3. Водяной пар и его свойства

3.1. Водяной пар. Основные понятия и определения.

Одним из распространенным рабочим телом в паровых турбинах, паровых машинах, в атомных установках, теплоносителем в различных теплообменниках является водяной пар. Пар - газообразное тело в состоянии, близкое к кипящей жидкости.Парообразование – процесс превращения вещества из жидкого состояния в парообразное.Испарение – парообразование, происходящее всегда при любой температуре с поверхности жидкости. При некоторой определенной температуре, зависящей от природы жидкости и давления, под которым она находится, начинается парообразование во всей массе жидкости. Этот процесс называетсякипением . Обратный процесс парообразования называетсяконденсацией . Она также протекает при постоянной температуре. Процесс перехода твердого вещества непосредственно в пар называетсясублимацией . Обратный процесс перехода пара в твердое состояние называетсядесублимацией . При испарении жидкости в ограниченном пространстве (в паровых котлах) одновременно происходит обратное явление – конденсация пара. Если скорость конденсации станет равной скорости испарения, то наступает динамическое равновесие. Пар в этом случае имеет максимальную плотность и называетсянасыщенным паром . Если температура пара выше температуры насыщенного пара того же давления, то такой пар называетсяперегретым . Разность между температурой перегретого пара и температурой насыщенного пара того же давления называетсястепенью перегрева . Так как удельный объем перегретого пара больше удельного объема насыщенного пара, то плотность перегретого пара меньше плотности насыщенного пара. Поэтому перегретый пар являетсяненасыщенным паром . В момент испарения последней капли жидкости в ограниченном пространстве без изменения температуры и давления образуетсясухой насыщенный пар . Состояние такого пара определяется одним параметром - давлением. Механическая смесь сухого и мельчайших капелек жидкости называетсявлажным паром . Массовая доля сухого пара во влажном паре называетсястепенью сухости х .

х = m сп / m вп,

m сп - масса сухого пара во влажном; m вп - масса влажного пара. Массовая доля жидкости во влажном паре нызваетсястепенью влажности у .

у = 1 –.

Для кипящей жидкости при температуре насыщения = 0, для сухого пара –= 1.

3.2 Влажный воздух. Абсолютная и относительная влажность.

Атмосферный воздух широко используется в технике: в качестве рабочего тела (в воздушных холодильных установках, кондиционерах, теплообменниках и сушильных устройствах) и составной части для горения топлива (в двигателях внутреннего сгорания, газотурбинных установках, в парогенераторах).

Сухим воздухом называется воздух, не содержащий водяных паров. В атмосферном воздухе всегда содержится некоторое количество водяного пара.

Влажным воздухом называется смесь сухого воздуха с водяным паром.

В теплотехнике некоторые газообразные тела принято называть паром. Так, например, вода в газообразном состоянии называется водяным паром, аммиак – аммиачным паром.

Рассмотрим более подробно термодинамические свойства воды и водяного пара. (1-6).

Образование пара из одноименной жидкости происходит посредством испарения и кипения . Между данными процессами существует принципиальное различие. Испарение жидкости происходит лишь с открытой поверхности. Отдельные молекулы, имеющие большую скорость, преодолевают притяжение соседних молекул и вылетают в окружающее пространство. Интенсивность испарения возрастает с увеличением температуры жидкости. Сущность кипения состоит в том, что генерация пара происходит в основном в объеме самой жидкости за счет испарения ее внутрь пузырьков пара. Различают следующие состояния водяного пара:

    влажный пар;

    сухой насыщенный пар;

    перегретый пар.

Атмосферный воздух (влажный воздух) может быть:

    пересыщенный влажный воздух;

    насыщенный влажный воздух;

    ненасыщенный влажный воздух.

Пересыщенный влажный воздух – смесь сухого воздуха и влажного водяного пара. Явление в природе – туман.Насыщенный влажный воздух – смесь сухого воздуха и сухого насыщенного водяного пара.Ненасыщенный влажный воздух – смесь сухого воздуха и перегретого водяного пара.

Следует отметить принципиально разные значения термина “влажный” применительно к пару и к воздуху. Пар называется влажным, если содержит мелкодисперсную жидкость. Влажный воздух во всех представляющих интерес для техники случаях содержит перегретый или сухой насыщенный водяной пар. В общем случае влажный воздух может содержать и влажный водяной пар (например, облака), но этот случай технического интереса не представляет и далее не рассматривается.

В атмосферном (влажном) воздухе каждый компонент находится под своим парциальным давлением, имеет температуру, равную температуре влажного воздуха и равномерно распределен по всему объему.

Термодинамические свойства влажного воздуха как газовой смеси сухого воздуха и водяного пара определяются по закономерностям, характерным для идеальных газов.

Расчет процессов с влажным воздухом обычно проводится при условии, что количество сухого воздуха в смеси не изменяется. Переменной величиной является количество содержащегося в смеси водяного пара. Поэтому удельные величины, характеризующие влажный воздух, относятся к 1 кг сухого воздуха.

Давление влажного воздуха определяется по закону Дальтона:

Р=Рв+Рп, (3.1)

Где Рв – парциальное давление сухого воздуха, кПа; Рп – парциальное давление водяного пара, кПа.

Запишем уравнение Клапейрона - Менделеева

влажный воздух PV=MRT; (3.2)

сухой воздух P B V=M B R B T; (3.3)

водяной пар Р П V=M П R П Т, (3.4)

где V – объем влажного воздуха, м 3 ; М, М В, М П – масса соответственно влажного, сухого воздуха и водяного пара, кг; R, R В, R П – газовая постоянная соответственно влажного, сухого воздуха и водяного пара, кДж/(кгК); Т – абсолютная температура влажного воздуха, К.

Абсолютная влажность воздуха – количество водяного пара, содержащееся в 1 м 3 влажного воздуха. Она обозначается через П и измеряется в кг/м 3 или г/м 3 . Иначе говоря, она представляет собой плотность водяного пара в воздухе: П =Р П /(R П Т). Очевидно, что

 П =М П /V, где V – объем влажного воздуха массой М.

Относительной влажностью воздуха называется отношение абсолютной влажности воздуха в данном состоянии к абсолютной влажности насыщенного воздуха (Н) при той же температуре.

Можно отметить два характерных состояния воздуха по величине :<100 %, при этом Р П <Р Н и водяной пар перегретый, а влажный воздух ненасыщенный;=100 %, при этом Р П =Р Н и водяной пар сухой насыщенный, а влажный воздух насыщенный. Температура, до которой необходимо охлаждать ненасыщенный влажный воздух, чтобы содержащийся в нем перегретый пар стал сухим насыщенным, называется температурой точки росы t Н.

3.3 i d – диаграмма влажного воздуха

Впервые id - диаграмма для влажного воздуха была предложена проф. Л.К. Рамзиным. В настоящее время она применяется в расчетах систем кондиционирования, сушки, вентиляции и отопления. Вid – диаграмме по оси абсцисс откладывается влагосодержание d, г/кг сухого воздуха, а по оси ординат - удельная энтальпия влажного воздухаi, кДж/кг сухого воздуха. Для более удобного расположения отдельных линий, наносимых наid - диаграмму, она строится в косоугольных координатах, в которых ось абсцисс проводится под углом 135° к оси ординат.

При таком расположении осей координат линии i=const, которые должны быть параллельны оси абсцисс, идут наклонно. Для удобства расчетов значения d сносят на горизонтальную ось координат.

Линии d=const идут в виде прямых параллельных оси ординат, т.е. вертикально. Кроме того, на id.-диаграмме наносят изотермы t С =const, t M =const (штриховые линии на диаграмме) в линии постоянных значений относительной влажности (начиная от.=5% до=100%). Линии постоянных значений относительной влажности=const строят только до изотермы 100° , т. е. до тех пор, пока парциальное давление пара в воздухе Р П меньше атмосферного давления Р. В тот момент, когда Р П станет равным Р, эти линии теряют физический смысл, что видно из уравнения (10), в котором при Р П =Р влагосодержание d=const.

Кривая постоянной относительной влажности =100% делит всю диаграмму на две части. Та ее часть, которая расположена выше этой линии –область ненасыщенного влажного воздуха, в котором пар находятся в перегретом состоянии. Часть диаграммы ниже линии=100% - область насыщенного влажного воздуха.

Так как при =100% показания сухого и мокрого термометров одинаковы, t C =t M , то изотермы t C =t M =const пересекаются на линии=100%..

Чтобы найти на диаграмме точку, соответствующую состоянию данного влажного воздуха, достаточно знать два его параметра из числа изображенных на диаграмме. При проведении эксперимента целесообразно использовать те параметры, которые проще и точнее измеряются в опыте. В нашем случае такими параметрами являются температура сухого и мокрого термометров.

Зная эти температуры, можно найти на диаграмме точку пересечения соответствующих изотерм. Найденная таким образом точка определит состояние влажного воздуха и по id - диаграмме можно определить все остальные параметры воздуха: влагосодержание - d; относительную влажность -, энтальпию воздуха -i; парциальное давление пара – Р П, температуру точки росы – t М.

Водяной пар имеет высокое давление и относительно низкую температуру, он близок к состоянию

жидкости, поэтому пренебрегать силами сцепления между его молекулами и их объемом, как в идеальных газах, нельзя. Следовательно, не представляется возможным использовать для определения параметров состояния водяного пара уравнения состояния идеальных газов, т. е. для

пара pv ≠ RT.

    В чем различие процессов кипения и испарения?

Жидкость может превращаться в пар при испарении и кипении. Испарением называется парообразование, происходящее только с поверхности жидкости и при любой температуре. Интенсивность испарения зависит от природы жидкости и ее температуры. Испарение жидкости может быть полным, если над жидкостью находится неограниченное пространство. В процессе испаренияпарообразование происходит только на свободной поверхности жидкости. Это двухсторонний процесс, в котором наряду с уходом части молекул из жидкости происходит и частичное возвращение молекул обратно в жидкость. В процессекипения пар образуется по всей массе жидкости. При нагревании жидкости понижается растворимость в ней газов, в результате чего на дне и стенках сосуда, в котором находится вода, образуются пузырьки. В процессе нагревания внутри пузырьков начинает испаряться жидкость, и при определённой температуре давление насыщенного пара внутри пузырьков становится равным наружному давлению. В этот момент пузырьки отрываются, и жидкость начинает кипеть. Таким образом, если испарение происходит с поверхности жидкости при любой температуре, то кипение – при одной, вполне определённой для данного давления и температуры, называемойтемпературой кипения или температурой насыщения.

    Изобразить процесс парообразования в координатах p-V.

За начальную температуру воды при любом давлении, принимают температуру t=0°С . Таким образом, линия I на рис.1 соответствует состояниям так называемой холодной жидкости при разных давлениях, имеющей температуру 0°С (изотерма холодной жидкости). Удельный объем воды при t=0°С принимается равным 0,001 м3/кг. Вследствие незначительной сжимаемости воды, линия I оказывается почти вертикальной прямой. Левее этой прямой находится область равновесного сосуществования воды и льда. За начало отсчета u, i и s для воды принято считать тройную точку TT (p 0 =611 Па, t 0 =0,01 0 C, v 0 =0,00100 м 3 /кг ). Пренебрегая влиянием давления на изменение объема воды, считают для всех состояний на линии I v 0 =0,00100 м 3 /кг,u 0 =0, i 0 =0 и s 0 =0. Конечное состояние воды в стадии подогрева (точка b ) определяется достижением при заданном давлении температуры кипения, которая зависит от давления. Из рv -диаграммы следует, что с увеличением давления температура кипения увеличивается. Эта зависимость устанавливается опытным путем. Состояния кипящей воды для различных давлений будут соответствовать линии II, которая называется нижней пограничной кривой. Она изображает зависимость удельных объемов кипящей воды от давления. На нижней пограничной кривой степень сухости х = 0. Параметры кипящей воды приводятся в таблицах в зависимости их от давления или температуры.

Дальнейший подвод теплоты к кипящей воде, который осуществляется в испарительном контуре парогенератора, сопровождается бурным парообразованием внутри жидкости и переходом части воды в пар. Таким образом, участку b-с будет соответствовать равновесное состояние смеси жидкости и пара (влажный насыщенный пар). В каждой точке этого процесса вода будет характеризоваться массовой долей содержащегося в ней сухого насыщенного пара (степенью сухости х ).

Конечное состояние в этой стадии характеризуется полным превращением жидкости в пар, который будет иметь температуру, равную температуре насыщения (t c =t н ) при заданном давлении. Такой пар, как уже упоминалось, носит название сухого насыщенного пара.

Процесс парообразования b-с является одновременно изобарным (p=p 1 =const ) и изотермическим (T=T 1 =const ). При этом затрачиваемая теплота расходуется не на повышение температуры, а только на преодоление сил притяжения между молекулами и на работу расширения пара.

Учитывая, что между температурой насыщения t н и давлением р существует однозначная связь, состояние сухого насыщенного пара будет определяться только одним параметром - давлением или температурой.

Состояния сухого насыщенного пара при разных давлениях будут соответствовать линии III, которая называется верхней пограничной кривой. Совершенно очевидно, что на верхней пограничной кривой в каждой точке степень сухости х=1 .

Следует обратить внимание на то, что в процессе парообразования удельный объем воды резко увеличивается. Так, для воды при р = 0,1 МПа удельный объем кипящей водыv =0,001043 м 3 /кг, тогда как удельный объем сухого насыщенного пара равен 1,696 м 3 /кг. С увеличением давления эта разница уменьшается и в критической точке К удельные объёмы воды и пара равны 0,00326 м 3 /кг. При этом t кр =374,15 0 С , а p кр =221,29 бар. При давлениях и температурах больших критических процесс парообразования отсутствует. Наблюдается переход воды в пар при пересечении изобары T кр .

    Что такое влажный и сухой насыщенный пар?

Вода, нагретая до температуры насыщения, называется насыщенной жидкостью. Смесь жидкости и пара при температуре кипения называется влажным насыщенным паром .При дальнейшемподводе теплоты к влажному насыщенному пару его объём будет увеличиваться, а температура останется постоянной. Наступит момент, когда вся жидкость перейдёт в пар– сухой насыщенный пар. Состояние сухого насыщенного пара крайне неустойчиво, так как незначительный отвод теплоты от него при постоянном давлении связан с превращением сухого пара во влажный, а незначительный приток теплоты превращает его в перегретый пар.

    Что такое паросодержание?

    Что такое теплота парообразования?

Теплота парообразования вещества - количество теплоты, необходимое для перевода 1 моля вещества в состояние пара при температуре кипения. Измеряется в Джоулях.

    Что такое перегретый пар?

Если к сухому насыщенному пару продолжать подводить теплоту, происходит дальнейшее увеличение объёма пара и его температуры – перегретый пар. Состояние перегретого пара относительно устойчиво (практическое использование).

    Что происходит с водой в критической точке?

Критическая точка – сочетание значений температуры и давления, при которых исчезает различие в свойствах жидкой и газообразной фаз вещества (т.е. в этой точке плотность и другие свойства жидкой и газообразной воды совпадают). Критическая точка для воды достигается с большим трудом при температуре 374,2° С и давлении 21,4 МПа. В момент достижения критической точки вода характеризуется крайне низкой вязкостью, непрозрачностью, резким падением скорости распространения звуковых волн и в три раза более низкой плотностью, чем при обычных условиях. Сверхкритическое состояние представляют собой нечто среднее между жидкостью и газом. Вода в сверхкритическом состоянии может сжиматься, как газ, и в тоже время, способна растворять твердые вещества, что не характерно для газов.

    Что такое энтальпия? Как определяется внутренняя энергия пара через энтальпию?

Энтальпия – функция Нсостояния термодинамической системы, равная сумме внутренней энергии системы Uи произведения давления рна объем V системы.

следовательно,

В изобарическом процессе (р= const) приращение энтальпии равно количеству теплоты, сообщенной системе.

    Как определяется удельный объем, удельная энтальпия, внутренняя энергия и энтропия влажного насыщенного пара?


Удельный объем влажного пара vxсо степенью сухости Х определяют, учитывая следующиеусловия. Если объем сухого параv "" и в 1 кг влажного пара со степенью сухости Х содержится Х частей сухого пара, то объем, занимаемый им, составляетv ""Х. Остальную часть (1 – Х) занимает вода, объем которой равенv "(1 - Х), где v"удельный объем воды. Таким образом, удельный объем влажного пара

v x =v "" Х +v "(1 - Х).

Так как при 1 > Х > 0 обычно v "" >>v ", то можно записать

v x =v "" Х.

Аналогично удельная энтальпия влажного пара равна

h x =h" + (h"-h")x = h" + rx,

удельная внутренняя энергия влажного пара

u x = u´+ (u´´-u´)x

удельная энтропия влажного пара

В данном материале мы рассмотрим Водяной пар , который является газообразным состоянием воды.

Газообразное состояние относится к трем основным агрегатным состояниям воды, встречающихся в природе в естественных условиях. Детально этот вопрос рассмотрен в материале .

Водяной пар

Чистый водяной пар не имеет ни цвета, ни вкуса. Наибольшее скопление пара наблюдается в тропосфере.

Водяно́й пар – вода, содержащаяся в атмосфере в газообразном состоянии. Количество водяного пара в воздухе сильно меняется; наибольшее его содержание – до 4 %. Водяной пар невидим; то, что называют паром в быту (пар от дыхания на холодном воздухе, пар от кипения воды и т. п.), – это результат конденсации водяного пара, как и туман. Количество водяного пара определяет важнейшую для состояния атмосферы характеристику – влажность воздуха.

География. Современная иллюстрированная энциклопедия. - М.: Росмэн. Под редакцией проф. А. П. Горкина. 2006.

Как образуется водяной пар

Водяной пар образуется в результате «парообразования». Парообразование происходит в результате двух процессов – испарения или кипения. При испарении пар образуется только на поверхности вещества, при кипении же пар образуется по всему объему жидкости, о чем и свидетельствуют пузырьки, активно поднимающиеся вверх во время процесса кипения. Кипение воды происходит при температурах которые зависят от химического состава водного раствора и атмосферного давления, температура кипения остается неизменной на протяжении всего процесса. Пар , образующийся в результате кипения, называется насыщенным. Насыщенный пар в свою очередь подразделяется на насыщенный сухой и насыщенный влажный пар. Насыщенный влажный пар состоит из взвешенных капелек воды, температура которых находится на уровне кипения, и соответственно самого пара, а насыщенный сухой пар не содержит капелек воды.

Так же существует «перегретый пар», который образуется при дальнейшем нагреве влажного пара, этот вид пара обладает более высокой температурой и более низкой плотностью.

Водяной пар является незаменимым элементом такого важного для нашей планеты процесса как .

С паром мы постоянно сталкиваем в ежедневной жизни, он появляется – над носиком чайника при кипении воды, при глажке, при посещении бани… Однако не забывайте, что, как мы уже отмечали выше, чистый водяной пар не имеет ни цвета, ни вкуса. Благодаря своим физическим свойствам и качествам, пар уже давным-давно нашел свое практическое применение в хозяйственной деятельности человека. И не только в быту, но и при решении больших глобальных задач. Долгое время пар был главной движущей силой прогресса как в прямом так и в переносном смысле этого выражения. Он использовался как рабочее тело паровых машин, самой известной из которых является ПАРОВОЗ.

Использование пара человеком

Пар и в наше время широко используется в хозяйственных и производственных нуждах:

  • в целях гигиены;
  • в лечебных целях;
  • для тушения пожаров;
  • используются тепловые свойства пара (пар как теплоноситель) – паровые котлы; паровые рубашки (автоклавов и реакторов); разогрев «смерзающихся» материалов; теплообменники; отопительные системы; пропарка бетонных изделий; в особого рода теплообменниках … ;
  • используют трансформацию энергии пара в движение – паровые машины … ;
  • стерилизация и дезинфекция – пищевая промышленность, сельское хозяйство, медицина … ;
  • пар как увлажнитель – в производстве железобетонных изделий; фанеры; в пищевой промышленности; в химической и парфюмерной промышленности; в деревообрабатывающих производствах; в сельскохозяйственном производстве … ;

Подводя итоги, отметим, что, несмотря на всю свою «незаметность», водяной пар является не только важным элементом глобальной эко-системы Земли, но так же и весьма полезным веществом для хозяйственной и экономической деятельности человека.

При слове "пар", я вспоминаю времена, когда ещё учился в начальных классах. Тогда, приходя из школы домой, родители начинали готовить обед, и ставили кастрюлю с водой на газовую плиту. И уже через десять минут, в кастрюльке начинали появляться первые пузырьки. Этот процесс всегда меня завораживал, мне казалось, что я могу смотреть на это вечно. А потом, через некоторое время после появления пузырьков, начинал идти сам пар. Однажды, я спросил маму: "А откуда идут эти белые тучки?" (Так раньше я их называл). На что она мне отвечала: "Это всё происходит из-за нагрева воды". Хотя ответ и не давал полного представления о процессе возникновения пара, на уроках школьной физики я узнал о паре всё, что хотел. Итак...

Что же есть водяной пар

С научной точки зрения, водяной пар - просто одно из трёх физических состояний самой воды . Он, как известно, возникает при нагревании воды. Как и она сама, пар не имеет ни цвета, ни вкуса, ни запаха. Но не все знают, что клубы пара обладают своим давлением, которое зависит от его объёма. А выражается оно в паскалях (в честь небезызвестного учёного).

Водяной пар окружает нас не только, когда мы варим что-нибудь на кухне. Он постоянно содержится в уличном воздухе и атмосфере. И его процент содержания называется "абсолютной влажностью".



Факты о водяном паре и его особенности

Итак, несколько интересных моментов:

  • чем выше температура , которая действует на воду, тем быстрее идёт процесс испарения;
  • помимо этого, скорость испарения увеличивается с размерами площади поверхности, на которой эта вода находится. Другими словами, если мы начнём нагревать небольшой водный слой на широкой металлической чашке, то испарение пройдет весьма быстро;
  • для жизни растений нужна не только жидкая вода, но и газообразная . Объяснить этот факт можно тем, что с листьев любого растения постоянно идут испарения, охлаждающие его. Попробуйте в знойный день потрогать лист дерева – и вы заметите, что он прохладный;
  • то же самое касается человека, с нами работает та же система, что и с растениями выше. Испарения охлаждают нашу кожу в жаркий день . Удивительно, но даже при небольших нагрузках, наш организм покидает около двух литров жидкости в час. Что уж тут говорить про усиленные нагрузки и знойные летние деньки?


Вот таким образом можно описать сущность пара и его роль в нашем мире. Надеюсь, вы открыли для себя много интересного!

Водяной пар используют в качестве рабочего тела в различных процессах, например, для вращения паровой турбины.

Обычно пар получают в процессе кипения жидкости. Если подводить теплоту к жидкости при постоянном давлении, температура жидкости растет до некоторого значения Т кип. При дальнейшем нагреве температура остается постоянной – происходит образование пара в процессе кипения жидкости.

Кипение – это процесс парообразования в объеме жидкости, тогда как испарение происходит лишь со свободной поверхности жидкости при условии, что парциальное давление пара над жидкостью меньше давления насыщенного пара.

Процесс кипения в p – V диаграмме изображается изобарой , которая одновременно является и изотермой.

Удельная теплота парообразования (r, Дж/кг) - это количество теплоты, необходимое для перевода 1 кг жидкости в пар.

В соответствии с первым законом термодинамики:

q = r = (u // - u /) + p(v // - v /), (69)

где u // , v // - удельная внутренняя энергия и удельный объем сухого насыщенного пара; u / , v / – то же для воды.

(u // - u /) – изменение внутренней энергии, связанное с преодолением сил притяжения между молекулами при переходе жидкости в пар. p(v // - v /) – работа расширения пара.

Пар может быть влажным, сухим, насыщенным и перегретым.

Влажный пар – это смесь кипящей жидкости и сухого насыщенного пара. Отношение массы пара к массе смеси называется степенью сухости пара -х.

Используется и другая величина (1-х), называемая степенью влажности пара:

(71)

Для анализа процесса парообразования и определения параметров водяного пара используются i – S диаграммы водяного пара.

Рис. 12. i – S диаграмма водяного пара

Основной кривой на i – S диаграмме являетсякривая насыщения с указанной на ней критической точкой К , которая делит кривую на две линии. Слева от точки К линия кипения воды. На этой линии х = 0, то есть пар отсутствует. Справа от критической точки располагается линия конденсации, для которой х = 1, что соответствует отсутствию воды. Кривая насыщения совместно с критической точкой на ней делит всю диаграмму на три области. Под кривой насыщения находится область влажного пара со степенью сухости 0 < x < 1. Над кривой насыщения слева от точки К имеет место состояние воды. Справа от критической точки над кривой насыщения расположена область сухого пара. Кроме кривой насыщения на i – S диаграмме проводятся изобары (p = const), изотермы (t = const) и линии постоянной степени сухости пара (x = const). Под кривой насыщения изотермы и изобары совпадают.

Рассмотрим процесс нагрева воды при постоянном давлении, двигаясь по изобаре 1-2-3-4 (рис. 12). На участке 1-2 происходит нагрев воды до температуры кипения. Количество тепла, которое нужно для этого подвести, определяется разностью энтальпий i 2 и i 1:

q воды = i 2 – i 1

На участке 2-3 происходит кипение воды при постоянной температуре. Разность энтальпий здесь определяет удельную теплоту парообразования:

На участке 3-4 происходит перегрев сухого пара. Температура на этом участке возрастает. Увеличение энтальпии определяет затраты тепла на перегрев пара:

q перегрева = i 4 – i 3

i – S диаграмма позволяет определить общие затраты тепла, необходимого для получения перегретого пара:

q = q воды + r + q перегрева = ∆i воды + ∆i парообр. + ∆i перегрева

Конец работы -

Эта тема принадлежит разделу:

Основные понятия термодинамики. Предмет термодинамики. Основные параметры состояния термодинамической системы

На сайте сайт читайте: Конспект лекций Дисциплина по учебному плану направления подготовки: 260901 Технология швейных изделий. Омск СОДЕРЖАНИЕ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Историческая справка
Термодинамика как наука начала развиваться, начиная с XVIII века после появления первых паровых машин. В 1824 г. французский инженер Сади Карно опубликовал первую работу по теории тепловых

Энергия термодинамической системы
Полная энергия системы складывается из ее внутренней и внешней энергии, которая является механической энергией. E = U + Eмех. Механическая энер

Уравнения состояния
Функциональная зависимость между параметрами состояния термодинамической системы – давлением p, объемом V и температурой T – называется уравнением состояния. Эту за

Уравнение состояния идеального газа
Идеальным называется газ, который состоит из молекул, обладающих пренебрежимо малыми размерами, силами взаимодействия между которыми можно пренебречь. Уравнение

Законы термодинамики
Первый закон (первое начало) термодинамики.Это закон сохранения энергии применительно к термодинамическим процессам. Формулируется он следующим образом: Количество тепл

Условие полного дифференциала
Из математического анализа известно, что дифференциал функции многих переменных F(x1, x2, x3, …) выражается в виде:

Обратимые и необратимые процессы
Определение обратимых и необратимых процессов связано с понятиями равновесных и неравновесных процессов. Так как равновесные процессы – это идеальные процессы, реально в природе не существующие, дл

Условия существования и свойства равновесных процессов.
1. Бесконечно малая разность действующих и противодействующих сил. 2. Совершение в прямом процессе максимальной работы. 3. Бесконечно медленное течение процесса, связанное с беско

Удельная теплоемкость газов
Экспериментально установлено, что количество теплоты, необходимое для нагревания тела, пропорционально массе тела и разности конечной и начальной температур. Q ~ m (T2 – T1

Связь между теплоемкостями при постоянном давлении и постоянном объеме.
Возьмем внутреннюю энергию как функцию объема и температуры: U = f (V, T) Запишем полный дифференциал этой функции

Из первого закона термодинамики
δQ = δL = p dV Адиабатный процесс –это процесс без теплообмена с окружающей средой. (δQ = 0) Из первого закона термодинамики: δQ = m

Второй закон термодинамики
Первый закон термодинамики позволяет решать многие термодинамические задачи. Однако он не рассматривает вопроса о направлении происходящих процессов. С точки зрения первого закона возможны любые пр

Вычисление энтропии. Парадокс Гиббса.
Запишем из выражения (48) выражение для дифференциала энтропии: (48) Из уравнения состояния ид

Второй закон термодинамики для нестатических процессов
Существование у равновесной системы однозначной функции состояния – энтропии выражает второй закон термодинамики для квазистатических процессов. Сформулируем этот закон применительно к нестатически

Третий закон термодинамики
При нагревании тел и при смене агрегатных состояний твердое → жидкое → газообразное энтропия возрастает. Следовательно, минимальной энтропией будет обладать тело в твердом состоянии при

Тепловые циклы
Для непрерывного получения в тепловых машинах полезной работы необходимо иметь периодические стадии расширения рабочего тела. Это возможно только, если в процессе работы тепловой машины рабочее тел