«Натуральный логарифм» - 0,1. Натуральные логарифмы. 4. «Логарифмический дартс». 0,04. 7. 121.

«Степенная функция 9 класс» - У. Кубическая парабола. У = х3. 9 класс учитель Ладошкина И.А. У = х2. Гипербола. 0. У = хn, у = х-n где n – заданное натуральное число. Х. Показатель – четное натуральное число (2n).

«Квадратичная функция» - 1 Определение квадратичной функции 2 Свойства функции 3 Графики функции 4 Квадратичные неравенства 5 Вывод. Свойства: Неравенства: Подготовил ученик 8А класса Герлиц Андрей. План: График: -Промежутки монотонности при а > 0 при а < 0. Квадратичная функция. Квадратичные функции используются уже много лет.

«Квадратичная функция и её график» - Решение.у=4x А(0,5:1) 1=1 А-принадлежит. При а=1 формула у=аx принимает вид.

«8 класс квадратичная функция» - 1) Построить вершину параболы. Построение графика квадратичной функции. x. -7. Построить график функции. Алгебра 8 класс Учитель 496 школы Бовина Т. В. -1. План построения. 2) Построить ось симметрии x=-1. y.

Построить функцию

Мы предлагаем вашему вниманию сервис по потроению графиков функций онлайн, все права на который принадлежат компании Desmos . Для ввода функций воспользуйтесь левой колонкой. Вводить можно вручную либо с помощью виртуальной клавиатуры внизу окна. Для увеличения окна с графиком можно скрыть как левую колонку, так и виртуальную клавиатуру.

Преимущества построения графиков онлайн

  • Визуальное отображение вводимых функций
  • Построение очень сложных графиков
  • Построение графиков, заданных неявно (например эллипс x^2/9+y^2/16=1)
  • Возможность сохранять графики и получать на них ссылку, которая становится доступной для всех в интернете
  • Управление масштабом, цветом линий
  • Возможность построения графиков по точкам, использование констант
  • Построение одновременно нескольких графиков функций
  • Построение графиков в полярной системе координат (используйте r и θ(\theta))

С нами легко в режиме онлайн строить графики различной сложности. Построение производится мгновенно. Сервис востребован для нахождения точек пересечения функций, для изображения графиков для дальнейшего их перемещения в Word документ в качестве иллюстраций при решении задач, для анализа поведенческих особенностей графиков функций. Оптимальным браузером для работы с графиками на данной странице сайта является Google Chrome. При использовании других браузеров корректность работы не гарантируется.

Урок: как построить параболу или квадратичную функцию?

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Парабола — это график функции описанный формулой ax 2 +bx+c=0.
Чтобы построить параболу нужно следовать простому алгоритму действий:

1) Формула параболы y=ax 2 +bx+c ,
если а>0 то ветви параболы направленны вверх ,
а то ветви параболы направлены вниз .
Свободный член c эта точке пересекается параболы с осью OY;

2) , ее находят по формуле x=(-b)/2a , найденный x подставляем в уравнение параболы и находим y ;

3) Нули функции или по другому точки пересечения параболы с осью OX они еще называются корнями уравнения. Чтобы найти корни мы уравнение приравниваем к 0 ax 2 +bx+c=0 ;

Виды уравнений:

a) Полное квадратное уравнение имеет вид ax 2 +bx+c=0 и решается по дискриминанту;
b) Неполное квадратное уравнение вида ax 2 +bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0:
ax 2 +bx=0,
х(ax+b)=0,
х=0 и ax+b=0;
c)Неполное квадратное уравнение вида ax 2 +c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a);

4) Найти несколько дополнительных точек для построения функции.

ПРАКТИЧЕСКАЯ ЧАСТЬ

И так теперь на примере разберем все по действиям:
Пример №1:
y=x 2 +4x+3
c=3 значит парабола пересекает OY в точке х=0 у=3. Ветви параболы смотрят вверх так как а=1 1>0.
a=1 b=4 c=3 x=(-b)/2a=(-4)/(2*1)=-2 y= (-2) 2 +4*(-2)+3=4-8+3=-1 вершина находится в точке (-2;-1)
Найдем корни уравнения x 2 +4x+3=0
По дискриминанту находим корни
a=1 b=4 c=3
D=b 2 -4ac=16-12=4
x=(-b±√(D))/2a
x 1 =(-4+2)/2=-1
x 2 =(-4-2)/2=-3

Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=-2

х -4 -3 -1 0
у 3 0 0 3

Подставляем вместо х в уравнение y=x 2 +4x+3 значения
y=(-4) 2 +4*(-4)+3=16-16+3=3
y=(-3) 2 +4*(-3)+3=9-12+3=0
y=(-1) 2 +4*(-1)+3=1-4+3=0
y=(0) 2 +4*(0)+3=0-0+3=3
Видно по значениям функции,что парабола симметрична относительно прямой х=-2

Пример №2:
y=-x 2 +4x
c=0 значит парабола пересекает OY в точке х=0 у=0. Ветви параболы смотрят вниз так как а=-1 -1 Найдем корни уравнения -x 2 +4x=0
Неполное квадратное уравнение вида ax 2 +bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0.
х(-x+4)=0, х=0 и x=4.

Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=2
х 0 1 3 4
у 0 3 3 0
Подставляем вместо х в уравнение y=-x 2 +4x значения
y=0 2 +4*0=0
y=-(1) 2 +4*1=-1+4=3
y=-(3) 2 +4*3=-9+13=3
y=-(4) 2 +4*4=-16+16=0
Видно по значениям функции,что парабола симметрична относительно прямой х=2

Пример №3
y=x 2 -4
c=4 значит парабола пересекает OY в точке х=0 у=4. Ветви параболы смотрят вверх так как а=1 1>0.
a=1 b=0 c=-4 x=(-b)/2a=0/(2*(1))=0 y=(0) 2 -4=-4 вершина находится в точке (0;-4)
Найдем корни уравнения x 2 -4=0
Неполное квадратное уравнение вида ax 2 +c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a)
x 2 =4
x 1 =2
x 2 =-2

Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=0
х -2 -1 1 2
у 0 -3 -3 0
Подставляем вместо х в уравнение y= x 2 -4 значения
y=(-2) 2 -4=4-4=0
y=(-1) 2 -4=1-4=-3
y=1 2 -4=1-4=-3
y=2 2 -4=4-4=0
Видно по значениям функции,что парабола симметрична относительно прямой х=0

Подписывайтесь на канал на YOUTUBE , чтобы быть в курсе всех новинок и готовится с нами к экзаменам.

Вида у = kx + m с двумя переменными х, у. Правда, переменные х, у, фигурирующие в этом уравнении (в этой математической модели) считались неравноправными: х - независимая переменная (аргумент), которой мы могли придавать любые значения, независимо ни от чего; у - зависимая переменная, поскольку ее значение зависело от того, какое значение переменной х было выбрано. Но тогда возникает естественный вопрос: а не встречаются ли математические модели такого же плана, но такие, у которых у выражается через х не по формуле у = kx + m, а каким-то иным способом? Ответ ясен: конечно, встречаются. Если, например, х - сторона квадрата, а у - его
площадь, то у - х 2 . Если х - сторона куба, а у - его объем, то у - х 3 . Если х - одна сторона прямоугольника, площадь которого равна 100 см 2 , а у - другая его сторона, то . Поэтому, естественно, что в математике не ограничиваются изучением модели y-kx + m, приходится изучать и модель у = х 2 , и модель у = х 3 , и модель , и многие другие модели, имеющие такую же структуру: в левой части равенства находится переменная у, а в правой - какое-то выражение с переменной х. Для таких моделей сохраняют термин «функция», опуская прилагательное «линейная».

В этом параграфе мы рассмотрим функцию у = х 2 и построим ее график .

Дадим независимой переменной х несколько конкретных значений и вычислим соответствующие значения зависимой переменной у (по формуле у = x 2):

если х = 0, то у = О 2 = 0;
если х = 1, то у = I 2 = 1;
если х = 2, то у = 2 2 = 4;
если х = 3, то у = З 2 = 9;
если х = - 1, то у = (- I 2) - 1;
если х = - 2, то у = (- 2) 2 = 4;
если х = - 3, то у = (- З) 2 = 9;
Короче говоря, мы составили следующую таблицу:

X 0
1
2
3
-1
-2
-3
У 0
1
4
9
1
4
9

Построим найденные точки (0; 0), (1; 1), (2; 4), 93; 9), (-1; 1), (- 2; 4), (- 3; 9), на координатной плоскости хОу (рис. 54, а).

Эти точки расположены на некоторой линии, начертим ее (рис. 54, б). Эту линию называют параболой.

Конечно, в идеале надо было бы дать аргументу х все возможные значения, вычислить соответствующие значения переменной у и построить полученные точки (х; у). Тогда график был бы абсолютно точным, безупречным. Однако это нереально, ведь таких точек бесконечно много. Поэтому математики поступают так: берут конечное множество точек, строят их на координатной плоскости и смотрят, какая линия намечается этими точками. Если контуры этой линии проявляются достаточно отчетливо (как это было у нас, скажем, в примере 1 из § 28), то эту линию проводят. Возможны ли ошибки? Не без этого. Поэтому и надо все глубже и глубже изучать математику, чтобы были средства избегать ошибок.

Попробуем, глядя на рисунок 54, описать геометрические свойства параболы.

Во-первых , отмечаем, что парабола выглядит довольно красиво, поскольку обладает симметрией. В самом деле, если провести выше оси х любую прямую, параллельную оси х, то эта прямая пересечет параболу в двух точках, расположенных на равных расстояниях от оси у, но по разные стороны от нее (рис. 55). Кстати, то же можно сказать и о точках, отмеченных на рисунке 54, а:

(1; 1} и (- 1; 1); (2; 4) и (-2; 4); C; 9) и (-3; 9).

Говорят, что ось у является осью симметрии параболы у=х 2 или что парабола симметрична относительно оси у.

Во-вторых , замечаем, что ось симметрии как бы разрезает параболу на две части, которые обычно называют ветвями параболы.

В-третьих , отмечаем, что у параболы есть особая точка, в которой смыкаются обе ветви и которая лежит на оси симметрии параболы - точка (0; 0). Учитывая ее особенность, ей присвоили специальное название - вершина параболы.

В-четвертых , когда одна ветвь параболы соединяется в вершине с другой ветвью, это происходит плавно, без излома; парабола как бы «прижимается» к оси абсцисс. Обычно говорят: парабола касается оси абсцисс.

Теперь попробуем, глядя на рисунок 54, описать некоторые свойства функции у = х 2.

Во-первых , замечаем, что у - 0 при х = 0, у > 0 при х > 0 и при х < 0.

Во-вторых, отмечаем, что y наим. = 0, а у наиб не существует.

В-третьих , замечаем, что функция у = х 2 убывает на луче (-°°, 0] - при этих значениях х, двигаясь по параболе слева направо, мы «спускаемся с горки» (см. рис. 55). Функция у = х 2 возрастает на луче ;
б) на отрезке [- 3, - 1,5];
в) на отрезке [- 3, 2].

Решение,

а) Построим параболу у = х 2 и выделим ту ее часть, которая соответствует значениям переменной х из отрезка (рис. 56). Для выделенной части графика находим у наим. = 1 (при х = 1), у наиб. = 9 (при х = 3).

б) Построим параболу у = х 2 и выделим ту ее часть, которая соответствует значениям переменной х из отрезка [-3, -1,5] (рис. 57). Для выделенной части графика находим y наим. = 2,25 (при х = - 1,5), у наиб. = 9 (при х = - 3).

в) Построим параболу у = х 2 и выделим ту ее часть, которая соответствует значениям переменной х из отрезка [-3, 2] (рис. 58). Для выделенной части графика находим у наим = 0 (при х = 0), у наиб. = 9 (при х = - 3).

Совет. Чтобы каждый раз не строить график функции у - х 2 по точкам, вырежьте из плотной бумаги шаблон параболы. С его помощью вы будете очень быстро чертить параболу.

Замечание. Предлагая вам заготовить шаблон параболы, мы как бы уравниваем в правах функцию у = х 2 и линейную функцию у = кх + m. Ведь графиком линейной функции является прямая, а для изображения прямой используется обычная линейка - это и есть шаблон графика функции у = кх + m. Так пусть у вас будет и шаблон графика функции у = х 2 .

Пример 2. Найти точки пересечения параболы у = х 2 и прямой у - х + 2.

Решение. Построим в одной системе координат параболу у = х 2 прямую у = х + 2 (рис. 59). Они пересекаются в точках А и В, причем по чертежу нетрудно найти координаты этих точек А и В: для точки А имеем: x = - 1, y = 1, а для точки В имеем: х - 2, у = 4.

Ответ: парабола у = х 2 и прямая у = х + 2 пересекаются в двух точках: А (-1; 1) и В(2;4).

Важное замечание. До сих пор мы с вами довольно смело делали выводы с помощью чертежа. Однако математики не слишком доверяют чертежам. Обнаружив на рисунке 59 две точки пересечения параболы и прямой и определив с помощью рисунка координаты этих точек, математик обычно проверяет себя: на самом ли деле точка (-1; 1) лежит как на прямой, так и на параболе; действительно ли точка (2; 4) лежит и на прямой, и на параболе?

Для этого нужно подставить координаты точек А и В в уравнение прямой и в уравнение параболы, а затем убедиться, что и в том, и в другом случае получится верное равенство. В примере 2 в обоих случаях получатся верные равенства. Особенно часто производят такую проверку, когда сомневаются в точности чертежа.

В заключение отметим одно любопытное свойство параболы, открытое и доказанное совместно физиками и математиками.

Если рассматривать параболу у = х 2 как экран, как отражающую поверхность, а в точке поместить источник света, то лучи, отражаясь от параболы экрана, образуют параллельный пучок света (рис. 60). Точку называют фокусом параболы. Эта идея используется в автомобилях: отражающая поверхность фары имеет параболическую форму, а лампочку помещают в фокусе - тогда свет от фары распространяется достаточно далеко.

Календарно-тематическое планирование по математике, видео по математике онлайн , Математика в школе скачать

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Построение графиков функций, содержащих модули, обычно вызывает немалые затруднения у школьников. Однако, все не так плохо. Достаточно запомнить несколько алгоритмов решения таких задач, и вы сможете без труда построить график даже самой на вид сложной функции. Давайте разберемся, что же это за алгоритмы.

1. Построение графика функции y = |f(x)|

Заметим, что множество значений функций y = |f(x)| : y ≥ 0. Таким образом, графики таких функций всегда расположены полностью в верхней полуплоскости.

Построение графика функции y = |f(x)| состоит из следующих простых четырех этапов.

1) Построить аккуратно и внимательно график функции y = f(x).

2) Оставить без изменения все точки графика, которые находятся выше оси 0x или на ней.

3) Часть графика, которая лежит ниже оси 0x, отобразить симметрично относительно оси 0x.

Пример 1. Изобразить график функции y = |x 2 – 4x + 3|

1) Строим график функции y = x 2 – 4x + 3. Очевидно, что график данной функции – парабола. Найдем координаты всех точек пересечения параболы с осями координат и координаты вершины параболы.

x 2 – 4x + 3 = 0.

x 1 = 3, x 2 = 1.

Следовательно, парабола пересекает ось 0x в точках (3, 0) и (1, 0).

y = 0 2 – 4 · 0 + 3 = 3.

Следовательно, парабола пересекает ось 0y в точке (0, 3).

Координаты вершины параболы:

x в = -(-4/2) = 2, y в = 2 2 – 4 · 2 + 3 = -1.

Следовательно, точка (2, -1) является вершиной данной параболы.

Рисуем параболу, используя полученные данные (рис. 1)

2) Часть графика, лежащую ниже оси 0x, отображаем симметрично относительно оси 0x.

3) Получаем график исходной функции (рис. 2 , изображен пунктиром).

2. Построение графика функции y = f(|x|)

Заметим, что функции вида y = f(|x|) являются четными:

y(-x) = f(|-x|) = f(|x|) = y(x). Значит, графики таких функций симметричны относительно оси 0y.

Построение графика функции y = f(|x|) состоит из следующей несложной цепочки действий.

1) Построить график функции y = f(x).

2) Оставить ту часть графика, для которой x ≥ 0, то есть часть графика, расположенную в правой полуплоскости.

3) Отобразить указанную в пункте (2) часть графика симметрично оси 0y.

4) В качестве окончательного графика выделить объединение кривых, полученных в пунктах (2) и (3).

Пример 2. Изобразить график функции y = x 2 – 4 · |x| + 3

Так как x 2 = |x| 2 , то исходную функцию можно переписать в следующем виде: y = |x| 2 – 4 · |x| + 3. А теперь можем применять предложенный выше алгоритм.

1) Строим аккуратно и внимательно график функции y = x 2 – 4 · x + 3 (см. также рис. 1 ).

2) Оставляем ту часть графика, для которой x ≥ 0, то есть часть графика, расположенную в правой полуплоскости.

3) Отображаем правую часть графика симметрично оси 0y.

(рис. 3) .

Пример 3. Изобразить график функции y = log 2 |x|

Применяем схему, данную выше.

1) Строим график функции y = log 2 x (рис. 4) .

3. Построение графика функции y = |f(|x|)|

Заметим, что функции вида y = |f(|x|)| тоже являются четными. Действительно, y(-x) = y = |f(|-x|)| = y = |f(|x|)| = y(x), и поэтому, их графики симметричны относительно оси 0y. Множество значений таких функций: y 0. Значит, графики таких функций расположены полностью в верхней полуплоскости.

Чтобы построить график функции y = |f(|x|)|, необходимо:

1) Построить аккуратно график функции y = f(|x|).

2) Оставить без изменений ту часть графика, которая находится выше оси 0x или на ней.

3) Часть графика, расположенную ниже оси 0x, отобразить симметрично относительно оси 0x.

4) В качестве окончательного графика выделить объединение кривых, полученных в пунктах (2) и (3).

Пример 4. Изобразить график функции y = |-x 2 + 2|x| – 1|.

1) Заметим, что x 2 = |x| 2 . Значит, вместо исходной функции y = -x 2 + 2|x| – 1

можно использовать функцию y = -|x| 2 + 2|x| – 1, так как их графики совпадают.

Строим график y = -|x| 2 + 2|x| – 1. Для этого применяем алгоритм 2.

a) Строим график функции y = -x 2 + 2x – 1 (рис. 6) .

b) Оставляем ту часть графика, которая расположена в правой полуплоскости.

c) Отображаем полученную часть графика симметрично оси 0y.

d) Полученный график изображен на рисунке пунктиром (рис. 7) .

2) Выше оси 0х точек нет, точки на оси 0х оставляем без изменения.

3) Часть графика, расположенную ниже оси 0x, отображаем симметрично относительно 0x.

4) Полученный график изображен на рисунке пунктиром (рис. 8) .

Пример 5. Построить график функции y = |(2|x| – 4) / (|x| + 3)|

1) Сначала необходимо построить график функции y = (2|x| – 4) / (|x| + 3). Для этого возвращаемся к алгоритму 2.

a) Аккуратно строим график функции y = (2x – 4) / (x + 3) (рис. 9) .

Заметим, что данная функция является дробно-линейной и ее график есть гипербола. Для построения кривой сначала необходимо найти асимптоты графика. Горизонтальная – y = 2/1 (отношение коэффициентов при x в числителе и знаменателе дроби), вертикальная – x = -3.

2) Ту часть графика, которая находится выше оси 0x или на ней, оставим без изменений.

3) Часть графика, расположенную ниже оси 0x, отобразим симметрично относительно 0x.

4) Окончательный график изображен на рисунке (рис. 11) .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.