скорости. Скорость звука обычно величина постоянная для данного вещества при заданных внешних условиях и не зависит от частоты волны и её амплитуды. В тех случаях, когда это не выполняется и Скорость звука зависит от частоты, говорят о дисперсии звука .

Для газов и жидкостей, где звук распространяется обычно адиабатически (т. е. изменение температуры, связанное со сжатиями и разряжениями в звуковой волне, не успевает выравниваться за период), выражение для Скорость звука можно представить, как

где К ад - адиабатический модуль объёмного сжатия, r - плотность, b ад - адиабатическая сжимаемость, b из = gb ад - изотермическая сжимаемость, g = c p /c v - отношение теплоёмкостей при постоянном давлении c p и при постоянном объёме c v .

В идеальном газе Скорость звука

(формула Лапласа), где r 0 - среднее давление в среде, R - универсальная газовая постоянная, Т - абсолютная температура, m - молекулярный вес газа. При g = 1 получаем формулу Ньютона для Скорость звука , соответствующую предположению об изотермическом характере процесса распространения. В жидкостях обычно можно пренебречь различием между адиабатическим и изотермическим процессами.

Скорость звука в газах меньше, чем в жидкостях, а в жидкостях меньше, как правило, чем в твёрдых телах, поэтому при сжижении газа Скорость звука возрастает. В табл. 1 и 2 приведены значения Скорость звука для некоторых газов и жидкостей, причём в тех случаях, когда имеется дисперсия Скорость звука , приведены её значения для малых частот, когда период звуковой волны больше, чем время релаксации .

Табл. 1. - Скорость звука в газах при 0 ° и давлении 1 атм


Газ

с , м/сек

Азот

334

Кислород

316

Воздух

331

Гелий

965

Водород

1284

Метан

430

Аммиак

415

Скорость звука в газах растет с ростом температуры и давления; в жидкостях Скорость звука , как правило, уменьшается с ростом температуры. Исключением из этого правила является вода, в которой Скорость звука увеличивается с ростом температуры и достигает максимума при температуре 74 °С, а с дальнейшим ростом температуры уменьшается. В морской воде Скорость звука зависит от температуры, солёности и глубины, что определяет ход звуковых лучей в море и, в частности, существование подводного звукового канала.

Табл. 2. - Скорость звука в жидкостях при 20 ° С


Жидкость

с , м/сек

Вода

1490

Бензол

1324

Спирт этиловый

1180

Четырёххлористый углерод

920



1453

Глицерин

1923

Скорость звука в смесях газов или жидкостей зависит от концентрации компонентов смеси.

Скорость звука в изотропных твёрдых телах определяется модулями упругости вещества и его плотностью. В неограниченной твёрдой среде распространяются продольные и сдвиговые (поперечные) волны, причём фазовая Скорость звука для продольной волны равна

,

а для сдвиговой

где Е - модуль Юнга, G - модуль сдвига, g - коэффициент Пуассона, К - модуль объёмного сжатия. Скорость распространения продольных волн всегда больше, чем скорость сдвиговых волн (см. табл. 3).

Табл. 3. - Скорость звука в некоторых твердых телах.


Материал

cl, м/сек, скорость продольной волны

c t , м/сек, скорость сдвиговой волны

с l ст, м/сек, скорость звука в стержне

Кварц плавленый

5970

3762

5760

Бетон

4200-5300

-

-

Плексиглас

2670-2680

1100-1121

1840-2140

Стекло, флинт

3760-4800

2380-2560

3490-4550

Тефлон

1340

-

-

Эбонит

2405

-

1570

Железо

5835-5950

-

2030

Золото

3200-3240

1200

2030

Свинец

1960-2400

700-790

1200-1320

Цинк

4170-4210

2440

3700-3850

4600Скорость звука зависит от наличия посторонних примесей. В металлах и сплавах Скорость звука существенно зависит от обработки, которой был подвергнут металл: прокат, ковка, отжиг и т. п.

Измерение Скорость звука используется для определения многих свойств веществ. Измерение малых изменений Скорость звука является чувствительным методом определения наличия примесей в газах и жидкостях. В твёрдых телах измерения Скорость звука и её зависимость от разных факторов позволяют исследовать зонную структуру полупроводников , строение Ферми поверхностей в металлах и пр. Ряд контрольно-измерительных применений ультразвука в технике основан на измерениях Скорость звука

Всё вышеизложенное относится к распространению звука в сплошной среде, т. е. Скорость звука является макроскопической характеристикой среды. Реальные вещества не являются сплошными; их дискретность приводит к необходимости рассмотрения упругих колебаний др. типов. В твёрдом теле понятие Скорость звука относится только к акустической ветви колебаний кристаллической решётки .

Лит.: Ландау Л. Д., Лифшиц Е. М., Механика сплошных сред, 2 изд., М., 1953; Михайлов И. Г., Соловьев В. А., Сырников Ю. П., Основы молекулярной акустики, М., 1964; Колесников А. Е., Ультразвуковые измерения, М., 1970; Исакович М. А., Общая акустика, М., 1973.

А. Л. Полякова.

Статья про слово "Скорость звука " в Большой Советской Энциклопедии была прочитана 39444 раз

СКОРОСТЬ ЗВУКА

СКОРОСТЬ ЗВУКА

Перемещения в среде упругой при условии, что форма её профиля остаётся неизменной. Скорость гармонической волны наз. также фазовой скоростью звука. Обычно С. з.- величина постоянная для данного в-ва при заданных внеш. условиях и не зависит от частоты волны и её амплитуды. В тех случаях, когда оказывается различной для разных частот, говорят о дисперсии звука.

Для газов и жидкостей, где распространяется обычно адиабатически (т. е. изменение темп-ры, связанное со сжатиями и разряжениями в звук. волне, не успевает выравниваться за период), С. з. выражается так:

с=?(Kад/r)=?(1/bадr).

с=?(gp0/r)=?(gRT/m). (ф-ла Лапласа),

где g=Cp/Cv - отношение теплоёмкостей при постоянных давлении и объёме, р0 - среднее в среде, R - универс. , m - мол. газа. С. з. в газах меньше, чем в жидкостях, а в жидкостях меньше, как правило, чем в тв. телах, поэтому при сжижении газа С. з. возрастает. Ниже приведены значения С. з. (м/с) для нек-рых газов и жидкостей, причём в тех случаях, когда имеется дисперсия С. з., приведены её значения для малых частот, когда период звуковой волны больше, чем релаксации.

СКОРОСТЬ ЗВУКА В ГАЗАХ ПРИ 0°С И ДАВЛЕНИИ 1 ATM

Азот.........……... 334

Кислород........... 316

Воздух............ … 331

Гелий............. … 965

Водород.......... 1284

Метан............. ... 430

Аммиак............ .. 415

С. з. в газах растёт с ростом темп-ры и давления (при комнатной темп-ре относит. изменение С. з. в воздухе составляет примерно 0,17% при изменении темп-ры на 1°С). В жидкостях С. з., как правило, уменьшается с ростом темп-ры на неск. м/с на 1°С;

СКОРОСТЬ ЗВУКА В ЖИДКОСТЯХ ПРИ 20°С

Вода........………………..... 1490

Бензол..........………………. 1324

Спирт этиловый.....…………. 1180

Ртуть...........…………………. 1453

Глицерин....………………..... 1923

исключением из этого правила явл. вода, в к-рой С. з. увеличивается с ростом темп-ры и достигает максимума при темп-ре 74°С, а с дальнейшим ростом темп-ры уменьшается. С увеличением давления С. з. в воде увеличивается примерно на 0,01% на 1 атм. В морской воде С. з. увеличивается с ростом темп-ры, солёности и глубины, что определяет ход звук. лучей в море, в частности существование подводного звукового канала.

С. з. в смесях газов или жидкостей зависит от концентрации компонентов смеси.

С. з. в изотропных тв. телах определяется модулями упругости в-ва и его плотностью. В неограниченной тв. среде распространяются продольные и сдвиговые (поперечные) , причём фазовая С. з. для продольной волны равна:

а для сдвиговой:

где Е - модуль Юнга, G - модуль сдвига, v - коэфф. Пуассона, К - модуль объёмного сжатия. Скорость распространения продольных волн всегда больше, чем скорость сдвиговых волн (см. табл.). В тв. телах огранич. размеров имеются и др. типы волн, напр. , скорость к-рых меньше сl и ct. В пластинах, стержнях и др. тв. волноводах распространяются , скорость к-рых определяется не только хар-ками в-ва, но и геом. параметрами тела. С. з. для продольной волны в тонком стержне равна сl ст= ?(Е/r). В монокрист. тв. телах С. з. зависит от направления распространения волны относительно кристаллографич. осей. Во многих в-вах С. з. зависит от наличия посторонних примесей. В металлах и сплавах С. з. существенно зависит от обработки, к-рой они были подвергнуты (прокат, ковка, отжиг и т. п.). В пьезоэлектриках и сегнетоэлектриках С. з. определяется не только модулями упругости, но и пьезомодулями, а также может зависеть от напряжённости электрич. поля.

СКОРОСТЬ ЗВУКА В НЕКОТОРЫХ ТВЁРДЫХ ВЕЩЕСТВАХ



В ферромагнетиках С. з. зависит от напряжённости магн. поля.

Измерение С. з. используется для определения многих св-в в-ва, таких, как сжимаемость газов и жидкостей, твёрдых тел, дебаевская темп-ра и др. Измерение малых изменений С. з. явл. чувствит. методом определения наличия примесей в газах и жидкостях. В тв. телах измерения С. з. и её зависимости от разных факторов позволяют исследовать зонную структуру полупроводников, строение Ферми поверхностей в металлах и пр. Ряд контрольно-измерит. применений УЗ в технике осн. на измерениях С. з.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

СКОРОСТЬ ЗВУКА

Скорость распространения в среде упругой волны. с в направлении оси х, звуковоедавление р можно представить в виде р = р(х - - ct), где t - время. Для плоской гармония, волны в среде без дисперсии и С. з. выражается через частоту w и k ф-лой с= w/k. Со скоростью с распространяется гармонич. волны, с наз. также фазовой С. з. В средах, в к-рых форма произвольнойволны меняется при распространении, гармонич. волны тем не менее сохраняютсвою форму, но фазовая скорость оказывается различной для разных частот, дисперсия звука. В этих случаях пользуются такжепонятием групповой скорости. При больших амплитудах упругой волныпоявляются нелинейные эффекты (см. Нелинейная акустика), приводящиек изменению любых волн, в т. ч. и гармонических: скорость распространениякаждой точки профиля волны зависит от величины давления в этой точке, возрастаяс ростом давления, что и приводит к искажению формы волны.

Скорость звука в газах и жидкостях. В газах и жидкостях звукраспространяется в виде объёмных волн сжатия - разряжения. Если процессраспространения происходит адиабатически (что, как правило, и имеет место),т. е. изменение темп-ры в звуковой волне не успевает выравниваться и за 1 / 2 , периода тепло из нагретых (сжатых) участковне успевает перейти к холодным (разреженным), то С. з. равна , где Р - давление в веществе,- его плотность, а индекс s показывает, что производная берётсяпри постоянной энтропии. Эта С. з. наз. адиабатической. Выражение для С.

где К ад - адиабатич. модуль всестороннего сжатия вещества,- адиабатич. сжимаемость,- изотермич. сжимаемость,= - отношениетеплоёмкостей при постоянных давлении и объёме.

В идеальном газе , где R = = 8,31 Дж/моль*К - универсальная газовая постоянная, Т - абс. -молекулярная масса газа. Это т. н. л а п л а с о в а С. з. В газе она совпадаетпо порядку величины со средней тепловой скоростью движения молекул. Величину называютн ь ю т о н о в о й С. з., она определяет С. з. при изотермич. процессераспространения, к-рый может иметь место на очень низких частотах. В большинствеслучаев С. з. соответствует лапласову значению.

С. з. в газах меньше, чем в жидкостях, а в жидкостях, как правило, меньше, В идеальных газах при заданной темп-ре С. з. не зависит от давленияи растёт с ростом темп-ры как . Изменение С. з. равно , где и - малыеприращения скорости н темп-ры по сравнению с их значениями с и Т. При комнатной темп-ре относит. изменение С. з. в воздухе составляетпримерно 0,17% на 1 К. В жидкостях С. з., как правило, уменьшается с ростомтемп-ры и изменение её составляет, напр.. для ацетона -5,5 м/с*К, для этиловогоспирта -3,6 м/с * К. Исключением из этого правила является вода, в к-ройС. з. при комнатной темп-ре увеличивается с ростом темп-ры на 2,5 м/с*К, Табл. 1- Скорость звука в некоторых газах при °С*

Кислород

Углекислый газ

Йодистый водород

* Значения скорости даны для нормального давления.

Табл. 2- Скорость звука в некоторых жидкостях при 20 °С

Спирт этиловый

Четырёххлористый углерод

Глицерин

В морской воде С. з. зависит от темп-ры, солёности и глубины. Эти зависимостиимеют сложный вид. Для расчёта С. з. в море используются таблицы, рассчитанныепо эмпирия, ф-лам. Поскольку темп-pa, давление, а иногда и солёность меняютсяс глубиной, то С. з. в океане является ф-цией глубины c(z). Этазависимость существенно определяет характер распространения звука в океане(см. Гидроакустика). В частности, она определяет существование подводногозвукового канала, положение оси к-рого и др. характеристики зависятот времени года, времени суток и от география, местоположения.

В сжиженных газах С. з. увеличивается при той же темп-ре: напр., в газообразномазоте при темп-ре -195 °С она равна 176 м/с, в жидком азоте при той жетемп-ре 859 м/с, в газообразном и жидком гелии при -269 °С соответственно102 м/с и 198 м/с.

С. з. в смесях газов или жидкостей зависит от концентрации компонент. , в к-poй в качестве взята смеси, определяемая молекулярными массами компонентовс учётом их концентрации. В жидких смесях зависимость С. з. от концентрациикомпонентов имеет довольно сложный характер, к-рый связан с видом межмолекулярныхвзаимодействий. Так, в спиртоводных и кислотоводных смесях при нек-ройконцентрации имеется максимум С. измерение С. з. может использоватьсядля определения и контроля концентрации компонент смесей и растворов.

В жидком гелии С. з. увеличивается при понижении темп-ры. При фазовомпереходе в сверхтекучее состояние возникает излом на кривой зависимостиС. з. от темп-ры.

В многоатомных газах и практически во всех жидкостях имеется дисперсияС. з., причём в жидкостях она проявляется на высоких УЗ- и гиперзвуковыхчастотах.

В резинах, полимерах и каучуках С. з. зависит от хим. состава и плотностиупаковки макромолекул и растёт с увеличением частоты; в материалах этоготипа с меньшей плотностью и С. з. меньше, напр. в силиконовом каучуке С. Скорость звука в твёрдых телах. В неограниченной твёрдой средераспространяются продольные и сдвиговые (поперечные) упругие волны. В изотропномтвёрдом теле фазовая скорость для продольной волны

для сдвиговой волны

где Е - модуль Юнга, G - модуль сдвига,- коэф. Пуассона, К - модуль объёмного сжатия. Скорость распространенияпродольных волн всегда больше, чем скорость сдвиговых волн, причём обычновыполняется соотношение . Значения с l и c t для нек-рых изотропныхтвёрдых тел приведены в табл. 3.

Табл. 3 -Скорость звука в некоторых изотропных твёрдых телах


В монокристаллах С. з. зависит от направления распространения волныв кристалле (см. Кристаллоакустика). В тех направлениях, в к-рыхвозможно распространение чисто продольных и чисто поперечных волн, в общемслучае имеется одно значение с l и два значения c t . Если значения c t различны, то соответствующие волныиногда наз. быстрой и медленной поперечными волнами. В общем случае длякаждого направления распространения волны в кристалле могут существоватьтри смешанные волны с разными скоростями распространения, к-рые определяютсясоответствующими комбинациями модулей упругости, причём векторы колебат. Во мн. веществах С. з. зависит от наличия посторонних примесей. В полупроводникахи диэлектриках С. з. чувствительна к концентрации примесей; так, при легированииполупроводника примесью, увеличивающей число носителей тока, С. з. уменьшаетсяс увеличением концентрации; при увеличении темп-ры С. з. слабо увеличивается.

В металлах и сплавах С. з. существенно зависит от предшествующей механическойи термообработки: прокат, ковка, отжиг и т. п. Частично это явление связанос дислокациями, наличие к-рых также влияет на С. з.

Табл. 4 - Скорость звука в некоторых монокристаллах


В металлах, как правило, С. з. уменьшается с ростом темп-ры. При переходеметалла в сверхпроводящее состояние характер зависимости иной: величина дс/дТ в точке перехода меняет знак. В сильных магн. полях проявляютсянек-рые эффекты в зависимости С. з. от магн. поля, к-рые отражают особенностиповедения электронов в монокристалле металла. Так, при распространениизвука по нек-рым направлениям в кристалле появляются С. з. какф-ции магн. поля. Измерения зависимости С. з. от магн. поля являются чувствит. В пьезоэлектриках и сегнетоэлектриках наличие электромеханич. Аналогичное явление наблюдается и в магнитострикционных материалах, где наличие магнитоупругой связи приводит, кроме того, к появлениюзаметной зависимости С. з. от напряжённости магн. поля, обусловленной т. -эффектом, Е от величины магн. поля Н. ИзмененияС. з. с ростом Н могут достигать неск. процентов (иногда до десятковпроцентов). Такая же зависимость С. з. от напряжённости электрич. полянаблюдается в сегнетоэлектриках. При действии на статич. моханич. В ограниченных твёрдых телах кроме продольных и поперечных волн имеютсяи др. типы волн. Так, вдоль свободной поверхности твёрдого тела или вдольграницы его с др. средой распространяются поверхностные акустическиеволны, скорость к-рых меньше скорости объёмных волн, характерных дляданного материала. Для пластин, стержней и др. твёрдых акустич. волноводовхарактерны нормальные волны, скорость к-рых определяется не толькосвойствами вещества, но и геометрией тела. Так, напр., С. з. для продольнойволны в стержне с ст, поперечные размеры к-рого много меньшедлины волны звука, отличается от С. з. в неограниченной среде с l (табл. 3):

Методы измерения С. Дифракция света на ультразвуке). Наиб. точность относит. измеренийпорядка 10 -5 % (напр., при изучении зависимости с оттемп-ры или магн. поля пли от концентрации примесей или дефектов).

Измерения С. з. используются для определения мн. свойств вещества, таких, Молекулярнаяакустика). Определение малых изменений С. з. является чувствит. методомфиксирования примесей в газах и жидкостях. В твёрдых телах измерение С. Лит.: Ландау Л. Д., Л и ф ш и ц Е. М., Теория упругости, 4 изд.,М., 1987; их же, Гидродинамика, 4 изд., М., 1988; Бергман Л., Ультразвуки его применение в науке и технике, пер. с нем., 2 изд., М., 1957; МихайловИ. Г., Соловьев В. А., Сырников Ю. П., Основы молекулярной акустики, М.,1964; Таблицы для расчета скорости звука в морской воде, Л., 1965; Физическаяакустика, под ред. У. Мэзона, пер. с англ., т. 1, ч. А, М., 1966, гл. 4;т. 4, ч. Б, М., 1970, гл. 7; Колесников А. Е., Ультразвуковые измерения,2 изд., М., 1982; Т р у э л л Р., Э л ь б а у м Ч., Ч и к Б., Ультразвуковыеметоды в физике твердого тела, пер. с англ., М., 1972; Акустические , А. Л. Полякова.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


  • - скорость распространения акустических волн 1. Скорость распространения упругой волны в среде. Единица измерения м/с 2. Фазовая или групповая скорость акустической волны в недисперсионном материале для данного направления распространения. ,"de":["V3RQ155MHa8","Q_gLb_lO15I"],"es":["Luu4IHk4w0s","v4jxIFNZU0s"],"pt":["Goir5Y67RTo","JFnryv_L-1U"],"fr":["9SqhgjaQKoU"],"bg":["05zkn1JVL38"],"pl":["wDsdjI4CC4M","wDsdjI4CC4M","_mIObAkQP2g","_mIObAkQP2g","_mIObAkQP2g"],"ro":["1VetP6jlyNM"],"el":["hJA-3xuQlvk"]}