Определение атомных радиусов также связано с некоторыми проблемами. Во-первых, атом не является сферой со строго определенными поверхностью и радиусом. Напомним, что атом представляет собой ядро, окруженное облаком электронов. Вероятность обнаружения электрона по мере удаления от ядра постепенно возрастает до некоторого максимума, а затем постепенно уменьшается, но становится равной нулю только на бесконечно большом расстоянии. Во-вторых, если мы все же выберем некоторое условие для определения радиуса, такой радиус все равно нельзя будет измерить экспериментально.

Эксперимент позволяет определять только межъядерные расстояния, другими словами - длины связей (и то с определенными оговорками, приведенными в подписи к рис. 2.21). Для их определения используется рентгеноструктурный анализ или метод электронографии (основанный на дифракции электронов). Радиус атома полагают равным половине наименьшего межъядерного расстояния между одинаковыми атомами.

Вандерваальсовы радиусы. Для несвязанных между собой атомов половина наименьшего межъядерного расстояния называется вандерваальсовым радиусом. Это определение поясняет рис. 2.22.

Рис. 2.21. Длина связи. Вследствие того что молекулы непрерывно колеблются, межъядерное расстояние, или длина связи, не имеет фиксированного значения. Этот рисунок схематически изображает линейное колебание простой двухатомной молекулы. Колебания не позволяют определить длину связи просто как расстояние между центрами двух связанных атомов. Более точное определение выглядит так: длина связи это расстояние между связанными атомами, измеренное между центрами масс двух атомов и соответствующее минимуму энергии связи. Минимум энергии показан на кривой Морзе (см. рис. 2.1).


Рис. 2.22. Атомные радиусы, а - вандерваальсов радиус; б - ковалентный радиус; в - металлический радиус.

Ковалентные радиусы. Ковалентный радиус определяется как половина межъядерного расстояния (длины связи) между двумя одинаковыми атомами, связанными друг с другом ковалентной связью (рис. 2.22, б). В качестве примера возьмем молекулу хлора длина связи в которой составляет 0,1988 нм. Ковалентный радиус хлора полагается равным 0,0944 нм.

Зная ковалентный радиус атома одного элемента, можно вычислить ковалентный радиус атома другого элемента. Например, экспериментально установленное значение длины связи равно 0,1767 нм. Вычитая из этого значения ковалентный радиус хлора (0,0994 нм), находим, что ковалентный радиус углерода равен 0,0773 нм. Такой метод вычисления основан на принципе аддитивности, согласно которому атомные радиусы подчиняются простому закону сложения. Таким образом, длина связи представляет собой сумму ковалентных радиусов углерода и хлора. Принцип аддитивности применим только к простым ковалентным связям. Двойные и тройные ковалентные связи имеют меньшую длину (табл. 2.7).

Длина простой ковалентной связи зависит еще от ее окружения в молекуле. Например, длина связи изменяется от 0,1070 нм у тризамещенного атома углерода до 0,115 нм в соединении

Металлические радиусы. Металлический радиус полагается равным половине межъядерного расстояния между соседними ионами в кристаллической решетке металла (рис. 2.22, в). Термин атомный радиус обычно относится к ковалентному радиусу атомов неметаллических элементов, а термин металлический радиус - к атомам металлических элементов.

Ионные радиусы. Ионный радиус - это одна из двух частей межъядерного расстояния между соседними одноатомными (простыми) ионами в кристаллическом ионном соединении (соли). Определение ионного радиуса тоже сопряжено с немалыми проблемами, поскольку экспериментально измеряют межионные расстояния, а не сами ионные радиусы. Межионные расстояния зависят от упаковки ионов в кристаллической решетке. На рис. 2.23 показаны три возможных способа упаковки ионов в кристаллической решетке. К сожалению, экспериментально измеренные межионные расстояния

Рис. 2.23. Ионные радиусы, а - анионы соприкасаются друг с другом, но катионы не соприкасаются с анионами; б - катионы соприкасаются с анионами, но анионы не соприкасаются друг с другом; в - условно принятое расположение ионов, при котором катионы соприкасаются с анионами и анионы соприкасаются друг с другом. Расстояние а определяется экспериментально. Оно принимается за удвоенный радиус аниона. Это позволяет вычислить межионное расстояние b, представляющее собой сумму радиусов аниона и катиона. Зная межионное расстояние b, можно вычислить радиус катиона.

не позволяют судить о том, какой из этих трех способов упаковки действительно осуществляется в каждом конкретном случае. Проблема заключается в том, чтобы найти пропорцию, в которой следует разделить межионное расстояние на две части, соответствующие радиусам двух ионов, другими словами, решить, где же на самом деле кончается один ион и где начинается другой. Как показывает, например, рис. 2.12, этот вопрос не позволяют решить и карты электронной плотности солей. Для преодоления указанной трудности обычно предполагают, что: 1) межионное расстояние представляет собой сумму двух ионных радиусов, 2) ионы имеют сферическую форму и 3) соседние сферы соприкасаются друг с другом. Последнее предположение соответствует способу упаковки ионов, изображенному на рис. 2.23, в. Если известен один ионный радиус, другие ионные радиусы можно вычислить на основании принципа аддитивности.

Сопоставление радиусов различных типов. В табл. 2.8 указаны значения радиусов различных типов для трех элементов 3-го периода. Нетрудно видеть, что самые большие значения принадлежат анионным и вандерваальсовым радиусам. На рис. 11.9 сопоставлены размеры ионов и атомов для всех элементов 3-го периода, за исключением аргона. Размеры атомов определяются их ковалентными радиусами. Следует обратить внимание на то, что катионы имеют меньшие размеры, чем атомы, а анионы - большие размеры, чем атомы этих же элементов. Для каждого элемента из всех типов радиусов наименьшее значение всегда принадлежит катионному радиусу.

Таблица 2.8. Сопоставление атомных радиусов различных типов


— — —

Определение радиусов атомов и ионов. Применение рентгеновых лучей к исследованию кристаллов дает возможность не только устанавливать внутреннее строение последних, но и определять размеры частиц, образующих кристалл, - атомов или ионов.

Рис 46. Соприкасающиеся частицы в кристалле

Чтобы понять, как производятся такие вычисления, представим себе, что частицы, из которых построен кристалл, имеют сферическую форму и соприкасаются друг с другом. В таком случае мы можем считать, что расстояние между центрами двух соседних частиц равно сумме их радиусов (рис. 46). Если частицами являются атомы простого и расстояние между ними измерено, тем самым определяется и радиус атома, очевидно, равный половине найденного расстояния. Например, зная, что для кристаллов металлического натрия константа решеткиd равна 3,84 ангстрема, находим, что радиус r атома натрия равен.

Несколько сложнее производится определение радиусов различных ионов. Здесь уже нельзя просто делить расстояние между ионами пополам, так как размеры ионов неодинаковы. Но если радиус одного из ионов r 1 известен, радиус другого r 2 легко находится простым вычитанием:

r 2 = d - r 1

Отсюда следует, что для вычисления радиусов различных ионов по константам кристаллических решеток нужно знать радиус хотя бы какого-нибудь одного иона. Тогда нахождение радиусов всех остальных ионов уже не представит затруднений.

При помощи оптических методов удалось довольно точно определить радиусы ионов фтора F — (1,33 А) и кислорода O — (1,32 А); эти радиусы и служат исходными величинами при вычислении радиусов других ионов. Так, например, определение константы решетки окиси магния MgO показало, что она равна 2,1 ангстрема. Вычитая отсюда величину радиуса иона кислорода, находим радиус иона магния:

2,1 - 1,32 = 0,78 Å

Константа решетки фтористого натрия равняется 2,31 Å; так как радиус иона фтора 1,33 ангстрема, радиус иона натрия должен равняться:

2,31 -1,33 = 0,98 Å

Зная радиус иона натрия и константу решетки хлористого натрия, легко рассчитать радиус иона хлора и т. д.

Таким путем определены радиусы почти всех атомов и ионов.

Общее представление о размерах этих величин дают данные, приведенные в табл. 7.

Таблица 7

Радиусы атомов и ионов некоторых элементов

Элемент Радиус атома Радиус иона Символ иона
1,92 0,98 Na+
2,38 1,33 К +
2,51 1,49 Rb+
2,70 1,65 Cs+
1,60 0,78 Mg++
1,97 1,06 Са++
2,24 1,43 Ва++
0,67 1,33 F-
1,07 1,81 Сl-
1,19 1,96 Вr-
1,36 2,20 J-
1,04 1,74 S—

Как показывают эти данные, у металлов радиусы атомов больше, чем радиусы ионов, у металлоидов, наоборот, радиусы ионов больше, чем радиусы атомов.

Относительные размеры ионов, образующих кристалл, оказывают огромное влияние на структуру пространственной решетки. Так, например, два очень сходных по своей химической природе - CsCl и NaCl тем не менее образуют решетки различного типа, причем в первом случае каждый положительный ион окружен восьмью отрицательными ионами, а во втором - только шестью. Это различие объясняется тем, что размеры ионов цезия

и натрия неодинаковы. Ряд соображений заставляет принять, что ионы должны располагаться в кристалле так, чтобы каждый меньший ион по возможности целиком заполнял пространство между окружающими его большими ионами и наоборот; другими словами, отрицательные ионы, которые почти всегда больше положительных, должны возможно теснее окружать положительные ионы, иначе система будет неустойчивой. Так как радиус иона Cs + равен 1,65 Å, а иона Na + только 0,98 Å, то очевидно, что вокруг первого может разместиться больше ионов Сl — , чем вокруг второго.

Число отрицательных ионов, окружающих каждый положительный ион в кристалле, называется координационным числом данной решетки. Изучение структуры различных кристаллов показывает, что наиболее часто встречаются следующие координационные числа: 2, 3, 4, 6, 8 и 12.

Координационное число зависит от отношения радиуса положительного иона к радиусу отрицательного иона: чем ближе это отношение к единице, тем больше координационное число. Рассматривая ионы как шары, расположенные в кристалле по способу наиболее плотной упаковки, можно рассчитать, при каком соотношении между радиусом положительного и отрицательного ионов должно получиться то или иное координационное число.

Ниже приведены вычисленные теоретически наибольшие координационные числа для данного отношения радиусов.

Нетрудно убедиться, что координационные числа для NaCl и CsCl, найденные по этой таблице, как раз отвечают действительному расположению ионов в кристаллах указанных веществ.

Например, в случае NаСl отношение радиуса иона натрия (0,98 Å) к радиусу иона хлора (1,81 Å) равно 0,98:1,81 =0,54. Это отношение лежит в пределах 0,41-0,73; следовательно, в решетке NaCl координационное число должно равняться шести.

Вы читаете, статья на тему Определение радиусов атомов и ионов

АТОМНЫЙ РАДИУС - характеристика атома, позволяющая приближённо оценивать межатомные (межъядерные) расстояния в молекулах и кристаллах. T. к. атомы не имеют чётких границ, при введении понятия "А. р." подразумевают, что 90-98% электронной атома заключено в сфере этого радиуса. А. р. имеют порядок 0,1 HM, однако даже небольшие различия в их значениях могут определять структуру построенных из них кристаллов, сказываются на равновесной геометрии молекул и т. д. Для мн. задач кратчайшие расстояния между атомами в молекулах и конденсированных средах можно считать суммой их А. р., однако такая аддитивность весьма приближённа и выполняется не во всех случаях. В зависимости от того, какие силы действуют между атомами (см. Межатомное взаимодействие) , различают металлические, ионные, ковалентные и ван-дер-ваальсовы А. р.

Металлич. радиусы считаются равными половине кратчайшего расстояния между атомами в кристаллич. структуре элемента-металла, они зависят от координац. числа К . Если принять А. р. при К=12 за единицу, то при К=8 , 6 и 4 А. р. того же элемента соотв. равны 0,98; 0,96; 0,88. Близость значений А. р. разных металлов - необходимое (хотя и недостаточное) условие взаимной растворимости металлов по типу замещения. Так, жидкие К и Li обычно не смешиваются и образуют два жидких слоя, а К с Rb и Cs образуют непрерывный ряд твёрдых растворов (А. р. Li, К, Pb и Cs равны соотв. 0,155; 0,236; 0,248; 0,268 HM). Аддитивность А. р. позволяет приближённо предсказывать параметры кристаллич. решёток интерметаллич. соединений.

Ионные радиусы используют для приближённых оценок межъядерных расстояний в ионных кристаллах. При этом считают, что расстояние между ближайшими катионом и анионом равно сумме их ионных радиусов. О точности, с к-рой выполняется указанная аддитивность А. р., можно судить на основании кратчайших межъядерных расстояний в кристаллах галогенидов щелочных металлов, приведённых ниже:

Разность А. р. ионов , полученная сравнением межъядерных расстояний в KF и NaF, составляет 0,035 нм (А. р. иона в кристаллах KF в NaF предполагаются одинаковыми), а для соединений KCl и NaCl она равна 0,033 HM, из соединений KBr и NaBr - 0,031 HM и из соединений KI и NaI - 0,030 HM. T. о., типичная погрешность определения межъядерных расстояний в ионных кристаллах по А. р.~ 0,001 нм.

Существует неск. систем ионных А. р., отличающихся значениями А. р. индивидуальных ионов, но приводящих к примерно одинаковым межъядерным расстояниям. Впервые работа по определению ионных А. р. была проделана в 20-х гг. 20 в. В. M. Гольдшмидтом (V. M. Goldschmidt), опиравшимся, с одной стороны, на межъядерные расстояния в кристаллах, измеренные методами рентгеновского структурного анализа, а с другой - на значения А. р. и , определённые методом рефрактометрии (соотв. 0,133 и 0,132 HM). Большинство др. систем также опирается на определённые . методами межъядерные расстояния в кристаллах и на нек-рое "реперное" значение А. р. определ. иона. В наиб. широко известной системе По-линга этим реперным значением является А. р. (0,140 HM). В системе Белова и Бокия, считающейся одной из наиб. надёжных, А. р. 0 2- принимается равным 0,136 HM. Ниже приведены значения радиусов нек-рых ионов:

в системе Гольдшмидта

в системе Полинга

в системе Гольдшмидта

в системе Полинга

Для ионных кристаллов, имеющих одинаковые координац. числа, ср. отклонение суммы А. р., вычисленной по приведённым выше А. р., от опытных значений кратчайших межъядерных расстояний в ионных кристаллах составляет 0,001-0,002 HM.

В 70-80-х гг. были сделаны попытки прямого определения А. р. ионов путём измерения электронной плотности методами рентгеновского структурного анализа при условии, что минимум электронной плотности на линии, соединяющей ядра, принимается за границу ионов. Дифракц. измерения для кристаллов галогенидов щелочных металлов позволили получить А. р. катионов Li + , Na + , К + , Rb + и Cs + , равные соотв. 0,094; 0,117; 0,149; 0,163; 0,186 нм, а А. р. анионов F - , Cl - , Br - , I - - равные соотв. 0,116; 0,164; 0,180; 0,205 HM. T. о. дифракц. измерения приводят к завышенным (по сравнению с традиционными, приведёнными выше) значениям А. р. катионов и к заниженным значениям А. р. анионов. А. р., найденные путём измерения распределения электронной плотности в кристалле, нельзя переносить от одного соединения к другому, а отклонения от их аддитивности слишком велики, поэтому такие А. р. не могут быть использованы для предсказания межъядерных расстояний.

Ковалентный радиус определяется как половина длины одинарной хим. связи X - X (где X - элемент-неметалл). Для галогенов ковалентный А. р.- это половина межъядерного расстояния X - X в молекуле X 2 , для S и Se - половина расстояния X - X в X 8 , для углерода - половина кратчайшего расстояния С - С в кристалле алмаза. Ковалентные А. р. F, Cl, Br, I, S, Se и С соотв. равны 0,064; 0,099; 0,114; 0,133; 0,104; 0,117 и 0,077 нм. Для атома H А. р. принимают равным 0,030 HM (хотя половина длины связи H - H в молекуле H 2 равна 0,037 HM). Аддитивность ковалентных А. р. позволяет предсказывать кратчайшие межъядерные расстояния (длины связей) в многоатомных молекулах. Так, согласно этому правилу длина связи C-Cl должна быть равной 0,176 HM, а экспериментально полученное для этой величины значение в молекуле CCl 4 равно 0,177 HM. Ниже приведены ковалентные А. р. для атомов нек-рых элементов, вычисленные на основании длин одинарных связей:


В молекулах, имеющих двойные или тройные хим. связи, используют уменьшенные значения ковалентных А. р., ибо кратные связи короче одинарных. Ниже приведены ковалентные радиусы атомов при образовании кратных связей:

Ван-дер-ваальсовы радиусы определяют эфф. размеры атомов благородных газов. Кроме того, ван-дер-ваальсовыми А. р. считают половину межъядерного расстояния между ближайшими одноимёнными атомами, не связанными между собой хим. связью и принадлежащими разным молекулам (напр., в молекулярных кристаллах). При сближении атомов на расстояние, меньшее суммы их ван-дер-ваальсовых радиусов, возникает сильное межатомное отталкивание. Поэтому ван-дер-ваальсовы А. р. характеризуют минимальные допустимые контакты атомов, принадлежащих разным молекулам. Ниже приведены значения ван-дер-ваальсовых атомных радиусов для нек-рых атомов:


Ван-дер-ваальсовы А. р. в ср. на 0,08 нм больше ковалентных А. р. Ионный А. р. для отрицательно заряженного иона (напр., Cl -) практически совпадает с ван-дер-ваальсовым радиусом атома в нейтральном состоянии.

Знание ван-дер-ваальсовых А. р. позволяет определять форму молекул, конформации молекул и их упаковку в молекулярных кристаллах. Согласно принципу плотной упаковки, молекулы, образуя кристалл, располагаются таким образом, что "выступы" одной молекулы входят во "впадины" другой. Пользуясь этим принципом, можно интерпретировать имеющиеся кристаллографические данные, а в ряде случаев и предсказывать структуру молекулярных кристаллов.

Лит.: Бокий Г. Б., Кристаллохимия, 3 изд., M., 1971; Полинг Л., Общая химия, пер. с англ., M., 1974; Кемпбел Д ж., Современная общая химия, пер. с англ., т. 1, M., 1975; Картмелл Э., Фоулз Г. В. А., Валентность и строение молекул, пер. с англ., M., 1979. В. Г. Дашевский .

Атомный радиус зависит от числа ближайших соседних атомов.
Атомные радиусы подразделяют на радиусы атомов металлов, ко-валентные радиусы неметаллических элементов и радиусы атомов благородных газов.
Атомный радиус, определяемый всей совокупностью действующих в кристаллах взаимодействий, зависит в некоторой мере or типа связи и КЧ.
Атомные радиусы / - переходных металлов этой группы - самария, тулия и плутония - гораздо больше, поэтому соответствующая им кривая располагается слева от кривых для d - переходных металлов и обнаруживает характерные изломы. Инертные газы вследствие очень слабых молекулярных сил, связывающих их атомы в твердом состоянии, имеют очень большие атомные радиусы. Расположение соответствующей кривой не имеет отношения к кривым для d - и / - переходных металлов VIII группы с преобладающей сильной металлической связью.
Атомный радиус возрастает при увеличении главного квантового числа п этого высшего занятого энергетического уровня. Однако средний радиус электронного распределения для каждого энергетического уровня в различных атомах неодинаков, так как он зависит от эффективного заряда ядра. Под эффективным зарядом ядра Z3d (j) понимается кажущийся заряд, который воздействует на рассматриваемый электрон. Величина 2эфф меньше, чем истинный заряд ядра Z, потому что каждый внешний электрон частично экранируется от действия ядра внутренними электронами. Для самых внешних электронов степень экранирования истинного заряда ядра другими электронами этого же атома или иона можно охарактеризовать с помощью постоянной экранирования S, которая определяется как разность между истинным и эффективным зарядами ядра.
Атомные радиусы, как и ионные, меняются для одного и того же элемента, в зависимости от величины координационного числа. В связи с этим, как мы указывали, часто обозначают с помощью индекса, например rv, к какому координационному числу относится данная величина радиуса.
Атомный радиус 1 56 А, ионный радиус Са2 равен 1 03 А.
Атомный радиус 2 65 А, ионный радиус Cs равен 165 А. На воздухе мгновенно окисляется с воспламенением, образуя перекись и надпере-кись.
Атомный радиус (металлический) 0 280 нм, ионный радиус Fr 0 186 нм.
Атомные радиусы убывают в последовательности S С1 Аг, поскольку при переходе от S к С1 и от С1 к Аг заряд ядра возрастает на единицу. В пределах одного периода валентные электроны сильнее притягиваются к ядру с возросшим положительным зарядом, поэтому атомные радиусы соответственно уменьшаются. Для изоэлектронных (имеющих одинаковое число электронов) атомных и ионных частиц эффективные радиусы уменьшаются по мере возрастания заряда ядра (порядкового номера элемента), так как и в этом случае происходит последовательное увеличение притяжения электронов к ядру.

Атомные радиусы с увеличением номера группы от I до VI и далее к группе цинка изменяются аналогично. С уменьшением длины межатомных связей и атомных диаметров возрастает энергия межатомных связей и поэтому уменьшается коэффициент теплового расширения а и сжимаемость металлов к.
Атомные радиусы и сжимаемости элементов подгрупп В значительно увеличиваются в направлении IB - - VIIB, причем атомные радиусы инертных газов очень близки по величине к атомным радиусам щелочных металлов в соответствующих периодах.
Атомные радиусы металлов. Атомные радиусы подразделяют на радиусы атомов металлов, ковалентные радиусы неметаллических элементов и радиусы атомов благородных газов.
Атомные радиусы г д и Гц, которые следует подставлять в уравнение, обычно отличаются от радиусов, применяемых Паулингом; они приведены в табл. 4.2 в скобках. Межатомные расстояния, вычисленные с помощью этих радиусов, приведены во втором столбце табл. 4.1 в скобках. Часто они несколько лучше согласуются с экспериментальными значениями, чем величины, полученные из радиусов Паулинга, но разница редко бывает большой. Схема Шомекера и Стивенсона страдает тем недостатком, что ее нельзя распространить на двойные и тройные связи, и поэтому она не обладает достаточно широкой применимостью для того, чтобы оказаться полезной в последующем обсуждении.
Атомные радиусы подразделяют на радиусы атомов металлов, ковалентные радиусы неметаллических элементов и радиусы атомов благородных газов.
Атомные радиусы имеют периодическую зависимость от атомного номера или заряда ядра. В общем, если периодическую систему элементов представить в наиболее привычной - табличной форме, то атомные радиусы, при одном и том же числе квантовых слоев, слева направо уменьшаются, электронная оболочка как бы сжимается. Сверху вниз, напротив, с ростом числа квантовых слоев атомные радиусы увеличиваются.
Атомные радиусы подразделяют на радиусы атомов металлов, ковалентные радиусы и межмолекулярные (ван-дер-ваальсовы) радиусы, к которым относятся и радиусы атомов благородных газов.
Обычно атомные радиусы в группах увеличиваются сверху вниз.
Атомный радиус вольфрама равен 1 37 А, молибдена 1 36 А, ванадия - 1 32 Аи хрома-1 25 А. Опыт показывает, что сопряженное осаждение тем сильнее выражено, что ближе атомный радиус элемента к атомному радиусу вольфрама.
Атомные радиусы галогенов увеличиваются в ряду F c C1 Вг I. В этой же последовательности возрастают температуры кипения и температуры плавления и углубляется окраска галогенов.
Схема кристал - Повторением этой операции несколько раз уда. Атомный радиус кремния (при координационном числе 4 и ковалент-ной связи) равен 1 175 А. Благодаря сравнительно большой величине радиуса атома кремний обладает большей металличностью, чем углерод. В соединениях кремний преимущественно четырехвалентен.
Атомный радиус бора равен 0 97, а радиус иона В3 оценивается в 0 20 А.

Атомный радиус бора равег: 0 97, а радиус иона В3 оценивается в 0 20 А.
Диаграмма состояния железа.| Изменение теплоемкости железа с температурой [ ккалКз - атом град. Атомный радиус Fe равен 1 26 А, а работа выхода электрона из металла - 4 7 эй. Как показывает рис. XIV-15, при обычном давлении у железа существуют четыре аллотропические формы. Коэффициент термического расширения железа до 500 С возрастает, после чего до 769 С уменьшается, а затем до 911 С вновь возрастает. Образующаяся при обычной температуре под давлением около 133 тыс. ат е-форма железа характеризуется структурой типа гексагональной плотной упаковки с rf (FeFe) 2 40 А, высокой плотностью (9 1 г / см3) и повышенным (примерно в 2 5 раза) электросопротивлением.
Стандартные атомные радиусы Со и Ni равны 1 25 и 1 24 А, а характерные для металлов работы выхода электрона - соответственно 4 2 и 5 0 эв. Аллотропия этих элементов изучена гораздо хуже, чем железа. У кобальта при нагревании (около 450 С) гексагональная плотная упаковка изменяется на куб с центрированными гранями, а у никеля (около 358 С) - наоборот. Чем вызван такой противоположный характер поведения обоих металлов - не ясно.
Атомный радиус Fe равен 1 26 А, а работа выхода электрона из металла - 4 7 эв. Как показывает рис. X1V - 15, при обычном давлении у железа существуют четыре аллотропические формы. Из них а, (5 и Ь кристаллизуются по типу центрированного куба, тогда как у - по типу куба с центрированными гранями. Коэффициент термического расширения железа до 500 С возрастает, после чего до 769 С уменьшается, а затем до 911 С вновь возрастает.
Стандартные атомные радиусы Со и Ni равны 1 25 и 1 24 А, а характерные для металлов работы выхода электрона - соответственно 4 2 и 5 0 эа. Аллотропия этих элементов изучена гораздо хуже, чем железа. У кобальта при нагревании (около 450 С) гексагональная плотная упаковка изменяется на куб с центрированными гранями, а у никеля (около 358 С) - наоборот. Чем вызван такой противоположный характер поведения обоих металлов - не ясно. Для кобальта зарегистрировано еще одно полиморфное превращение - при 1125 С.
Атомный радиус Li заметно отличается от атомных радиусов его электронных аналогов, поэтому Li образует с ними эвтектические сплавы.
Атомный радиус ванадия заметно меньше, чем ниобия, а при переходе от ниобия к танталу радиус атома практически не изменяется, несмотря на то, что у тантала появляется новый электронный слой. Аномально малое значение атомного радиуса тантала обусловлено, как и в случае гафния, влиянием лантаноидной контракции. У ниобия и тантала в степени окисления 5 к тому же совпадают и ионные радиусы, что обусловливает большое сходство химических свойств этих элементов.
Атомные радиусы ниобия и тантала почти совпадают (табл. 33), ионные радиусы одинаковой степени окисления тоже очень близки друг к другу, поэтому их соединения весьма сходны по свойствам. Металлы подгруппы VB тугоплавки, обладают хорошими механическими свойствами, сильно зависящими от содержания примесей водорода, углерода, кислорода и азота. Эти примеси увеличивают твердость, делают металлы хрупкими и менее пластичными. Подвергнутые электроннолучевой плавке в вакууме, ниобий и тантал очень пластичны и хорошо обрабатываются в холодном состоянии.
Строение молеку - в качестве начала координат. Тогда в коль-8 цевом ассоциате S8, изображенном на. Атомный радиус серы считают равным 0 104 нм.
Радиусы атомов, вычисленные из межатомных расстояний в простых веществах, нм. Атомные радиусы неметаллов вычисляют аналогичным образом, как половину межатомного расстояния в молекулах или кристаллах простых веществ.
Атомные радиусы ниобия и тантала почти совпадают (см. табл. 33), ионные радиусы одинаковой степени окисления тоже очень близки друг к другу, поэтому их соединения весьма сходны по свойствам. Металлы подгруппы VB тугоплавки, обладают хорошими механическими свойствами, сильно зависящими от содержания примесей водорода, углерода, кислорода и азота. Эти примеси увеличивают твердость, делают металлы хрупкими и менее пластичными. Подвергнутые электронно-лучевой плавке в вакууме, ниобий и тантал очень пластичны и хорошо обрабатываются в холодном состоянии. При обыкновенных условиях эти металлы пассивны, так как покрывается устойчивой защитной оксидной пленкой. При высокой температуре взаимодействуют с кислородом, галогенами, азотом, углеродом, водородом, диоксидом углерода и парами воды. Тантал при 600 С и выше по - Крывается прочным тугоплавким, плохо проводящим ток оксидом Та20б, неспособным восстанавливаться в водороде.

Атомный радиус ванадия заметно меньше, чем ниобия, а при переходе от ниобия к танталу радиус атома практически не изменяется, несмотря на то что у тантала появляется новый электронный слой. У ниобия и тантала в степени окисления 5 к тому же совпадают и ионные радиусы, что обусловливает большое сходство химических свойств этих элементов.
Типы выделений из пересыщенного твердого раствора. Атомный радиус алюминия равен 0 143 нм, меди - 0 128 нм, цинка - 0 138 нм.
Соответственно атомный радиус уменьшается от 1 55 А в случае лития до 0 77 Л в случае углерода. Постепенно повышаются температуры плавления и температуры кипения; эти показатели подобно твердости и другим такого рода свойствам отражают прочность связи между атомами данного вещества; температура плавления увеличивается от 186 для лития до 3500 для углерода, а температура кипения возрастает от 1336 для лития до 4200 для углерода.
Распределение электронной плотности на линии связи между атомами в кристаллах. а - новалент-нан связь (алмаз С, пунктирная линия - электронная плотность валентной пары электронов. б - ионная связь (NaCl, пунктирная линия - область внешних электронных орбит. в - металлическая связь (А1, пунктирная линия - плотность электронов в межатомном пространстве. Атомные радиусы гат в структурах простых веществ (элементов) с металлич. Межатомные расстояния в структурах соединений с тем же типом связи хорошо описываются суммой атомных радиусов. Si - С в карбиде кремния (0 189 нм) практически совпадает с суммой указанных радиусов гат (Si) 0 117 нм, rJT (C) 0 077 нм, равной 0 194 нм.
Атомный радиус урана большой, равен 1 54 А, ионные радиусы из - 1 03 A, U4 - 0 93 A, U5 - 0 87 А и U6 - 0 83 А.
Атомный радиус цезия равен 2 62 А.
Атомные радиусы бора, азота и кремния равны соответственно 0 80; 0 74 и 1 17 А - Предскажите поведение этих элементов в указанных ниже случаях, считая, что атомы являются твердыми шарами, и сравните результаты, предсказанные вами, с экспериментальными данными.
Атомные радиусы ванадия, ниобия и тантала равны соответственно 1 34; 1 46 и 1 46 А - Почему совпадают атомные радиусы ниобия и тантала.
Атомные радиусы переходных элементов меньше, чем атомные радиусы непереходных элементов, что отражает большую прочность связи в металлах переходных элементов.
Атомные радиусы металлических катализаторов должны лежать в определенных пределах, так как в противном случае или атомы водорода в циклогексане будут слишком далеки от притягивающего их атома катализатора, или кольцо углеродных атомов не належится на решетку. Катализаторы дегидрогенизации циклогексана имеют радиусы атомов 1 236 - 1 397 А.
Атомные радиусы элементов подгруппы меди невелики: гс 128 пм; / - д г Аи 1 44 пм.

Одной из важнейших характеристик химических элементов, участвующих в образовании химической связи, является размер атома (иона): с его увеличением прочность межатомных связей снижается. Размер атома (иона) принято определять величиной его радиуса или диаметра. Так как атом (ион) не имеет четких границ, то понятие «атомный (ионный) радиус» подразумевает, что 90–98 % электронной плотности атома (иона) заключено в сфере этого радиуса. Знание величин атомных (ионных) радиусов позволяет оценивать межъядерные расстояния в кристаллах (то есть структуру этих кристаллов), так как для многих задач кратчайшие расстояния между ядрами атомов (ионов) можно считать суммой их атомных (ионных) радиусов, хотя такая аддитивность приближенна и выполняется не во всех случаях.

Под атомным радиусом химического элемента (об ионном радиусе см. ниже), участвующего в образовании химической связи, в общем случае договорились понимать половину равновесного межъядерного расстояния между ближайшими атомами в кристаллической решетке элемента. Это понятие, весьма простое, если рассматривать атомы (ионы) в виде жестких шаров, фактически оказывается сложным и часто не однозначным. Атомный (ионный) радиус химического элемента не является неизменной величиной, а изменяется в зависимости от ряда факторов, важнейшими из которых являются тип химической связи

и координационное число.

Если один и тот же атом (ион) в различных кристаллах образует разные типы химической связи, то у него будет несколько радиусов - ковалентный в кристалле с ковалентной связью; ионный в кристалле с ионной связью; металлический в металле; ван-дер-ваальсов в молекулярном кристалле. Влияние типа химической связи можно проследить на следующем примере. В алмазе все четыре химические связи являются ковалентными и образованы sp 3-гибридами, поэтому все четыре соседа данного атома находятся на одном и

том же расстоянии от него (d = 1.54 A˚) и ковалентный радиус углерода в алмазе будет

равен 0.77 A˚ . В кристалле мышьяка расстояние между атомами, связанными ковалентными связями (d 1 = 2.52 A˚), значительно меньше, чем между атомами, связанными силами Ван-дер-Ваальса (d 2 = 3.12 A˚), поэтому у As будет ковалентный радиус, равный 1.26 A˚ , и ван-дер-ваальсов, равный 1.56 A˚ .

Очень резко изменяется атомный (ионный) радиус и при изменении координационного числа (это можно наблюдать при полиморфных превращениях элементов). Чем меньше координационное число, тем меньше степень заполнения пространства атомами (ионами) и меньше межъядерные расстояния. Увеличение же координационного числа всегда сопровождается увеличением межъядерных расстояний.

Из сказанного следует, что атомные (ионные) радиусы разных элементов, участвующих в образовании химической связи, можно сравнивать только тогда, когда они образуют кристаллы, в которых реализуется один и тот же тип химической связи, и у этих элементов в образуемых кристаллах одинаковые координационные числа.

Рассмотрим основные особенности атомных и ионных радиусов более подробно.

Под ковалентными радиусами элементов принято понимать половину равновесного межъядерного расстояния между ближайшими атомами, соединенными ковалентной связью.

Особенностью ковалентных радиусов является их постоянство в разных «ковалентных структурах» с одинаковым координационным числом Z к. Кроме того, ковалентные радиусы, как правило, аддитивно связаны друг с другом, то есть расстояние A–B равно полусумме расстояний A–A и B–B при наличии ковалентных связей и одинаковых координационных чисел во всех трех структурах.

Различают нормальный, тетраэдрический, октаэдрический, квадратичный и линейный ковалентные радиусы.

Нормальный ковалентный радиус атома отвечает случаю, когда атом образует столько ковалентных связей, сколько соответствует его месту в периодической таблице: для углерода - 2, для азота - 3 и т. д. При этом получаются разные значения нормальных радиусов в зависимости от кратности (порядка) связи (единичная связь, двойная, тройная). Если связь образуется при перекрытии гибридных электронных облаков, то говорят о тетраэдрических

(Z к = 4, sp 3-гибридные орбитали), октаэдрических (Z к = 6, d 2sp 3-гибридные орбитали), квадратичных (Z к = 4, dsp 2-гибридные орбитали), линейных (Z к = 2, sp -гибридные орбитали) ковалентных радиусах.

О ковалентных радиусах полезно знать следующее (значения величин ковалентных радиусов для ряда элементов приведены в ).

1. Ковалентные радиусы, в отличие от ионных, нельзя интерпретировать как радиусы атомов, имеющих сферическую форму. Ковалентные радиусы применяются только для вычисления межъядерных расстояний между атомами, объединенными ковалентными связями, и ничего не говорят о расстояниях между атомами того же типа не связанными ковалентно.

2. Величина ковалентного радиуса определяется кратностью ковалентной связи. Тройная связь короче двойной, которая в свою очередь короче единичной, поэтому ковалентный радиус тройной связи меньше, чем ковалентный радиус двойной связи, который меньше

единичного. Следует иметь в виду, что порядок кратности связи не обязательно должен быть целым числом. Он может быть и дробным, если связь носит резонансный характер (молекула бензола, соединение Mg2 Sn, см. ниже). В этом случае ковалентный радиус имеет промежуточное значение между значениями, соответствующими целым порядкам кратности связи.

3. Если связь носит смешанный ковалентно-ионный характер, но с высокой степенью ковалентной составляющей связи, то можно вводить понятие ковалентного радиуса, но нельзя пренебрегать влиянием ионной составляющей связи на его величину. В некоторых случаях это влияние может приводить к значительному уменьшению ковалентного радиуса, иногда до 0.1 A˚ . К сожалению, попытки предсказать величину этого эффекта в различных

случаях пока не увенчались успехом.

4. Величина ковалентного радиуса зависит от типа гибридных орбиталей, которые принимают участие в образовании ковалентной связи.

Ионные радиусы , естественно, не могут быть определены как полусумма расстояний между ядрами ближайших ионов, так как, как правило, размеры катионов и анионов резко различаются. Кроме того, симметрия ионов может несколько отличаться от сферической. Тем не менее для реальных ионных кристаллов под ионным радиусом принято понимать радиус шара, которым аппроксимируется ион.

Ионные радиусы используются для приближенных оценок межъядерных расстояний в ионных кристаллах. При этом считают, что расстояния между ближайшими катионом и анионом равно сумме их ионных радиусов. Типичная погрешность определения межъядерных расстояний через ионные радиусы в таких кристаллах составляет величину ≈0.01 A˚ .

Существует несколько систем ионных радиусов, отличающихся значениями ионных радиусов индивидуальных ионов, но приводящих к примерно одинаковым межъядерным расстояниям. Первая работа по определению ионных радиусов была проведена В. М. Гольдшмитом в 20-х годах XX века. В ней автор использовал, с одной стороны, межъядерные расстояния в ионных кристаллах, измеренные методами рентгеновского структурного анализа, а, с другой стороны, - значения ионных радиусов F− и O2− , определенные

методом рефрактометрии. Большинство других систем также опирается на определенные дифракционными методами межъядерные расстояния в кристаллах и на некоторые «реперные» значения ионного радиуса конкретного иона. В наиболее широко известной системе

Полинга этим реперным значением является ионный радиус пероксид-иона O2− , равный

1.40 A˚ . Эта величина для O2− хорошо согласуется с теоретическими расчетами. В системе Г. Б. Бокия и Н. В. Белова, считающейся одной из наиболее надежных, ионный радиус O2− принимается равным 1.36 A˚ .

В 70–80-х годах были сделаны попытки прямого определения радиусов ионов путем измерения электронной плотности методами рентгеновского структурного анализа при условии, что минимум электронной плотности на линии, соединяющей ядра, принимается за границу ионов. Оказалось, что этот прямой метод приводит к завышенным значениям ионных радиусов катионов и к заниженным значениям ионных радиусов анионов. Кроме того, оказалось, что значения ионных радиусов, определенные прямым способом, нельзя переносить от одного соединения к другому, а отклонения от аддитивности слишком велики. Поэтому такие ионные радиусы, не используются для предсказания межъядерных расстояний.

О ионных радиусов полезно знать следующее (в таблицах, приведенных ниже, даны величины ионных радиусов по Бокию и Белову).

1. Ионный радиус для ионов одного и того же элемента меняется в зависимости от его заряда, а для одного и того же иона зависит от координационного числа. В зависимости от координационного числа различают тетраэдрический и октаэдрический ионные радиусы.

2. Внутри одного вертикального ряда, точнее внутри одной группы, периодической

системы радиусы ионов с одинаковым зарядом возрастают с увеличением атомного номера элемента, поскольку растет число занятых электронами оболочек, а значит и размер иона.

Радиус, A˚

3. Для положительно заряженных ионов атомов из одного периода ионные радиусы быстро уменьшаются с увеличением заряда. Быстрое уменьшение объясняется действием в одну сторону двух основных факторов: сильное притяжение «своих» электронов катионом, заряд которого увеличивается с увеличением атомного номера; увеличение силы взаимодействия между катионом и окружающими его анионами с увеличением заряда катиона.

Радиус, A˚

4. Для отрицательно заряженных ионов атомов из одного периода ионные радиусы увеличиваются с увеличением отрицательного заряда. Два фактора, о которых шла речь в предыдущем пункте, в этом случае действуют в противоположные стороны, причем преобладает первый фактор (увеличение отрицательного заряда аниона сопровождается возрастанием его ионного радиуса), поэтому увеличение ионных радиусов с ростом отрицательного заряда происходит существенно медленнее, чем уменьшение в предыдущем случае.

Радиус, A˚

5. Для одного и того же элемента, то есть при одинаковой исходной электронной конфигурации, радиус катиона меньше, чем аниона. Это обусловлено уменьшением притяжения внешних «добавочных» электронов к ядру аниона и увеличением эффекта экранирования за счет внутренних электронов (у катиона недостаток электронов, а у аниона избыток).

Радиус, A˚

6. Размеры ионов с одинаковым зарядом следуют периодичности таблицы Менделеева. Однако величина ионного радиуса не пропорциональна заряду ядра Z , что обусловлено сильным притяжением электронов ядром. Кроме того, исключение из периодической зависимости представляют лантаноиды и актиноиды, в рядах которых радиусы атомов и ионов с одинаковым зарядом не растут, а уменьшаются с ростом атомного номера (так называемые лантаноидное сжатие и актиноидное сжатие).11

11Лантаноидное сжатие и актиноидное сжатие обусловлены тем, что у лантаноидов и актиноидов добавляющиеся при увеличении атомного номера электроны заполняют внутренние d и f -оболочки с главным квантовым числом меньшим, чем главное квантовое число данного периода. При этом согласно квантовомеханическим расчетам в d и особенно в f состояниях электрон находится гораздо ближе к ядру, чем в s и p состояниях данного периода с большим квантовым числом, поэтому d и f -электроны размещаются во внутренних областях атома, хотя заполнение этих состояний электронами (речь идет об электронных уровнях в энергетическом пространстве) происходит по другому.

Металлические радиусы считаются равными половине кратчайшего расстояния между ядрами атомов в кристаллизующейся структуре элемента-металла. Они зависят от координационного числа. Если принять металлический радиус какого-либо элемента при Z к = 12 за единицу, то при Z к = 8, 6 и 4 металлические радиусы того же элемента будут соответственно равны 0.98; 0.96; 0.88. Металлические радиусы обладают свойством аддитивности. Знание их величин позволяет приближенно предсказывать параметры кристаллических решеток интерметаллических соединений.

Для атомных радиусов металлов характерны следующие особенности (данные о величинах атомных радиусов металлов можно найти в ).

1. Металлические атомные радиусы переходных металлов, как правило, меньше, чем металлические атомные радиусы непереходных металлов, что отражает большую прочность связи в металлах переходных элементов. Эта особенность обусловлена тем, что металлы переходных групп и ближайшие к ним в периодической системе металлы имеют электронные d -оболочки, а электроны в d -состояниях могут принимать участие в образовании химической связи. Упрочнение связи может быть связано отчасти с появлением ковалентной составляющей связи и отчасти с ван-дер-ваальсовым взаимодействием ионных остовов. В кристаллах железа и вольфрама, например, электроны в d -состояниях вносят существенный вклад в энергию связи.

2. В пределах одной вертикальной группы по мере продвижения сверху вниз атомные радиусы металлов возрастают, что обусловлено последовательным увеличением числа электронов (растет число занятых электронами оболочек).

3. В пределах одного периода, точнее начиная с щелочного металла до середины группы переходных металлов, в направлении слева направо атомные металлические радиусы уменьшаются. В той же последовательности возрастает электрический заряд атомного ядра и происходит увеличение числа электронов, находящихся на валентной оболочке. При возрастании числа связывающих электронов, приходящихся на один атом, металлическая связь упрочняется, и вместе с тем из-за увеличения заряда ядра усиливается притяжение остовных (внутренних) электронов ядром, поэтому величина металлического атомного радиуса уменьшается.

4. Переходные металлы VII и VIII групп из одного периода в первом приближении имеют почти одинаковые металлические радиусы. По-видимому, когда речь идет об элементах, имеющих 5 и большее число d -электронов, увеличение заряда ядра и связанные с этим эффекты притяжения остовных электронов, ведущие к уменьшению атомного металлического радиуса, компенсируются эффектами, обусловленными увеличивающимся в атоме (ионе) числом электронов, не участвующих в образовании металлической связи, и ведущими к увеличению металлического радиуса (растет число занятых электронами состояний).

5. Увеличение радиусов (см. п. 2) у переходных элементов, которое имеет место при переходе от четвертого к пятому периоду, не наблюдается у переходных элементов при

переходе от пятого к шестому периоду; металлические атомные радиусы соответствующих (сравнение идет по вертикали) элементов в этих двух последних периодах почти одинаковы. По-видимому, это связано с тем, что у элементов, расположенных между ними, достраивается сравнительно глубоко расположенная f -оболочка, поэтому увеличение заряда ядра и связанные с этим эффекты притяжения оказываются более существенными, чем эффекты, связанные с увеличивающимся числом электронов (лантаноидное сжатие).

Элемент из 4 периода

Радиус, A˚

Элемент из 5 периода

Радиус, A˚

Элемент из 6 периода

Радиус, A˚

6. Обычно металлические радиусы много больше, чем ионные радиусы, однако не столь значительно отличаются от ковалентных радиусов тех же элементов, хотя и все без исключения больше ковалентных. Большая разница в величинах металлических атомных и ионных радиусов одних и тех же элементов объясняется тем, что связь, обязанная своим происхождением почти свободным электронам проводимости, не является сильной (отсюда наблюдаемые относительно большие межатомные расстояния в решетке металлов). Существенно меньшую разницу в величинах металлических и ковалентных радиусов одних и тех же элементов можно объяснить, если рассматривать металлическую связь как некоторую особенную «резонансную» ковалентную связь .

Под ван-дер-ваальсовым радиусом принято понимать половину равновесного межъядерного расстояния между ближайшими атомами, соединенными ван-дер-ваальсовой связью. Ван-дер-ваальсовы радиусы определяют эффективные размеры атомов благородных газов. Кроме того, как следует из определения, ван-дер-ваальсовым атомным радиусом можно считать половину межъядерного расстояния между ближайшими одноименными атомами, связанными ван-дер-ваальсовой связью и принадлежащими разным молекулам (например, в молекулярных кристаллах). При сближении атомов на расстояние, меньшее суммы их ван-дер-ваальсовых радиусов, возникает сильное межатомное отталкивание. Поэтому вандер-ваальсовы атомные радиусы характеризуют минимально допустимые контакты атомов, принадлежащих разным молекулам. Данные о величинах ван-дер-ваальсовых атомных радиусов для некоторых атомов можно найти в ).

Знание ван-дер-ваальсовых атомных радиусов позволяет определять форму молекул, их упаковку в молекулярных кристаллах. Ван-дер-ваальсовы радиусы много больше всех перечисленных выше радиусов тех же самых элементов, что объясняется слабостью вандер-ваальсовых сил.