions and learn how to solve the equation on our website. And if you still have questions, you can ask them in our VKontakte group http://vk.com/pocketteacher. Join our group, we are always happy to help you.