Число подуровней на энергетических уровнях - раздел Химия, ОСНОВЫ ОБЩЕЙ ХИМИИ Главное Квантовое Число N Орбитальное...

Рис. 7. Изображение форм и ориентаций

s -,p -,d -, орбиталей с помощью граничных поверхностей.

Квантовое число m l называют магнитным . Оно определяет пространственное расположение атомной орбитали и принимает целые значения от –l до +l через нуль, то есть 2l + 1 значений (табл. 27).

Орбитали одного подуровня (l = const) имеют одинаковую энергию. Такое состояние называют вырожденным по энергии . Так p -орбиталь – трехкратно, d – пятикратно, а f – семикратно вырождены. Граничные поверхности s -,p -,d -, орбиталей показаны на рис. 7.

s-орбитали сферически симметричны для любого n и отличаются друг от друга только размером сферы. Их максимально симметричная форма обусловлена тем, что при l = 0 и μ l = 0.

Таблица 27

Конец работы -

Эта тема принадлежит разделу:

ОСНОВЫ ОБЩЕЙ ХИМИИ

На сайте сайт читайте: ОСНОВЫ ОБЩЕЙ ХИМИИ. C М Дрюцкая...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Теоретические сведения
Химия – это естественная наука о веществах, их строении, свойствах и взаимопревращениях. Важнейшей задачей химии является получение веществ и материалов с нужными для различных конкретных

Химические свойства оксидов
Основные Амфотерные Кислотные Реагируют с избытком кислоты с образованием соли и воды. Основным оксидам соответствуют осн

Получение кислот
Кислородсодержащие 1.Кислотный оксид+вода 2. Неметалл +сильный окислитель

Химические свойства кислот
Кислородсодержащие Бескислородные 1. Изменяют окраску индикатора лакмус-красный, метилоранж- розовый

Получение солей
1. С использованием металлов Средние (нормальные) соли металл+неметалл металл (ст

Химические свойства средних солей
Разложение при прокаливании Cоль+металл Соль+соль

Взаимосвязь между солями
Из средних солей можно получить кислые и основные соли, но возможен и обратный процесс. Кислые соли

НОМЕНКЛАТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
Химическая номенклатура – свод правил, позволяющих однозначно составить ту, или иную формулу или название любого химического вещества, зная его состав и строение.

Числовые приставки
Множитель Приставка Множитель Приставка Множитель Приставка моно

Систематические и тривиальные названия некоторых веществ
Формула Систематическое название Тривиальное название Хлорид натрия Поваренная соль

Названия и символы элементов
Символы химических элементов согласно правилам ИЮПАК приведены в периодической таблице Д.И. Менделеева. Названия химических элементов в большинстве случаев имеют латинские корни. В случае, если эле

Формулы и названия сложных веществ
Так же как и в формуле бинарного соединения в формуле сложного вещества на первом месте стоит символ катиона или атома с частичным положительным зарядом, а на втором – аниона или атома с частичным

Систематические и международные названия некоторых сложных веществ
Формула Систематическое название Международное название тетраоксосульфат(VI) натрия(I) сульфа

Названия наиболее распространенных кислот и их анионов
Кислота Анион (кислотный остаток) Формула Название Формула Название &nb

Основания
Согласно международной номенклатуре названия оснований составляются из слова гидроксид и названия металла. Например, - гидроксид натрия, - гидроксид калия, - гидроксид кальция. Есл

Средние соли кислородсодержащих кислот
Названия средних солей состоят из традиционных названий катионов и анионов. Если элемент в образуемых им оксоанионах проявляет одну степень окисления, то название аниона оканчивается на -ат

Кислые и основные соли
Если в состав соли входят атомы водорода, которые при диссоциации проявляют кислотные свойства и могут быть замещены на катионы металлов, то такие соли называются кислыми. Названия

ОСНОВНЫЕ ПОНЯТИЯ И ЗАКОНЫ ХИМИИ
Атомно-молекулярное учение о строении вещества М.В. Ломоносова является одной из основ научной химии. Всеобщее признание атомно-молекулярная теория получила в начале ХIХ в. Пос

Химический элемент. Атомная и молекулярная масса. Моль
Атом – наименьшая частица химического элемента, сохраняющая все его химические свойства. Элемент – это вид атомов с одинаковым зарядом я

Количество частиц в 1 моле любого вещества одно и то же и равно 6,02×1023. Это число называется числом Авогадро и обозначается
Количество молей вещества (nx) – это физическая величина, пропорциональная числу структурных единиц этого вещества. (1) где, - число час

Основные стехиометрические законы
Закон сохранения массы(М.В. Ломоносов, 1748 г.; А.Л. Лавуазье 1780 г.) служит основой при расчете материального баланса химических процессов): масса веществ, вступивших в хи

Эквивалент. Закон эквивалентов
Эквивалент (Э) – это реальная ли условная частица вещества, которая может присоединять, замещать, высвобождать или быть каким-либо другим способом э

Решение.
Пример 4. Рассчитайте молярную массу эквивалентов серы в соединениях. Решение

Теоретические сведения
Раствор –гомогенная термодинамически устойчивая система, состоящая из растворенного вещества, растворителя и продуктов их взаимодествия. Компонент, агрегатное состояние которого не

Теоретические сведения
Химический процесс можно рассматривать как первую ступень при восхождении от химических объектов – электрон, протон, атом – к живой системе. Учение о химических процессах – это обла

Стандартные термодинамические функции
Вещество Δ Н0298, кДж/моль Δ G0298, кДж/моль S0

Теоретические сведения
Кинетикахимических реакций - учение о химических процессах, о законах их протекания во времени, скоростях и механизмах. С исследованиями кинетики химических реакций связан

Влияние температуры на скорость реакции.
При повышении температуры на каждые 10 0скорость большинства химических реакций увеличивается в 2-4 раза, и, наоборот, при понижении температуры – понижается соответственно во столько

Влияние катализатора на скорость реакции.
Одним из способов увеличения скорости реакции является снижение энергетического барьера, то есть уменьшение. Это достигается введением катализаторов. Катализатор – вещество

ХИМИЧЕСКОЕ РАВНОВЕСИЕ
Различают обратимые и необратимые реакции. Необратимыми реакциями называются такие, после протекания которых, систему и внешнюю среду одновременно нельзя вернуть в прежнее состояние. Они иду

Теоретические сведения
Химические свойства любого элемента определяются строением его атома. С исторической точки зрения, теория строения атома последовательно разрабатывалась: Э. Резерфордом, Н. Бором, Л. де Бройлем, Э.

Основные характеристики протона, нейтрона и электрона
Частица Символ Масса покоя Заряд, Кл кг а.е.м. протон р

Корпускулярно-волновые свойства частиц
Характеристика состояния электронов в атоме основана на положении квантовой механики о двойственной природе электрона, обладающего одновременно свойствами частицы и волны. Впервые двойстве

Число орбиталей на энергетических подуровнях
Орбитальное квантовое число Магнитное квантовое число Число орбиталей с данным значением l l

Последовательность заполнение атомных орбиталей
Заселение электронами атомных орбиталей (АО) осуществляется согласно принципу наименьшей энергии, принципу Паули и правилу Гунда, а для многоэлектронных атомов – правилу Клечковского.

Электронные формулы элементов
Запись, отражающая распределение электронов в атоме химического элемента по энергетическим уровням и подуровням, называется электронной конфигурацией этого атома. В основном (невоз

Периодичность атомных характеристик
Периодический характер изменения химических свойств атомов элементов зависит от изменения радиуса атома и иона. За радиус свободного атома принимают положение главного

Потенциалы (энергии) ионизации I1, эВ
Группы элементов I II III IV V VI VII VI

Потенциалы (энергии) ионизации I1, эВ элементов V группы
р-элементы As 9,81 d-элементы V 6,74 Sb 8,64 Nb 6,88 Bi 7,29

Значение энергии (Eср) сродства к электрону для некоторых атомов.
Элем. H He Li Be B C N O F

Относительная электроотрицательность элементов
H 2,1 Li 1,0 Be 1,5 B 2,0

Зависимость кислотно-основных свойств оксидов от положения элемента в периодической системе и его степени окисления.
Слева направо по периоду у элементов происходит ослабление металлических свойств, и усиление неметаллических. Основные свойства оксидов ослабевают, а кислотные свойства оксидов усиливаются.

Характер изменения свойств оснований в зависимости от положения металла в периодической системе и его степени окисления.
По периоду слева направо наблюдается постепенное ослабление основных свойств гидроксидов. Например, Mg(OH)2 более слабое основание, чем NaOH, но более сильное основание, чем Al(OH)3

Зависимость силы кислот от положения элемента в периодической системе и его степени окисления.
По периоду для кислородосодержащих кислот слева направо возрастает сила кислот. Так, Н3РО4 более сильная, чем Н2SiO3; в свою очередь, H2SO

Свойства веществ в разных агрегатных состояниях
Состояние Свойства Газообразное 1. Способность принимать объем и форму сосуда. 2. Сжимаемость. 3. Быс

Сравнительная характеристика аморфных и кристаллических веществ
Вещество Характеристика Аморфное 1. Ближний порядок расположения частиц. 2. Изотропность физических сво

Свойства кристаллических решеток
Тип кристаллической решетки Характеристика Ионные Состоят из ионов. Образуют вещества с ионной связью. Обладают высокой т

В Периодической системе Д.И. Менделеева
1. Укажите название элемента, его обозначение. Определите порядковый номер элемента, номер периода, группу, подгруппу. Укажите физический смысл параметров системы – порядкового номера, номера перио

Теоретические сведения
Все химические реакции по своей сути являются донорно-акцепторными и различаются по природе частиц, которыми обмениваются: электрон донорно-акцепторные и протон донорно-акцепторные. Химические реак

Характеристика элементов и их соединений в ОВР
Типичные восстановители 1. нейтральные атомы металлов: Ме0 – nē → Меп+ 2. водород и неметаллы IV-VI групп: углерод, фосфор,

Типы ОВР
Межмолекулярные реакции, протекающие с изменением степени окисления атомов в различных молекулах. Mg + O2 = 2MgO Внутримо

Составление уравнений окислительно-восстановительных реакций
1. метод электронного баланса (схема) 1. Записать уравнение в молекулярной форме: Na2SO3 + KMnO4 + H2SO4 → MnSO

Участие ионов в различных средах
Среда В продукте больше атомов кислорода В продукте меньше атомов кислорода Кислая Ион + Н2О U

Стандартные электродные потенциалы металлов
Он позволяет сделать ряд выводов относительно химических свойств элементов: 1. каждый элемент способен восстанавливать из растворов солей все ионы, имеющие большее значение

Исходные данные
Вариант Уравнение реакции K2Cr2O7 + KI + H2SO4 → Cr2

Теоретические сведения
Многие ионы способны присоединять к себе молекулы или противоположные ионы и превращаться в более сложные ионы, называемые комплексными. Комплексные соединения (КС) – это соединения в узла

Строение комплексных соединений
В 1893 г. А.Вернер сформулировал положения, заложившие основу координационной теории. Принцип координации: координирующий атом или ион (Меn+) окружён противоп

Основные комплексообразователи в КС
Комплексообразователь Заряд иона Примеры комплексов Металл n+ HCl ®++Cl- - первичная диссоциаци

Равновесие в растворе всегда смещается в сторону, где находится менее растворимое вещество или более слабый электролит.
Cl + HNO3 → AgCl↓ + NH4NO3 КН=6,8·10-8 ПР =1,8·10-10 Так как ПР <

Природа химической связи в комплексных соединениях
Первой теорией, объясняющей образование КС была теория ионной (гетерополярной) связиВ. Косселя и А. Магнуса: многозарядный ион – комплексообразователь (d-элемент) обладает сильным

Слабое поле
Действие лигандов вызывает расщепление d-подуровня: dz2, dx2-y2 – высокоспиновый дуплет (d¡)

Геометрическая структура КС и тип гибридизации
К.ч. Тип гибридизации Геометрическая структура Пример sp Линейная n∙m (76) Правило Нернста.ПР - в насыщенном ра

Теоретические сведения
Вода – слабый электролит. Она полярна и находится в виде гидратированных кластеров. Благодаря тепловому движению связь разрывается, происходит взаимодействие: Н2О↔[

Изменение окраски некоторых индикаторов
Индикатор Область перехода окраски рН Изменение окраски Фенолфталеин 8,2-10 Бес

Уравнения Гендерсона – Гассельбаха
для буферных систем 1-го типа (слабая кислота и её анион): pH = pKa + lg([акцептор протона]/[донор протона])

ГИДРОЛИЗ.
Гидролиз лежит в основе многих процессов в химической промышленности. В больших масштабах осуществляется гидролиз древесины. Гидролизная промышленность вырабатывает из непищевого сырья (древесины,

Механизм гидролиза по аниону.
1. Анионы, обладающие высоким поляризующим действием: сульфид, карбонат, ацетат, сульфит, фосфат, цианид, силикат – анионы слабых кислот. У них вакантной орбитали нет, работает избыточный отицатель

Объем учебной дисциплины «Общая и неорганическая химия» и виды учебной работы для студентов очного отделения фармацевтического факультета
Вид учебной работы Всего часов/ зачетных единиц Семестр I часов Аудиторны

Лабораторных занятий по общей и неорганической химии для студентов дневного отделения фармацевтического факультета
I семестр (продолжительность - 5 часов) № занятия Раздел 1 Общая химия Модуль 1 В

Лекций по общей и неорганической химии для студентов дневного отделения фармацевтического факультета
I семестр (продолжительность - 2 часа) № п/п Тема лекции Предмет, задачи, методы и законы хими


Ионная сила раствора, I Заряд иона, z Ионная сила раствора, I Заряд иона, z ± 1

Растворимость кислот, оснований и солей в воде
Ионы H+ NH4+ K+ Na+ Ag+ Hg

Константы растворимости
Формула Кs рКs Ag3AsO3 Ag3AsO4

ОТВЕТЫ ТЕСТОВЫХ ЗАДАНИЙ
ТЕМА 1. 1в; 2г; 3а; 4г; 5б; 6в; 7в; 8А4, Б2, В4, Г1; 9 А5, Б1, В6, Г3; 10 А4, Б2, В3, Г1; 11а; 12в; 13г; 14а; 15б; 16а; 17а; 18а; 19в; 20б.

Состояние электрона в атоме (т.е. совокупность информации об энергии электрона и пространстве , в котором он находится) характеризуется четырьмя квантовыми числами.

Главное квантовое число n определяет энергию электрона в атоме и размер АО , т.е. удаленность электрона от ядра. Главное квантовое число n принимает значения целых чисел 1, 2, 3, 4… Совокупность электронов с одинаковым значением n называется энергетическим уровнем. Наименьшую энергию имеют электроны первого от ядра энергетического уровня (n = 1); с увеличением n энергия электрона и его удаленность от ядра возрастают. Состояние атома, когда его электроны находятся на таких энергетических уровнях, что их суммарная энергия является минимальной, называется основным, или невозбужденным. Состояния с более высокими значениями энергии называются возбужденными. Энергетические уровни обозначают буквами:

Числовое значение n 1 2 3 4 5 6 7

Буквенное обозначение K L M N O P Q.

Число энергетических уровней в атоме, находящемся в основном состоянии, равно номеру периода, в котором находится элемент.

На одном и том же энергетическом уровне могут находиться атомные орбитали различной формы, отличающиеся друг от друга по энергии. Поэтому энергетические уровни разделяются на подуровни. Энергию электрона на подуровне и форму атомной орбитали характеризует орбитальное квантовое число l. Значение l зависит от главного квантового числа: l принимает значения от 0 до (n –1), т. е. 0, 1, 2, 3… (n –1). В пределах данного энергетического уровня совокупность электронов, характеризующихся одинаковым значением l , называется энергетическим подуровнем. Подуровни обозначают буквами:

Орбитальное квантовое число l 0 1 2 3

Обозначение энергетического подуровня s p d f.

Таким образом, при l = 0, 1, 2, 3 электроны находятся соответственно на s-, p-, d-, f- подуровнях. Электроны различных подуровней называют s-, p-, d-, f- электронами. В этом случае говорят также о состояниях s-, p-, d-, f- электронов, или s-, p-, d-, f- атомных орбиталях.

Число энергетических подуровней в уровне не должно быть больше главного квантового число n . Так, первый уровень (n = 1) имеет один подуровень (s ), второй уровень (n = 2) – два подуровня (s и p ), третий (n = 3) – три (s, p, d ), четвертый (n = 4) – четыре (s, p, d, f ). В оболочках атомов ныне известных элементов электроны застраивают на каждом уровне не более четырех подуровней. Уровни O (n = 5), P (n = 6), Q (n = 7) содержат по четыре подуровня. При данном значении главного квантового числа n наименьшую энергию имеют электроны s -подуровня, затем p-, d-, f- подуровней.

Каждый подуровень составлен из орбиталей, число которых определяется магнитными квантовым числом m l . Магнитное квантовое число m l определяет возможные ориентации орбитали в пространстве , связано с орбитальным квантовым числом и может принимать целочисленные значения от –l до +l , включая ноль. Определенному значению l соответствует (2l+1) возможных значений магнитного квантового числа. Число значений m l указывает на число атомных орбиталей в подуровне и число возможных направлений, по которым они могут ориентироваться в пространстве.

Для s -подуровня l = 0 и потому m l имеет единственное значение: ml = 0. Таким образом, на s -подуровне имеется единственная s -орбиталь, которая расположена симметрично ядру атома. Для p -подуровня l = 1 и m l приобретает три значения: –1, 0, 1, т. е. р- подуровень имеет три р -орбитали и они ориентированы по трем осям координат. d -подуровень с l = 2 имеет пять значений ml : –2, –1, 0, 1, 2 и, следовательно, пять d -орбиталей, которые ориентированы по пяти разным направлениям. f -подуровень с l = 3 имеет семь значений ml : –3, –2, –1, 0, 1, 2, 3, т. е. семь f- орбиталей. Число ориентаций f- орбиталей равно семи.

Условно АО обозначают в виде квадрата (квантовой ячейки) š . Соответственно для s -подуровня имеется одна АО š , для p -подуровня – три АО, для d -подуровня пять АО, для f- подуровня семь АО.

Таким образом, электроны в атоме располагаются по энергетическим уровням, удаленность которых от ядра характеризуется значением главного квантового числа n ; уровни состоят из подуровней, число которых для каждого уровня не превышает значение n ; в свою очередь, подуровень состоит из орбиталей, количество которых задается числом значений магнитного квантового числа ml . Квантовые числа n, l, m l характеризуют орбиталь.

Кроме движения вокруг ядра, электрон вращается вокруг собственной оси. Это движение получило название «спин». Спиновое квантовое число ms характеризует два возможных направления вращения электрона вокруг собственной оси (по часовой стрелке или против). Спиновое квантовое число m s принимает два значения: +½ и –½. Электроны с разными спинами обычно обозначаются противоположно направленными стрелками ↓.

Четыре квантовых числа n, l, m l , ms полностью характеризуют состояние электрона в атоме.

Инструкция

Главное квантовое число принимает целые значения: n = 1, 2, 3, … . Если n=∞, это подразумевает, что электрону сообщена энергия ионизации – энергия, достаточная для его отделения от ядра.

В пределах одного уровня электроны могут отличаться подуровнями. Такие различия в энергетическом состоянии электронов одного уровня отражаются побочным квантовым числом l (орбитальным). Оно может принимать значения от 0 до (n-1). Значения l обычно символически представлены буквами. От значения побочного квантового числа зависит форма электронного облака .

Движение электрона по замкнутой траектории провоцирует появление магнитного поля. Состояние электрона, обусловленное магнитным моментом, характеризуется магнитным квантовым числом m(l). Это третье квантовое число электрона. Оно характеризует его ориентацию в пространстве магнитного поля и принимает диапазон значений от (-l) до (+l).

В 1925 году ученые предположили наличие у электрона спина . Под спином понимают собственный момент импульса электрона, не связанный с его движением в пространстве. Спиновое число m(s) может принимать только два значения: +1/2 и -1/2.

Согласно принципу Паули, в атоме не может быть двух электронов с одинаковым набором четырех квантовых чисел. Хотя бы одно из них должно различаться. Так, если электрон находится на первой орбите, для него главное квантовое число n=1. Тогда однозначно l=0, m(l)=0, а для m(s) возможны два варианта: m(s)=+1/2, m(s)=-1/2. Именно поэтому на первом энергетическом уровне может находиться не более двух электронов, и имеют они разное спиновое число.

На второй орбитали главное квантовое число n=2. Побочное квантовое число принимает два значения: l=0, l=1. Магнитное квантовое число m(l)=0 для l=0 и принимает значения (+1), 0 и (-1) для l=1. Для каждого из вариантов существует еще по два спиновых числа. Итак, максимально возможное число электронов, находящихся на втором энергетическом уровне, равно 8.

К примеру, у благородного газа неона полностью заполнены электронами два энергетических уровня. Общее число электронов неона равняется 10 (2 с первого уровня и 8 со второго). Этот газ инертный, не вступает в реакции с другими веществами. Другие вещества, вступая в химические реакции, стремятся приобрести структуру благородных газов .

Главное квантовое число - это целое число , которое является определением состояния электрона на энергетическом уровне. Энергетический уровень – это набор стационарных состояний электрона в атоме с близкими значениями энергии. Главное квантовое число определяет удаленность электрона от ядра, и характеризует энергию электронов, которые этот уровень занимают.

Совокупность чисел, которые характеризуют состояние электрона , называются квантовыми числами. Волновую функцию электрона в атоме, его уникальное состояние определяют четыре квантовых числа – главное, магнитное, орбитальное и сплин – магнитный момент движения элементарной частицы , выраженный в количественном значении. Главное квантовое число имеет обозначение n .Если главное квантовое число увеличивается, то соответственно увеличивается и орбита, и энергия электрона. Чем меньше значение n, тем больше значение энергетического взаимодействия электрона с ядром . Если суммарная энергия электронов является минимальной, то такое состояние атома называется невозбужденным или основным. Состояние атома с высоким значением энергии называется возбужденным. На энергетическом уровне самое большое число электронов можно определить формулой N = 2n2.Когда случается переход электрона с одного энергетического уровня на другой, изменяется и главное квантовое число .В квантовой теории принято утверждение, что энергия электрона квантуется, то есть может принимать лишь дискретные, определенные значения. Чтобы знать состояние электрона в атоме необходимо учитывать энергию электрона, форму электронного облака и других параметров. Из области натуральных чисел, где n может быть равно 1 и 2, и 3 и так далее, главное квантовое число может принимать какое угодно значение. В квантовой теории энергетические уровни обозначают буквами, значение n - числами. Номер периода, где находится элемент, равен числу энергетических уровней в атоме, находящемся в основном состоянии. Все энергетические уровни состоят из подуровней. Подуровень состоит из атомных орбиталей, которые определяются, характеризуются главным квантовым число м n, орбитальным число м l и квантовым число м ml. Число подуровней каждого уровня не превышает значение n.Волновое уравнение Шредингера является самым удобным описанием электронного строения атома.

Квантовое численное значение какой-либо квантованной переменной микроскопического объекта, характеризующее состояние частицы, называется квантовым числом. Атом химического элемента состоит из ядра и электронной оболочки. Состояние электрона характеризуется его квантовыми числами .



Вам понадобится

  • таблица Менделеева

Инструкция

Квантовое орбитальное число 2 может принимать значения от 0 до n-2, характеризуя форму орбиталей. Также оно характеризует подоболочку, на которой электрон и расположен . Квантовое число 2 имеет и буквенное обозначение . Квантовым числам 2 = 0, 1, 2, 3, 4 соответствуют обозначения 2 = s, p, d, f, g... Буквенные обозначения в записи, обозначающей электронную конфигурацию химического элемента, также присутствуют. По ним определяется квантовое число. Так, на подоболочке может быть до 2*(2l+1) электронов.

Магнитным называется квантовое число ml, при этом, l дописано снизу, как индекс. Его данные показывают атомную орбиталь, принимая значения от 1 до -1. Всего (21+1) значение.

Электрон будет являться фермионом, имея полуцелый спин, который равен ½. Его квантовое число будет принимать два значение, именно: ½ и –½. А также составлять две проекции электрона на ось и считаться квантовым числом ms.

Видео по теме

Атом состоит из ядра и окружающих его электронов , которые вращаются вокруг него по атомным орбиталям и образуют электронные слои (энергетические уровни). Количество отрицательно заряженных частиц на внешних и внутренних уровнях определяет свойства элементов. Число электронов , содержащихся в атоме , можно найти, зная некоторые ключевые моменты.



Вам понадобится

  • - бумага;
  • - ручка;
  • - периодическая система Менделеева.

Инструкция

Чтобы определить количество электронов , воспользуйтесь периодической системой Д.И. Менделеева. В этой таблице элементы расположены в определенной последовательности, которая тесно связана с их атомным строением. Зная, что положительный заряд атома всегда равен порядковому номеру элемента, вы легко найдете количество отрицательных частиц. Ведь известно - атом в целом нейтрален, а значит, число электронов будет равно числу протонов и номеру элемента в таблице. Например, порядковый номер алюминия равен 13. Следовательно, количество электронов у него будет 13, у натрия – 11, у железа – 26 и т.д.

Если вам необходимо найти количество электронов на энергетических уровнях, сначала повторите принцип Пауля и правило Хунда. Потом распределите отрицательные частицы по уровням и подуровням с помощью все той же периодической системы, а точнее ее периодов и групп. Так номер горизонтального ряда (периода) указывает на количество энергетических слоев, а вертикального (группы) – на число электронов на внешнем уровне.

Электронов



Три постулата

Вся квантовая механика состоит из принципа относительности измерений, принципа неопределенности Гейзенберга и принципа дополнительности Н.Бора. Все дальнейшее в квантовой механике основывается на этих трех постулатах. Законы квантовой механики – это основа изучения строения вещества. С помощью этих законов ученые выяснили строение атомов, объяснили периодическую систему элементов, изучили свойства элементарных частиц, поняли строение атомных ядер. С помощью квантовой механики ученые объяснили температурную зависимость, вычислили величину твердых тел и теплоемкости газов, определили строение и поняли некоторые свойства твердых тел.

Принцип относительности измерений

Данный принцип основывается на результатах измерения физической величины в зависимости от процесса измерения. Другими словами, наблюдаемая физическая величина - это собственное значение соответствующей физической величины. Считается, что не всегда точность измерения повышается с совершенствованием измерительных приборов. Этот факт описал и объяснил В. Гейзенберг в своем знаменитом принципе неопределенности.

Принцип неопределенности

Согласно принципу неопределенности, по мере того, как увеличивается точности измерения скорости передвижения элементарной частицы, увеличивается и неопределенность нахождения ее в пространстве, и наоборот. Это открытие В. Гейзенберга было выдвинуто Н. Бором как безусловное методологическое положение.

Итак, измерение - важнейший исследовательский процесс. Чтобы провести измерение, требуется специальное теоретико-методологическое объяснение. А его отсутствие вызывает неопределенность.В измерении заложена характеристикаточности и объективности. Современные ученые считают, что именно измерение, проделанное с нужной точностью, служит основным фактором теоретического знания и исключает неопределенность.

Принцип дополнительности

Средства наблюдения относительны к квантовым объектам. Принцип дополнительности заключается в том, что данные, полученные в условиях опыта, невозможно описать единой картиной. Эти данные являются дополнительными в том смысле, что совокупность явлений дает полное представление о свойствах объекта. Бор примерял принцип дополнительности не только к физическим наукам. Он считал, что возможности живых существ – многогранны, и зависят друг от друга, что изучая их, приходится обращаться к взаимодополнению данных наблюдений вновь и вновь.

Полезный совет

Чтобы полностью объяснить строение электронных оболочек атомов для всех случаев, кроме принципа Паули, нужно знать еще принцип наименьшей энергии и правило Гунда.

Источники:

  • «Начала химии», Н.Е. Кузьменко, В.В. Еремин, В.А. Попков, 2008.

Подуровень: s p d f g

При n = 1, l = 0, при n = 2, l = 0, 1, при n = 3, l = 0, 1, 2 и так далее. Таким образом,первый уровень имеет один подуровень: s- подуровень; второй – два: s- и р-подуровни; третий – три: s-, p- , d- подуровни и так далее. Отсюда ясно, что номер уровня указывает на число подуровней, которыми он располагает. Последовательность подуровней на каждом уровне такова: s-, p-, d-подуровни и так далее.

Энергетический подуровень – это совокупность электронных состояний, характеризующихся определенным набором квантовых чисел n и l .

Состояние электрона характеризуется определенными значениями главного и орбитального квантовых чисел. Например: запись 3р говорит о том, что электрон находится на третьем энергетическом уровне на р-подуровне.

Если l = 0, то область пространства (электронное облако), где вероятность нахождения электрона будет наивысшей, представляет собой сферу (s-облако). Если l = 1, то область наиболее вероятного нахождения электрона представляет собой объемную вытянутую восьмерку (р-облако); при l = 2 такая область пространства представляет собой объемный четырехлистник (d-облако).

Третьим квантовым числом является магнитное квантовое число m , оно характеризует число способов взаимной ориентации электронных облаков (орбиталей) в пространстве. Магнитное квантовое число зависит от значений орбитального квантового числа: m = -l … 0 …+l . Следовательно, для каждого l магнитное число m принимает (2l + 1) значений (каждому значению l соответствует ряд значений магнитного квантового числа, которые меняются от –l до +l, включая 0). Число значений магнитного квантового числа показывает число ориентаций электронного облака в пространстве, которые равны числу орбиталей на данном подуровне.

Если l = 0 (s), то m = 0, магнитное квантовое число имеет одно значение при данном значении орбитального квантового числа, следовательно, на s-подуровне имеется только одна орбиталь. При l = 1 (p), m = -1, 0, 1. Таким образом, р-подуровень состоит из трех орбиталей. Аналогичные рассуждения можно провести и для других значений орбитального квантового числа. Все орбитали, принадлежащие одному подуровню, имеют одинаковую энергию и называются вырожденными.

Общее число орбиталей, из которых состоит любой энергетический уровень (квантовый слой), равно n 2 , а число орбиталей, составляющих подуровень, равно (2l + 1).

Теперь мы можем дать следующее определение орбитали:

Состояние электрона в атоме, характеризующееся определенными значениями квантовых чисел n, l и m, т.е. определенными размерами, формой и ориентацией в пространстве электронного облака, называется атомной электронной орбиталью

Четвертым квантовым числом является спиновое квантовое число (s), которое характеризует собственный механический момент электрона, связанный с вращением электрона вокруг собственной оси при его движении вокруг ядра. Это число может иметь только два значения либо +1/2, либо –1/2 (электрон может вращаться либо по часовой стрелке, либо против часовой стрелки).

ПОРЯДОК ЗАПОЛНЕНИЯ ЭЛЕКТРОНАМИ УРОВНЕЙ, ПОДУРОВНЕЙ И ОРБИТАЛЕЙ АТОМА

Структура атома с распределенными по уровням, подуровням и орбиталям электронами называется электронной конфигурацией атома. Электронную конфигурацию записывают с помощью электронной формулы. Например: запись 1s 1 означает, что электрон находится на первом энергетическом уровне (1 это значение главного квантового числа), на s-подуровне (буквой s ""кодируют"" значение орбитального квантового числа равное 0 (l = 0), а цифра 1 над буквой s показывает число электронов. Это электронная формула атома водорода. Каков же порядок заселения уровней, подуровней и орбиталей атома многоэлектронного? Распределение электронов в атоме, который находится в основном состоянии, определяется зарядом ядра атома. Электроны заселяют уровни, подуровни и орбитали атома в соответствии со следующими принципами.

1. Принцип минимальной энергии.

Основному (или устойчивому) состоянию атома соответствует минимальная суммарная энергия электронов.

Если атому сообщать энергию, то он переходит в возбужденное состояние. В возбужденном состоянии атом неустойчив, в нем он существует примерно 10 -8 сек, а затем переходит в основное состояние, излучая при этом квант энергии. Энергия уровней и подуровней увеличивается в соответствии со схемой:

E(1s)‹E(2s)‹E(2p)‹E(3s)‹E(3p)‹E(4s)‹E(3d)‹E(4p)‹E(5s)‹E(4d)‹E(5p)‹E(6s)‹E(4f)‹E(5d).

В невозбужденном состоянии атома каждый новый электрон попадает на тот уровень и на тот подуровень, где его энергия будет минимальной.

2. Принцип Паули.

В атоме не может быть электронов, характеризующихся четырьмя одинаковыми квантовыми числами.

Из принципа Паули вытекает важное следствие, которое определяет максимальное число электронов в одной орбитали. Каждая орбиталь может вместить только два электрона, имеющих противоположно направленные спины. Два таких электрона, располагающиеся на одной орбитали образуют электронную пару. Покажем это на примере заселения электронами 1s-орбитали:

Квантовые числа n l m s

Первый электрон 1 0 0 + ½

Второй электрон 1 0 0 - ½

Теперь мы можем указать максимальное число электронов на подуровнях: s 2 , p 6 , d 10 , f 14 . Максимальное число электронов на каждом подуровне можно вычислить по формуле: 2(2l + 1).

3. Третий принцип – правило Хунда.

При заполнении электронами вырожденных орбиталей каждого данного подуровня число неспаренных электронов на нем должно быть максимальным.

Практически это означает, что, например, у атома азота на р-подуровне находится три электрона и все они должны занимать свою орбиталь (спаренных электронов у атома азота на р-подуровне быть не должно). Только у атома кислорода, когда уже все три орбитали заселены электронами, четвертый электрон занимает свое место уже в занятой другим электроном орбитали.

Если два электрона занимают две разные орбитали, то взаимодействие между ними будет меньше, меньше будет и общий запас энергии системы. Электрон, который один находится в орбитали, называется неспаренным электроном. Такие электроны согласно спиновой теории валентности определяют валентность элемента.

ЭЛЕКТРОННЫЕ ФОРМУЛЫ ЭЛЕМЕНТОВ I – IV ПЕРИОДОВ ПЕРИОДИЧЕСКОЙСИСТЕМЫ ЭЛЕМЕНТОВ

Первый период:

1 H 1s 1 , 2 He 1s 2 .

У элементов первого периода один электронный уровень, имеющий один подуровень. У водорода один электрон, а у гелия – два. Они заполнили первый электронный уровень – гелием закончился первый период.

Второй период.

Элементы второго периода имеют уже два электронных уровня, первый полностью заполнен, а второй подлежит заполнению. Второй уровень имеет два подуровня: s- и р-подуровни. Они заполняются электронами в соответствии с вышеуказанными принципами.

3 Li 1s 2 2s 1 7 N 1s 2 2s 2 2p 3

4 Be 1s 2 2s 2 8 O 1s 2 2s 2 2p 4

5 B 1s 2 2s 2 2p 1 9 F 1s 2 2s 2 2p 5

6 C 1s 2 2s 2 2p 2 10 Ne 1s 2 2s 2 2p 6

У неона произошло заполнение электронами второго энергетического уровня, на неоне заканчивается второй период. На втором энергетическом уровне 8 электронов и, соответственно, 8 элементов. Оболочку с конфигурацией 1s 2 обозначают буквой К, оболочку с конфигурацией 2s 2 2p 6 - L.

Третий период.

Элементы третьего периода имеют три электронных уровня, внешним является третий. Он имеет три подуровня, которые располагают 9 орбиталями. Следовательно, максимальное число электронов на этом уровне равно 18 (2 электрона на s-подуровне, 6 на р-подуровне и 10 на d-подуровне). Однако согласно энергетической диаграмме электроны заполняют первые два подуровня третьего уровня. Следующие два электрона заселяют 4s-подуровень, так как его энергия меньше, чем энергия 3d-подуровня.

11 Na {K,L}3s 1 15 P {K,L}3s 2 3p 3

12 Mg {K,L}3s 2 16 S {K,L}3s 2 3p 4

13 Al {K,L}3s 2 3p 1 17 Cl {K,L}3s 2 3p 5

14 Si {K,L}3s 2 3p 2 18 Ar {K,L}3s 2 3p 6

Аргоном заканчивается третий период.

Четвертый период

Это первый большой период. Начинается он калием и кальцием, у них электроны заполняют 4s-подуровень (он энергетически более выгоден).

19 K {K,L}3s 2 3p 6 4s 1

20 Ca {K,L}3s 2 3p 6 4s 2

Далее электроны заселяют 3d-подуровень, следующий по запасу энергии. Здесь мы сталкиваемся с некоторыми особенностями. От 21 Sc до 23 V электроны у каждого следующего элемента поступают по одному на 3d-подуровень.

21 Sc 1s 2 2s 2 2p 6 3s 2 3p 6 3d 1 4s 2

Подуровень 3d записывают перед 4s, так как квантовое число 4 больше квантового числа 3.

22 Ti 1s 2 2s 2 2p 6 3s 2 3p 6 3d 2 4s 2

23 V 1s2s 2 2p 6 3s 2 3p 6 3d 3 4s 2

У хрома происходит следующее: очередной электрон появляется на 3d-подуровне и на этот же подуровень переходит электрон с подуровня 4s. Объясняется это тем, что, как показано физиками-теоретиками, наиболее устойчивыми являются подуровни заполненные наполовину электронами или полностью. Это явление называют ""провалом"" электрона (электрон с подуровня 4s проваливается на подуровень 3d), оказалось конфигурация d 5 и d 10 более устойчивы, чем конфигурации d 4 и d 9 . Поэтому очередной ""провал"" электрона будет еще и у меди.

24 Cr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1

25 Mn 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 2

26 Fe 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2

27 Co 1s 2 2s 2 2p 6 3s 2 3p 6 3d 7 4s 2

28 Ni 1s 2 2s 2 2p 6 3s 2 3p 6 3d 8 4s 2

29 Cu 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1

30 Zn 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2

Анализируя электронные конфигурации различных элементов, мы можем отметить, что конфигурации внешних электронных уровней периодически повторяются. Так, литий, натрий, калий, рубидий, цезий и франций имееют один электрон на внешнем электронном уровне; бериллий, магний, кальций, стронций, барий и радий – два электрона и так далее. Элементы с аналогичной электронной конфигурацией называют электронными аналогами. Эти элементы имеют сходные химические свойства, но различную химическую активность.

В зависимости от того, какой подуровень данного энергетического уровня заполняют электроны последним, элементы можно разделить на следующие семейства:

1. s-элементы , у этих элементов последним заполняется s-подуровень внешнего энергетического уровня;

2. р-Элементы , у них электроны заполняют р-подуровень внешнего энергетического уровня;

3. d-Элементы, у них электроны заполняют d-подуровень предпоследнего {(n – 1)d-подуровня} энергетического уровня;

4. f-Элементы, у них электроны заполняют f-подуровень третьего снаружи уровня {(n – 2)f-подуровень}.