ГЛАВА ВОСЬМАЯ

Корпускулярно-волновой дуализм - Соотношение неопределенностей Гейзенберга - Принцип дополнительности

В начале 20-х годов Макс Борн и Джеймс Франк - физики и Давид Гильберт - математик организовали в Геттингене «семинар по материи». Его посещали и признанные в то время ученые, и знаменитая впоследствии молодежь. Почти каждый семинар Гильберт начинал вопросом: «Итак, господа, подобно вам, я хотел бы, чтобы мне сказали точно: что такое атом?»

Принцип неопределенности Гейзенберга - это физический закон, который является частью квантовой механики. В нем говорится, что чем точнее вы измеряете положение частицы, тем менее точно вы можете знать ее движение. Чем точнее вы измеряете движение частицы, тем менее точно вы можете знать ее положение.

Соотношение Робертсона - Шрёдингера

Нелегко понять этот принцип, но объяснить его еще сложнее. Один из способов, которым Гейзенберг пытался объяснить это, должен был сказать, что акт наблюдения чего-то влияет на результат. Представьте, что вы находитесь в лаборатории, пытаясь наблюдать электрон через микроскоп, чтобы измерить его положение и скорость. Свет, который вы используете в этом наблюдении, отскакивает от электрона и достигает ваших глаз. Но свет влияет на электрон, когда он отскакивает от него.

Сейчас мы знаем об атоме больше, чем все участники семинара тех лет, однако ответить Гильберту мы еще не готовы. Дело в том, что до сих пор мы узнали довольно много фактов , но нам пока недостает понятий , чтобы эти факты правильно объяснить.

Благодаря Нильсу Бору даже сейчас, много лет спустя, при слове «атом» мы непроизвольно представляем себе маленькую планетную систему из ядра и электронов. Только потом усилием воли мы заставляем себя вспомнить, что ему присущи также и волновые свойства. Сейчас, как и прежде, обе идеи - электрон-волна» и «электрон-частица» - существуют в нашем сознании независимо, и невольно мы пытаемся ОТ одной из них избавиться. «Электрон или волна»? - к этому вопросу в 20-х годах физики возвращались постоянно, стремясь, как и все люди, к определенности.

Свет содержит крошечные частицы, называемые фотонами, и эти частицы имеют определенное количество импульса. Это количество, в котором быстрые и тяжелые объекты имеют много: у футболиста много импульсов, поэтому его трудно остановить. В случае света его количество импульса зависит от длины волны световые волны, которые можно контролировать в лаборатории.

Если вид света, который мы используем для нашего наблюдения, имеет фотоны с большим импульсом, то мы можем легко увидеть, где находится электрон. Это похоже на сияние действительно яркого света в микроскопе. Но поскольку у них есть много импульса, они передадут его электрону, когда они отскакивают от него, заставляя его ускоряться. Это затруднит понимание того, как быстро он движется. Наше наблюдение повлияло на скорость электрона.

К началу 1926 года в атомной физике сложилось любопытное положение: порознь и независимо возникли сразу две квантовые механики, исходные посылки которых резко различались. Гейзенберг вслед за Бором был убежден, что электрон - частица, и свои матричные уравнения написал в этом убеждении. А Шредингер смог вывести свое дифференциальное уравнение, только поверив вместе с де Бройлем в волновые свойства электрона.

Но если вид света, который мы используем, имеет фотоны с едва заметным импульсом, мы не можем легко увидеть, где находится электрон. Это похоже на микроскоп в тусклой комнате. Но так как фотоны имеют небольшой импульс, они не влияют на скорость электрона, что облегчает понимание того, как быстро он движется.

Гейзенберг и квантовая механика

Чем лучше мы знаем скорость, тем труднее знать положение. И чем лучше мы знаем положение, тем труднее знать скорость. Это принцип неопределенности. Квантовая механика исследует физику крошечного субатомного мира. Оказывается, что в этих крошечных масштабах все по-разному действует так же, как в повседневной жизни. Основы квантовой механики были выложены такими людьми, как Эйнштейн и Планк на рубеже 20-го века. Но тогда впереди много работы: превращение идей в уравнения и законы. Эта работа займет несколько десятилетий, и Гейзенберг был ключевой фигурой за это время.

Гейзенберг требовал, чтобы в уравнения входили только те величины, которые можно непосредственно измерить на опыте: частоты спектральных линий и их интенсивности. На этом основании он исключил из теории понятие «траектория электронов в атоме», как величину, в принципе не наблюдаемую. Шредингер тоже не использовал понятия траектории, однако записал свое уравнение для ψ-функции, которая также измерена быть не может и смысл которой даже ему самому оставался пока неясным.

Люди, которые не принимали квантовую механику и считали реальность детерминированной и предсказуемой, вообще не нравились принципу неопределенности. Даже Эйнштейн, участвовавший в рождении квантовой механики, считал, что предложенная квантовая механика случайности была просто упрощением, - что в этой картине было больше, чем мы не понимали. Он даже представлял мысленные эксперименты, которые, как представляется, недействительны принцип, хотя Гейзенберг смог найти ответ на все из них. По сути, Эйнштейн считал, что квантовая механика однажды будет объяснена более широкой теорией.

Опыт - последний судья во всех спорах - вначале решительно стоял на стороне матричной механики. В самом деле, Фарадей обнаружил неделимость электрического заряда, и дальнейшие опыты Крукса и Томсона строго это доказали. Таким свойством может обладать только частица. Опыты Милликена и фотографии следов электрона в камере Вильсона устранили последние в этом сомнения.

Это оказалось не так. Принцип неопределенности Гейзенберга - закон квантовой механики, который ограничивает то, насколько точно вы можете измерить две связанные переменные. В частности, в нем говорится, что чем точнее вы измеряете импульс частицы, тем менее точно вы можете знать ее положение и наоборот. Гейзенберг объяснил это, используя что-то, называемое эффектом наблюдателя, в котором говорится, что сам акт измерения одного значения влияет на другой, и поэтому вводит некоторую неопределенность.

И хотя многие люди сомневались в том, что его выводы были точными, включая Эйнштейна, который думал, что они будут объяснены какой-то более широкой теорией, принцип неопределенности Гейзенберга выдержал испытание временем. Принцип неопределенности Гейзенберга - один из самых знаменитых результатов квантовой механики и утверждает, что в то же время нельзя все знать о частице. Этот принцип математически проявляется.


Однако представления об электроне-частице резко противоречили факту удивительной стабильности атома. Мы много раз подчеркивали, что планетарный атом неустойчив. Именно для того, чтобы объяснить устойчивость атома и в то же время сохранить представление об электроне-частице, Бор и придумал свои постулаты.

Принцип неопределенности Гейзенберга гласит, что в действии измерения переменной частицы существует неотъемлемая неопределенность. Обычно применяемая к положению и импульсу частицы, принцип утверждает, что чем точнее позиция, тем более неопределенным является импульс и наоборот. Это противоречит классической ньютоновской физике, которая позволяет измерить все переменные частиц на произвольную неопределенность при достаточно хорошем оборудовании. Принцип неопределенности Гейзенберга является фундаментальной теорией в квантовой механике, которая определяет, почему ученый не может измерить множественные квантовые переменные Одновременно до рассвета квантовой механики это считалось фактом, что все переменные объекта могут быть известны точно точной точности одновременно в течение данного момента.

Де Бройль и Шредингер пошли другим путем и показали, что устойчивость атома наиболее естественно объясняется, если допустить, что электрон - волна, а не частица. Эту гипотезу вскоре подтвердили прямыми опытами Дэвиссон, Джермер и. Дж. П. Томсон, обнаружив у электрона способность к дифракции.

Опытам принято верить. Но как поверить сразу двум опытам, исключающим друг друга? Возникшая ситуация в истории физики примеров не имела и была настолько необычна, что вначале никто не подозревал о единстве двух механик, а потому все стремились доказать истинность одной из них и ложность другой. Между сторонниками обеих теорий шли ожесточенные споры: одни отстаивали право первородства матричной механики, другие предпочитали математическую простоту волновой механики. Конец этим спорам положил все тот же Шредингер в начале 1927 года, доказав, что обе механики математически эквивалентны . Для каждого физика это означало, что они эквивалентны также и физически , то есть что перед ним одна и та же механика - механика атома , но записанная в разных формах. Это означало также, что верны исходные предпосылки обеих механик: представления матричной механики об электроне-частице и представления волновой механики об электроне-волне.

Физика Ньютона не ограничивала того, как лучшие процедуры и методы могут уменьшить погрешность измерения, так что было возможно, что с надлежащей тщательностью и точностью вся информация могла быть определена редактор Гейзенберг сделал смелое утверждение о том, что существует предел этой точности, что делает наше знание частицы неотъемлемо неопределенной.

Принцип неопределённости информационной энтропии

В частности, если знать точный импульс частицы, невозможно точно знать точное положение, и наоборот. Это соотношение также относится к энергии и времени, поскольку невозможно измерить точную энергию системы за конечный промежуток времени. Неопределенности в продуктах «сопряженных пар» и были определены Гейзенбергом как имеющие минимальное значение, соответствующее константе Планка, деленное на \\.

КОРПУСКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ

Чем больше ученые узнавали об атоме, тем менее категоричными становились вопросы, которые они задавали природе. Во времена Планка и Эйнштейна хотели знать: «Луч света - это что: волна или поток частиц-квантов?» После работ де Бройля по-прежнему пытались выяснить: «Электрон - что это: волна или частица?» Лишь постепенно и с большим трудом оформилась простая мысль: «А почему или ? Почему эти свойства - свойства волны и частицы - должны исключать друг друга?» По трезвом размышлении оказалось, что логических оснований для альтернативы «или - или» нет. А единственная причина, по которой от нее не отказывались, - все та же инерция мышления: мы всегда пытаемся осмыслить новые факты с помощью старых понятий и образов.

Помимо математических определений, можно понять это, представив себе, что чем тщательнее пытаться измерить положение, тем больше сбоев происходит в системе, что приводит к изменениям в импульсе. Например, сравните эффект, который измеряет положение на импульсе электрона относительно теннисного мяча. Скажем, для измерения этих объектов требуется свет в виде частиц фотона. Эти частицы фотона имеют измеримую массу и скорость и вступают в контакт с электронным и теннисным шаром, чтобы достичь значения в их положении.

Когда два объекта сталкиваются со своими импульсами, они передают импульсы друг другу. Когда фотон контактирует с электроном, часть его импульса передается, и электрон теперь будет двигаться относительно этого значения в зависимости от отношения их массы. У большего теннисного мяча при измерении будет также передаваться импульс от фотонов, но эффект будет уменьшен, потому что его масса на несколько порядков больше фотона. Чтобы дать более практичное описание, изобразите танк и велосипед, которые сталкиваются друг с другом, танк изображает теннисный мяч и велосипед, что и фотон.

Существует еще одна трудность - психологическая: в повседневной жизни мы привыкли, что предметы тем проще, чем они меньше. Например, из 33 матрешек самая маленькая - самая простая, бильярдный шар значительно проще шара земного, а целое всегда состоит из более простых частей. Когда, сидя у моря, Демокрит делил яблоко, он мог представлять себе атом как угодно, но вряд ли ему приходило в голову, что он устроен сложнее, чем все яблоко. Это и в самом деле не так. Но бывает, что одни и те же свойства очевидны у малых предметов и совсем незаметны у предметов больших. Точно так же при дроблении вещества (которое мы по традиции мыслим себе построенным из частиц) у него не появляется новых, волновых, свойств - они проявляются . Свойства эти у него были всегда - просто мы их не замечали.

Исключительная масса бака, хотя она может перемещаться с гораздо меньшей скоростью, будет увеличивать ее импульс намного выше, чем у велосипеда, что вынуждает велосипед в противоположном направлении. Конечный результат измерения позиции объекта приводит к изменению его импульса и наоборот.

Все квантовое поведение следует этому принципу, и это важно при определении ширины спектральной линии, так как неопределенность в энергии системы соответствует ширине линии, наблюдаемой в областях спектра света, исследованных в спектроскопии. Трудно себе представить, что вы не можете точно знать, где находится частица в данный момент. Кажется интуитивным, что если частица существует в пространстве, то мы можем указать, где она находится; однако принцип неопределенности Гейзенберга ясно показывает обратное.

С явлениями подобного типа мы сталкиваемся значительно чаще, чем сознаем это. Бильярдный шар и шар земной все равно шары, и этим похожи. Однако сколько людей пострадало за эту истину, прежде чем Земля для всех стала шаром. А кривизна бильярдного шара была очевидна даже отцам инквизиции. Все дело в соотношении явления и наблюдателя. Земля, точно так же, как и каждый ее электрон, обладает свойствами волны. Однако если попытаться описать ее движение с помощью уравнения Шредингера, то при массе Земли 5 10 27 г и скорости, с которой она движется вокруг Солнца - 3 10 6 см/сек, придется приписать этой «частице» волну де Бройля длиной в 4 10 -61 см - число настолько малое, что даже неизвестно, как понимать такую волну.

Это связано с волнообразной природой частицы. Частица распределяется по пространству, так что там просто не точное местоположение, которое оно занимает, а вместо этого занимает ряд позиций. Точно так же импульс не может быть точно известен, поскольку частица состоит из пакета волн, каждый из которых имеет свой собственный импульс, так что в лучшем случае можно сказать, что частица имеет диапазон импульсов.

Бесконечная вложенность материи

Рисунок 1: Волновой пакет в пространстве. Рассмотрим, насколько точно можно измерить квантовые переменные. Волна, которая имеет совершенно измеримое положение, сворачивается в одну точку с неопределенной длиной волны и, следовательно, неопределенным импульсом согласно уравнению де Бройля. Аналогично, волна с идеально измеримым импульсом имеет длину волны, которая бесконечно колеблется по всему пространству и поэтому имеет неопределенное положение.

Однако мы не можем только на этом основании утверждать, что Земля не обладает волновыми свойствами. Ведь с помощью циркуля и линейки мы не можем измерить ее кривизну, однако Земли все-таки круглая.

Число подобных примеров легко умножить, и каждый из них по-своему помогает понять конечный итог размышлений о проблеме «волна - частица».

Вы могли бы провести один и тот же мысленный эксперимент с энергией и временем. Чтобы точно измерить энергию волны, потребовалось бы бесконечное количество времени, в то время как измерение точного экземпляра волны в космосе потребовало бы свертывания на один момент, который имел бы неопределенную энергию.

Принцип Гейзенберга имеет большое значение для практической науки и того, как разрабатываются эксперименты. Рассмотрим измерение импульса или положения частицы. Чтобы создать измерение, должно произойти взаимодействие с частицей, которое изменит его другие переменные. Например, для измерения положения электрона должно происходить столкновение между электроном и другой частицей, такой как фотон. будет передавать часть импульса второй частицы на измеряемый электрон и тем самым изменять его. Для более точного измерения положения электрона потребуется частица с меньшей длиной волны и, следовательно, будет более энергичной, но тогда это еще больше изменит импульс при столкновении.

Вопроса «волна или частица» не существует; атомный объект - это «и волна и частица» одновременно. Более того, все тела в природе обладают одновременно и волновыми и корпускулярными свойствами, и свойства эти лишь различные проявления единого корпускулярно-волнового дуализма .

К этой мысли пришли еще в 1924 году Бор, Крамере и Слэтер. В совместной работе они с определенностью заявили, что волновой характер распространения света, с одной стороны, и его поглощение и испускание квантами - с другой являются теми экспериментальными фактами, которые следует положить в основу любой атомной теории и для которых не следует искать каких-либо объяснений.

Эксперимент, предназначенный для определения импульса, будет иметь аналогичный эффект на положение Следовательно, эксперименты могут собирать информацию только по одной переменной за раз с любой степенью точности. Неопределенность в импульсе \\ футбола, брошенного Томом Брэди во время суперкубка, движущегося в \\, является его импульсом. Электрон в той молекуле воды, движущейся с той же скоростью, имеет тот же самый \\.

  • Какова его неопределенность в позиции?
  • Масса = 40 кг.
  • Вы заметили, что на футболе есть 2 мл воды с одинаковой скоростью и \\.
  • Вычислите его.
\\ = \\ = \\.

Непривычное единство свойств «волна - частица» отражено в формулах Планка (Е = hv) и де Бройля (λ = h/m v). Энергия E и масса m - характеристики частицы; частота ν и длина волны λ - признаки волнового процесса. А единственная причина, по которой мы не замечаем этого дуализма в повседневной жизни, - малость постоянной Планка h = 6,62 10 -27 эрг сек. Даже если это случайное обстоятельство, с ним надо считаться.

Если бы мы жили в мире, где постоянная Планка сравнима с его привычными масштабами, наши представления об этом мире резко отличались бы от нынешних. Например, нам было бы трудно представить себе дома с резкими очертаниями или стоящий спокойно паровоз. Более того, в этом мире вообще не может быть железнодорожных расписаний: в нем нельзя проложить рельсы-траектории, а можно лишь отметить станции отправления и назначения поездов. Конечно, это мир гипотетический, поскольку величину постоянной Планка мы не в состоянии менять по своему произволу - она всегда неизменна и очень мала. Но атомы тоже так малы, что постоянная Планка сравнима с их масштабами. «Для них» этот необычный мир реально существует, и его непривычную логику нам предстоит теперь понять - точно так же, как Гулливеру пришлось привыкать к нравам лилипутов.

СООТНОШЕНИЕ НЕОПРЕДЕЛЕННОСТЕЙ ГЕЙЗЕНБЕРГА

Предположим, что мы настолько прониклись идеей неделимости свойств «волна - частица», что захотели записать свое достижение на точном языке формул. Эти формулы должны установить соотношение между числами , которые соответствуют понятиям «волна» и «частица». В классической механике эти понятия строго разделены и относятся к совершенно различным явлениям природы. В квантовой механике корпускулярно-волновой дуализм вынуждает нас использовать оба понятия одновременно и применять их к одному и тому же объекту. Этот необходимый шаг не дается даром - мы за него должны платить, и, как оказалось, платить дорого.

Вполне ясно это стало в 1927 году, когда Вернер Гейзенберг догадался, что хотя к атомному объекту одинаково хорошо применимы оба понятия: и «частица» и «волна», однако определить их строго можно только порознь .

В физике слова «определить понятие» означают: «Указать способ измерения величины, которая этому понятию соответствует».

Гейзенберг утверждал: нельзя одновременно, и при этом точно, измерить координату х и импульс р атомного объекта. С учетом формулы де Бройля λ = h/p это означает: нельзя одновременно и в то же время точно определить положение х атомного объекта и длину его волны λ. Следовательно, понятия «волна» и «частица» при одновременном их использовании в атомной физике имеют ограниченный смысл. Более того, Гейзенберг нашел численную меру такого ограничения. Он доказал, что если мы знаем положение х и импульс р атомной частицы с погрешностями δх и δр, то мы не можем уточнять эти значения бесконечно, а лишь до тех пор, пока выполняется неравенство - соотношение неопределенностей :

δх δр ≥ 1/2h.

Этот предел мал, но он существует, и это фундаментально.

Соотношение неопределенностей - строгий закон природы, который никак не связан с несовершенством наших приборов. Оно утверждает: нельзя - принципиально нельзя - определить одновременно и координату и импульс частицы точнее, чем это допускает приведенное неравенство.

Нельзя - точно так же, как нельзя превысить скорость света или достичь абсолютного нуля температур. Нельзя - как нельзя поднять самого себя за волосы или вернуть вчерашний день. И ссылки на всемогущество науки здесь неуместны: сила ее не в том, чтобы нарушать законы природы, а в том, что она способна их открыть, понять и использовать.

Нам кажется это немного странным - мы привыкли к всесилию науки и утверждение «невозможно» исключили из ее лексикона. Замечательно, однако, что высший триумф любой науки достигается именно в моменты установления таких запретов с участием слова «невозможно». Когда сказали: «Невозможно построить вечный двигатель», возникла термодинамика. Как только догадались, что «нельзя превысить скорость света», родилась теория относительности. И лишь после того, как поняли, что различные свойства атомных объектов нельзя измерять одновременно с произвольной точностью, окончательно сформировалась квантовая механика.

При первом знакомстве с соотношением неопределенностей возникает инстинктивное сопротивление: «Этого не может быть!» Гейзенберг объяснил его причину, отбросив еще одну идеализацию классической физики - понятие наблюдения . Он доказал, что в атомной механике его нужно пересмотреть, точно так же как и понятие движения.

Подавляющую часть своих знаний о мире человек приобретает с помощью зрения. Эта особенность восприятия человека определила всю его систему познания: почти у каждого слово «наблюдение» вызывает в сознании образ внимательно глядящего человека. Когда вы смотрите на собеседника, то абсолютно уверены, что от вашего взгляда ни один волос не упадет с его головы, даже если вы смотрите пристально и у вас «тяжелый взгляд». В сущности, именно на этой уверенности основано понятие наблюдения в классической механике. Классическая механика выросла из астрономии, и поскольку никто не сомневался, что, наблюдая звезду, мы никак на нее не воздействуем, то это молчаливо приняли и для всех других наблюдений.

Понятия «явление», «измерение» и «наблюдение» тесно связаны между собой, хотя и не совпадают. Древние наблюдали явления - в этом состоял их метод изучения природы. Из наблюдений они извлекали затем следствия с помощью чистого умозрения. По-видимому, с тех пор укоренилась уверенность: явление существует независимо от наблюдения .

Мы много раз подчеркивали главное отличие нынешней физики от античной: она заменила умозрение опытом. Теперешняя физика не отрицает, что явления в природе существуют независимо от наблюдения (и конечно, от нашего сознания). Но она утверждает: объектом наблюдения эти явления становятся лишь тогда, когда мы укажем точный способ измерения их свойств. В физике понятия «измерение» и «наблюдение» неразделимы .


Всякое измерение есть взаимодействие прибора и объекта, который мы изучаем. А всякое взаимодействие нарушает первоначальное состояние и прибора и объекта, так что в результате измерения мы получаем о явлении сведения, искаженные вмешательством прибора. Классическая физика предполагала, что все подобные искажения можно учесть и по результатам измерений установить «истинное» состояние объекта, независимое от измерений. Гейзенберг показал, что такое предположение есть заблуждение: в атомной физике «явление» и «наблюдение» неотделимы друг от друга . По существу, «наблюдение» тоже явление, и далеко не самое простое.

Как и многое в квантовой механике, такое утверждение непривычно и вызывает бессознательный протест. И все же попытаемся его понять или хотя бы почувствовать.

Ежедневный опыт убеждает нас: чем меньше объект, который мы исследуем, тем легче нарушить его состояние. Ничего меньше атомных объектов - атома, электрона - мы в природе не знаем. Определить их свойства усилием воли мы не можем. В конце концов мы вынуждены измерять свойства атомных объектов с помощью самих объектов. В таких условиях прибор неотличим от объекта.

Но почему нельзя добиться, чтобы в процессе измерения один атомный объект лишь незначительно влиял на другой?

Дело в том, что оба они - и прибор и объект - находятся в одном и том же квантовом мире и поэтому их взаимодействие подчиняется квантовым законам. А главная особенность квантовых явлений - их дискретность. В квантовом мире ничего не бывает чуть-чуть - взаимодействия там происходят только квантом: или все, или ничего. Мы не можем как угодно слабо воздействовать на квантовую систему - до определенного момента она этого воздействия вообще не почувствует. Но коль скоро величина воздействия выросла настолько, что система готова его воспринять, это приводит, как правило, к переходу прежне и системы в новое (тоже квантовое) состояние, а часто даже и к ее гибели.

Процесс наблюдения в квантовой механике напоминает скорее вкус, чем зрение. «Для того чтобы узнать свойства пудинга, его необходимо съесть» - любили повторять создатели квантовой механики. И подобно тому как, съев однажды пудинг, мы не в состоянии еще раз проверить свое впечатление о его достоинствах, точно так же мы не можем беспредельно уточнять наши сведения о квантовой системе: ее разрушит, как правило, уже первое измерение. Гейзенберг не только понял впервые этот суровый «факт, но и сумел записать его на языке формул.

Соотношение неопределенностей, каким бы непонятным оно ни казалось, есть простое следствие корпускулярно-волнового дуализма атомных объектов. Вместе с тем это соотношение - ключ к пониманию всей квантовой механики, ибо в нем сконцентрировались главные ее особенности. После этого открытия Гейзенберга пришлось пересмотреть не только атомную физику, но и всю теорию познания.

Такой шаг оказался под силу опять-таки лишь Нильсу Бору, который счастливо сочетал в себе могучий интеллект ученого и философский склад души истинного мыслителя. В свое время он создал систему образов квантовой механики, теперь, четырнадцать лет спустя, он тщательно отрабатывал систему ее понятий.

После Бора стало ясно, что и соотношение неопределенностей, и корпускулярно-волновой дуализм лишь частные проявления, более общего принципа - принципа дополнительности .

ПРИНЦИП ДОПОЛНИТЕЛЬНОСТИ

Принцип, который Бор назвал дополнительностью,- одна из самых глубоких философских и естественнонаучных идей нашего времени, с которой можно сравнить лишь такие идеи, как принцип относительности или представление о физическом поле. Его общность не позволяет свести его к какому-либо одному утверждению - им надо овладевать постепенно, на конкретных примерах. Проще всего (так поступил в свое время и Бор) начать с анализа процесса измерения импульса р и координаты х атомного объекта.

Нильс Бор заметил очень простую вещь: координату и импульс атомной частицы нельзя измерить не только одновременно, но вообще с помощью одного и того же прибора. В самом деле, чтобы измерить импульс р атомной частицы и при этом не очень сильно его изменить, необходим чрезвычайно легкий подвижный «прибор». Но именно из-за его подвижности положение его весьма неопределенно. Для измерения координаты х мы должны поэтому взять другой - очень массивный «прибор», который не шелохнулся бы при попадании в него частицы. Но как бы ни изменялся в этом случае ее импульс, мы этого даже не заметим.

Когда мы говорим в микрофон, то звуковые волны нашего голоса преобразуются там в колебания мембраны. Чем легче и подвижнее мембрана, тем точнее она следует за колебаниями воздуха. Но тем труднее определить ее положение в каждый момент времени. Эта простейшая экспериментальная установка является иллюстрацией к соотношению неопределенностей Гейзенберга: нельзя в одном и том же опыте определить обе характеристики атомного объекта - координату х и импульс р. Необходимы два измерения и два принципиально разных прибора, свойства которых дополнительны друг другу.

Дополнительность - вот то слово и тот поворот мысли, которые стали доступны всем благодаря Бору. До него все были убеждены, что несовместимость двух типов приборов непременно влечет за собой противоречивость их свойств. Бор отрицал такую прямолинейность суждений и разъяснял: да, свойства их действительно несовместимы, но для полного описания атомного объекта оба они равно необходимы и поэтому не противоречат, а дополняют друг друга.

Это простое рассуждение о дополнительности свойств двух несовместимых приборов хорошо объясняет смысл принципа дополнительности, но никоим образом его не исчерпывает. В самом деле, приборы нам нужны не сами по себе, а лишь для измерения свойств атомных объектов. Координата х и импульс р - это те понятия , которые соответствуют двум свойствам, измеряемым с помощью двух приборов. В знакомой нам цепочке познания

явление -> образ -> понятие -> формула

принцип дополнительности сказывается прежде всего на системе понятий квантовой механики и на логике ее умозаключений.


Дело в том, что среди строгих положений формальной логики существует «правило исключенного третьего», которое гласит: из двух противоположных высказываний одно истинно, другое - ложно, а третьего быть не может. В классической физике не было случая усомниться в этом правиле, поскольку там понятия «волна» и «частица» действительно противоположны и несовместимы по существу. Оказалось, однако, что в атомной физике оба они одинаково хорошо применимы для описания свойств одних и тех же объектов, причем для полного описания необходимо использовать их одновременно.

Люди, воспитанные на традициях классической физики, восприняли эти требования как некое насилие над здравым смыслом и поговаривали даже о нарушении законов логики в атомной физике. Бор объяснил, что дело здесь вовсе не в законах логики, а в той беспечности, с которой иногда без всяких оговорок используют классические понятия для объяснения атомных явлений. А такие оговорки необходимы, и соотношение неопределенностей Гейзенберга δx δp ≥ 1/2h точная запись этого требования на строгом языке формул.

Причина несовместимости дополнительных понятий в нашем сознании глубока, но объяснима. Дело в том, что познать атомный объект непосредственно - с помощью наших пяти чувств - мы не можем. Вместо них мы используем точные и сложные приборы, которые изобретены сравнительно недавно. Для объяснения результатов опытов нам нужны слова и понятия, а они появлялись задолго до квантовой механики и никоим образом к ней не приспособлены. Однако мы вынуждены ими пользоваться - у нас нет другого выхода: язык и все основные понятия мы усваиваем с молоком матери и, во всяком случае, задолго до того, как узнаем о существовании физики.

Принцип дополнительности Бора - удавшаяся попытка примирить недостатки устоявшейся системы понятий с прогрессом наших знаний о мире. Этот принцип расширил возможности нашего мышления, объяснив, что в атомной физике меняются не только понятия, но и сама постановка вопросов о сущности физических явлений.

Но значение принципа дополнительности выходит далеко за пределы квантовой механики, где он возник первоначально. Лишь позже - при попытках распространить его на другие области науки - выяснилось его истинное значение для всей системы человеческих знаний. Можно спорить о правомерности такого шага, но нельзя отрицать его плодотворность во всех случаях, даже далеких от физики.

Сам Бор любил приводить пример из биологии, связанный с жизнью клетки, роль которой вполне подобна значению атома в физике. Если атом - последний представитель вещества, который еще сохраняет его свойства, то клетка - это самая малая часть любого организма, которая все еще представляет жизнь в ее сложности и неповторимости. Изучить жизнь клетки - значит узнать все элементарные процессы, которые в ней происходят, и при этом понять, как их взаимодействие приводит к совершенно особому состоянию материи - к жизни.

При попытке выполнить эту программу оказывается, что одновременное сочетание такого анализа и синтеза неосуществимо. В самом деле, чтобы проникнуть в детали механизмов клетки, мы рассматриваем ее в микроскоп - сначала обычный, затем электронный - нагреваем клетку, пропускаем через нее электрический ток, облучаем, разлагаем на составные части... Но чем пристальнее мы станем изучать жизнь клетки, тем сильнее мы будем вмешиваться в ее функции и в ход естественных процессов, в ней протекающих. В конце концов, мы ее разрушим и поэтому ничего не узнаем о ней как о целостном живом организме.

И все же ответ на вопрос «Что такое жизнь?» требует анализа и синтеза одновременно. Процессы эти несовместимы, но не противоречивы, а лишь дополнительны - в смысле Бора. И необходимость учитывать их одновременно - лишь одна из причин, по которой до сих пор не существует полного отверз на вопрос о сущности жизни.

Как и в живом организме, в атоме важна целостность его свойств «волна - частица». Конечная делимость материи породила не только конечную делимость атомных явлений - она привела также X пределу делимости понятий , с помощью которых мы эти явления описываем.

Часто говорят, что правильно поставленный вопрос - уже половина ответа. Это не просто красивые слова.

Правильно поставленный вопрос - это вопрос о тех свойствах явления, которые у него действительно есть. Поэтому такой вопрос уже содержат в себе все понятия, которые необходимо использовать в ответе. На идеально поставленный вопрос можно ответить коротко: «да» или «нет». Бор показал, что вопрос «Волна или частица?» в применении к атомному объекту неправильно поставлен. Таких раздельных свойств у атома нет, и потому вопрос не допускает однозначного ответа «да» или «нет». Точно так же, как нет ответа у вопроса: «Что больше: метр или килограмм?», и у всяких иных вопросов подобного типа.

Два дополнительных свойства атомной реальности нельзя разделить, не разрушив при этом полноту и единство явления природы, которое мы называем атомом. В мифологии такие случаи хорошо известны: нельзя разрезать на две части кентавра, сохранив при этом в живых и коня и человека.


Атомный объект - это и не частица, и не волна и даже ни то, ни другое одновременно. Атомный объект - это нечто третье , не равное простой сумме свойств волны и частицы. Это атомное «нечто» недоступно восприятию наших пяти чувств, и тем не менее оно, безусловно, реально. У нас нет образов и органов чувств, чтобы вполне представить себе свойства этой реальности. Однако сила нашего интеллекта, опираясь на опыт, позволяет познать ее и без этого. В конце концов (надо признать правоту Борна), «...теперь атомный физик далеко ушел от идиллических представлений старомодного натуралиста, который надеялся проникнуть в тайны природы, подстерегая бабочек на лугу».

Когда Гейзенберг отбросил идеализацию классической физики - понятие «состояние физической системы, независимое от наблюдения», - он тем самым предвосхитил одно из следствий принципа дополнительности, поскольку понятия «состояние» и «наблюдение» - дополнительные в смысле Бора. Взятые в отдельности, они неполны и поэтому могут быть определены только совместно, друг через друга. Говоря строго, эти понятия вообще не существуют порознь: мы всегда наблюдаем не вообще нечто, а непременно какое-то состояние . И наоборот: всякое «состояние» - это вещь в себе до тех пор, пока мы не найдем способ его «наблюдения».

Взятые по отдельности понятия: волна, частица, состояние системы, наблюдение системы - это некие абстракции, не имеющие отношения к атомному миру, но необходимые для его понимания. Простые, классические картины дополнительны в том смысле, что для полного описания природы необходимо гармоничное слияние этих двух крайностей, но в рамках привычной логики они могут сосуществовать без противоречий лишь в том случае, если область их применимости взаимно ограничена.

Много размышляя над этими и другими похожими проблемами, Бор пришел к выводу, что это не исключение, а общее правило: всякое истинно глубокое явление природы не может быть определено однозначно с помощью слов нашего языка и требует для своего определения по крайней мере двух взаимоисключающих дополнительных понятий. Это означает, что при условии сохранения нашего языка и привычной логики мышление в форме дополнительности ставит пределы точной формулировке понятий, соответствующих истинно глубоким явлениям природы. Такие определения либо однозначны, но тогда неполны, либо полны, но тогда неоднозначны, поскольку включают в себя дополнительные понятия, несовместимые в рамках обычной логики. К таким понятиям относятся понятия «жизнь», «атомный объект», «физическая система» и даже само понятие «познание природы».


С давних пор известно, что наука - это лишь один из способов изучить окружающий мир. Другой, дополнительный, способ воплощен в искусстве. Само совместное существование искусства и науки - хорошая иллюстрация принципа дополнительности. Можно полностью уйти в науку или всецело жить искусством - оба эти подхода к жизни одинаково правомерны, хотя взятые по отдельности и неполны. Стержень науки - логика и опыт. Основа искусства - интуиция и прозрение. Но искусство балета требует математической точности, а «...вдохновение в геометрии столь же необходимо, как и в поэзии» Они не противоречат, а дополняют друг друга: истинная наука сродни искусству - точно так же, как настоящее искусство всегда включает в себя элементы науки. В высших своих проявлениях они неразличимы и неразделимы, как свойства «волна - частица» в атоме. Они отражают разные, дополнительные стороны человеческого опыта и лишь взятые вместе дают нам полное представление о мире. Неизвестно, к сожалению, только «соотношение неопределенностей» для сопряженной пары понятий «наука - искусство», а потому и степень ущерба, который мы терпим при одностороннем восприятии жизни.

Конечно, приведенная аналогия, как и всякая аналогия, и неполна и нестрога. Она лишь помогает нам почувствовать единство и противоречивость всей системы человеческих знаний.

ВОКРУГ КВАНТА

ДУАЛИЗМ И НЕОПРЕДЕЛЕННОСТЬ

В волновой оптике давно знали, что ни в какой микроскоп нельзя разглядеть частицу, если ее размеры меньше, чем половина длины волны света, которым она освещена. В этом не видели ничего странного: волны света существуют сами по себе, частица - сама по себе. Но когда выяснилось, что частице тоже можно приписать длину волны, тогда это утверждение волновой оптики превратилось в соотношение неопределенностей: не может частица сама себя локализовать точнее, чем на половине длины своей же волны.

В пору становления квантовой механики даже хорошие физики с горечью шутили, что теперь им приходится по понедельникам, средам и пятницам представлять электрон частицей, а в остальные дни - волной.

Такой способ мышления приводил к множеству парадоксов, от которых мы будем избавлены, если сразу же заставив себя не разделять в электроне свойства «волна - частица». Только после этого соотношение неопределенностей Гейзенберга перестанет быть чем-то странным и превратится в простое следствие корпускулярно-волнового дуализма.

Чтобы убедиться в этом, поставим мысленный эксперимент по измерению импульса р летящей частицы с массой m. Как известно,

р = mv - поэтому нам достаточно измерить скорость v. Для этого нужно отметить ее положения x 1 и x 2 в моменты времени t 1 и t 2 и затем вычислить скорость по формуле:

v = (x 2 - x 1)/(t 2 - t 1) = Δх/Δt.

Как всегда при измерении, мы на частицу воздействуем и тем самым меняем ее скорость. Поэтому, если нам захочется измерить скорость v как можно точнее, мы должны выбирать точки х 1 и х 2 как можно ближе - перейти к пределу Δx -> 0. В классической физике так и поступают.

Но в квантовой механике мы не можем выбрать точки х 1 и х 2 как угодно близко, и все время должны помнить, что летящая частица - это не точка, а некоторый волновой процесс, и нельзя представлять ее меньшей, чем половина длины волны этого процесса. Поэтому погрешность δх определения каждой из координат х 1 и х 2 всегда будет больше или, в крайнем случае, равна λ/2.

По той же причине расстояние Δx = x 2 - x 1 между двумя последовательными измерениями нет смысла брать меньшим λ/2. Наиболее точное значение скорости v получается при значении Δх = λ/2, тогда оно будет равно v = Δx/Δt = λ/2Δt. Понятно, что даже это значение содержит неустранимую погрешность δv, которая зависит от точности δх определения координат х 1 и х 2 и равна

δv = (δх)/(Δt) ≥ (λ)/(2Δt).


Сравнивая две последние формулы для v и Δv, приходим к неожиданному, но строгому результату: Δv > v . То есть погрешность определения импульса всегда больше или, по крайней мере, равна его наиболее точно измеренному значению: Δp ≥ p.

Абсолютная величина погрешности δр определяется длиной волны λ. В самом деле, формулу де Бройля λ = h/p можно обратить: р = h/λ. И поскольку δр ≥ р, то δр ≥ h/λ . Величина обеих погрешностей δx ≥ λ/2 и δp ≥ h/λ зависит от длины волны частицы λ. Чем медленнее движется частица, тем больше длина ее волны (λ = h/m v;) и тем меньше погрешность δр. Но как раз для такой частицы очень велика неопределенность координаты δх. Меняя скорость частицы, мы можем уменьшить либо δх, либо δр, но никогда не сможем уменьшить их произведение: δx δp ≥ 1/2h

ОПЫТЫ И МЫСЛИ ПЕРРЕНА

Из нашего анализа следует еще один неожиданный вывод, который, впрочем, нам уже известен: у атомных объектов нет траектории, поскольку при вычислении скорости частицы v = dx/dt нельзя перейти к пределу Δx -> 0, Δt -> 0 и вычислить производную

v = (dx)/(dt) = lim (Δx/Δt), при Δx -> 0.

Это теоретические соображения. На опыте с этим обстоятельством впервые столкнулся Жан Перрен, изучая брауновское движение. Он писал по этому поводу:

«Зигзаги траектории так многочисленны и пробегаются с такой скоростью, что невозможно уследить за ними Средняя кажущаяся скорость частицы в течение определенного промежутка времени претерпевает громадные изменения по величине и направлению и не стремится вовсе ни к какому пределу при уменьшении этого промежутка. В этом легко убедиться, если отмечать положение зернышка на экране через каждую минуту затем через каждые 5 сек. и, наконец, фотографировать их через промежутки в 1/20 сек. ... Ни в одной точке траектории нельзя получить касательной определенного направления. Трудно в этом случае удержаться от мысли о функциях без производной, в которых напрасно видят лишь математический курьез. В действительности природа внушает представление о них наравне с идеей о функциях, имеющих производную».

Пятнадцать лет спустя догадку Перрена подтвердил создатель кибернетики Норберт Винер, построив теорию брауновского движения на основе «непрерывных функций без производных».

Конечно, брауновское движение - это еще не квантовая механика, но все же это хорошая иллюстрация некоторых ее особенностей.

ПОЭТ И ПРИНЦИП ДОПОЛНИТЕЛЬНОСТИ

Сам по себе принцип дополнительности, взятый вне физики, изобретение древнее. По существу, он довольно известная категория диалектической логики и в разных видах неоднократно высказывался различными философами во все времена. Аристотель говорил, например, что «гармония - это смешение и сочетание противоположностей», а триады Гегеля можно с успехом приспособить для анализа понятий квантовой механики.

В этой связи любопытно вспомнить, как принцип дополнительности переоткрыли для себя поэты. В 1901 году Валерий Брюсов написал статью под названием «Истины», в которой мы читаем буквально следующее:

«Каково бы ни было наше миросозерцание, есть основы, которые, безусловно, обязательны для мысли... Начиная мыслить, я должен... верить, что мне, вообще человеку, возможно мыслью постичь истину. Может быть, и вероятно, есть другие пути постижения мира: мечты, предчувствия, откровения, но если почему-либо я выбрал логическое мышление, я обязан ему довериться. Иначе всякое рассуждение станет ненужным...»

«Для мышления нужна множественность, независимо от того, будет ли она дроблением я или предстанет как что-то внешнее. Мысль, и общее - жизнь, возникает из сопоставления, по меньшей мере, двух начал. Единое начало есть небытие, единство истины есть безмыслие. Не было бы пространства, не будь правого и левого; не было бы нравственности, не будь добра и зла...»

«В истине ценно лишь то, в чем можно сомневаться. «Солнце есть» - в этом нельзя сомневаться... Это истица, но в ней нет самостоятельной ценности. Она никому не нужна. За нее никто не пойдет на костер. Даже, говоря яснее, это не истина, а определение . «Солнце есть» - только особое выражение вместо: такой-то предмет я называю Солнцем».

«Истина получает ценность, лишь когда становится частью возможного миросозерцания. Но в то же время она становится оспоримой, по крайней мере, является возможным спорить о ней... Мало того, ценная истина непременно имеет право на противоположную, соответствующую ей истину; иначе сказать - суждение, прямо противоположное истине, в свою очередь, истинно...»

Знаменательно, что многие из этих утверждений почти дословно предвосхищают формулировки Бора. Не все знают, что и Бор пришел к своему принципу дополнительности не «от физики», а «от философии». Идея дополнительности созрела в нем еще в юношеские годы под влиянием философов Дании. В дальнейшем она крепла и уточнялась, пока не нашла наконец достойного применения в атомной физике.

Тот же Валерий Брюсов двадцать лет спустя, в 1922 году, еще до создания квантовой механики, написал стихотворение

МИР ЭЛЕКТРОНА Быть может, эти электроны - Миры, где пять материков: Искусства, знанья, войны, троны И память сорока веков! Еще, быть может, каждый атом - Вселенная, где сто планет, Там все, что здесь в объеме сжатом, Но также то, чего здесь нет. Их меры малы, но все та же Их бесконечность, как и здесь, Там скорбь и страсть, как здесь, и даже Там та же мировая спесь. Их мудрецы, свой мир бескрайний Поставив центром бытия, Спешат проникнуть в искры тайны И умствуют, как ныне я...

Французский ученый Луи де Бройль, развивая представления о двойственной корпускулярно-волновой природе света, выдвинул в 1923 году гипотезу об универсальности корпускулярно-волнового дуализма. Де Бройль утверждал, что между свойствами света и свойствами материальных частиц существует глубокая аналогия, следовательно материальные частицы обладают также двойственной природой, т.е. в определенных условиях проявляются их волновые свойства.

Как известно из оптики, квант света – фотон, кроме энергии характеризуется импульсом:;

так как . Следовательно, длина волны фотона:

Де-Бройль постулировал, что частице с импульсом соответствует длина волны:(1.2)

Это соотношение (формула де Бройля) справедливо для любой частицы с импульсом р .

Вскоре гипотеза де Бройля была подтверждена экспериментально. Американские физики К.Дэвиссон и Л.Джермер в 1927 г. изучали рассеяние электронов на монокристалле никеля с помощью установки, изображенной на рис. Пучок электронов из электронной пушки 1 направлялся на кристалл никеля 2, рассеянные от кристалла электроны 3 улавливались специальным приемником 4, соединенным с чувствительным гальванометром. Интенсивность отраженного пучка определялась по силе тока, текущего через гальванометр. Опыты показали, что при заданном угле падения электроны отражаются от поверхности кристалла под различными углами, причем в одних направлениях наблюдаются максимумы числа отраженных электронов, в других – минимумы, то есть наблюдалась дифракционная картина. Это явление наблюдалось, когда длина электронной волны де Бройля имеет порядок межатомного расстояния в кристалле. Дифракционные максимумы соответствовали формуле Вульфа-Брэггов, а брэгговская длина волны оказалась в точности равной длине волны, вычисленной по формуле (1.2).

Действительно, в опыте Джермера и Дэвиссона скорость электрону сообщалась в ускоряющем электрическое поле пушки: . Следовательно:. (1.3)

Поставив (1.3) в (1.2), получим: ,

В обычных электронных приборах , следовательно, длина волны де Бройля должна иметь порядокм, то есть такой же, что и рентгеновские лучи, а расстояние между узлами кристаллической решетки имеет тот же порядок:. При энергии электроновполучался острый максимум для угла рассеивания 50 о. По условию дифракции (формуле Вульфа-Брэггов) это соответствовало длине волны и из формулы де-Бройля тоже:.

Позже П.С.Тартаковский и Г.Томсон исследовали прохождение быстрых электронов через тонкие металлические пленки. При этом на фотопластинках за этими пленками получалась дифракционная картина такая же, как при дифракции рентгеновских лучей на поликристаллах.

В 1949 г. В.А.Фабрикант, Л.М.Биберман и Н.Г.Сушкин осуществили опыты по дифракции электронов с очень малой силой тока в приборе, то есть каждый электрон регистрировался фотопластинкой в случайных местах. При длительной экспозиции была получена такая же дифракционная картина, как и при короткой с большой силой тока. Это означает, что волновые свойства присущи каждому электрону в отдельности, однако дифракция одного электрона не дает всей системы точек, которая получается при дифракции от потока. След одного электрона окажется лишь в одной точке, которая разрешена условием дифракции. В этом проявляется корпускулярная природа электронов, так как электрон не может расплыться. В какое именно из мест попадет электрон, говорить нельзя. Можно говорить лишь о вероятности попадания в точку пространства.

Таким образом, электрону присуща двойственная природа, т.е. он сочетает в себе свойства и частицы, и волны. Волновая природа электронов подтверждается опытами по их дифракции. Корпускулярная природа электронов проявляется в том, что электрон действует как единое целое, не дробясь на части.

Впоследствии дифракционные явления обнаружили также для нейтронов, протонов, атомных и молекулярных пучков. Это окончательно послужило доказательством наличия волновых свойств микрочастиц и позволило описать движение микрочастиц в виде волнового процесса, характеризующегося определенной длиной волны, рассчитываемой по формуле де Бройля (1.2).

Соотношение неопределенностей Гейзенберга.

Подтвержденная экспериментально гипотеза де Бройля о корпускулярно-волновом дуализме свойств вещества коренным образом изменила представления о свойствах микрообъектов. Всем микрообъектам присущи и корпускулярные, и волновые свойства; в то же время любую из микрочастиц нельзя считать ни частицей, ни волной в классическом понимании.

В.Гейзенберг, учитывая волновые свойства микрочастиц и связанные с волновыми свойствами ограничения в их поведении, пришел в 1927 г. к выводу, что объект микромира невозможно одновременно с любой наперед заданной точностью харак­теризовать и координатой и импульсом. Согласносоотношению неопределенностей Гейзенберга, микрочастица не может иметь одновременно и определен­ную координату (х , у, z ), и определенную соответствующую проекцию импульса (р х, р у , p z ), причем неопределенности этих величин удовлетворяют условиям: ,,, (2.1)

где Dx , Dу , Dz – неопределенности координат частицы, а ,,- неопределенности компонент импульса. Произведение неопределенностей координаты и соответствующей ей проекции импульса не может быть меньше величины порядкаh . То есть, чем точнее мы знаем координату, тем менее определена проекция импульса и наоборот. Отсюда вытекает и фактическая невозможность одновременно с любой, наперед заданной точностью измерить координату и импульс микрообъекта.

Поясним, что соотношение неопределенностей действительно вытекает из волновых свойств микрочастиц. Пусть поток электронов проходит через узкую щель шириной Dх , расположенную перпендикулярно направлению их движения (рис.2.1). Так как электроны обладают волновыми свойствами, то при их прохождении через щель, размер которой сравним с длиной волны де Бройля l электрона, наблюдается дифракция. Дифракционная картина, наблюдаемая на экране (Э), характеризуется главным максимумом, расположенным симметрично оси Y , и побочными максимумами по обе стороны от главного (их не рассматриваем из-за незначительной интенсивности по сравнению с главным максимумом).

До прохождения через щель электроны двигались вдоль оси Y, поэтому составляющая импульса р х =0, так что =0, а координатах частицы является совершенно неопределенной. В момент прохождения электронов через щель их положение в направление оси Х определяется с точностью до ширины щели, т.е. с точностью Dх. В этот же момент вследствие дифракции электроны отклоняются от первоначального направления и будут двигаться в пределах угла 2j (j – угол, соответствующий первому дифракционному минимуму). Следовательно, появляется неопределенность в значении составляющей импульса вдоль оси Y , которая, как следует из рис.2.1 и формулы (1.2), равна . (2.2)

Ограничимся рассмотрением электронов, попадающих на экран в пределах главного максимума. Из теории дифракции известно, что первый минимум соответствует углу j, удовлетворяющему условию

где Dх –ширина щели, а l – длина волныде Бройля. Из формул(2.2) и (2.3) получим ,

где учтено, что для некоторой незначительной части электронов, попадающих за пределы главного максимума, . Следовательно, получаем выражение , то есть соотношение неопределенностей (2.1).

Соотношение неопределенностей получено при одновременном использовании классических характеристик движения частицы (координаты, импульса) и наличия у нее волновых свойств. Оно является квантовым ограничением применимости классической механики к микрообъектам и позво­ляет оценить, например, в какой мере можно применять понятия классической меха­ники к микрочастицам, в частности, с какой степенью точности можно говорить о траекториях микрочастиц. Известно, что движение по траектории характеризуется в любой момент времени определенными значениями координат и скорости. Выразим соотношение неопределенностей (2.1) в виде

Из этого выражения следует, что чем больше масса частицы, тем меньше неопределен­ности ее координаты и скорости и, следовательно, с тем большей точностью можно применять к этой частице понятие траектории. Для описания движения макротел с абсолютной достоверностью можно пользоваться законами классической механики, чего нельзя делать для описания, например, движе­ния электрона в атоме.

В квантовой теории рассматривается также соотношение неопределенностей для энергии Е и времени t , т.е. неопределенности этих величин удовлетворяют условию

где DЕ – неопределенность энергии некоторого состояния системы, Dt – промежуток времени, в течение которого оно существует. Следовательно, систе­ма, имеющая среднее время жизни Dt , не может быть охарактеризована определенным значением энергии; разброс энергии DЕ =h /Dt возрастает с уменьшением среднего времени жизни. Из выражения (4.5) следует, что частота излученного фотона также должна иметь неопределенность Dn =DЕ /h , т.е. линии спектра должны характеризо­ваться частотой, равной n ±DЕ /h . Опыт действительно показывает, что все спектраль­ные линии размыты; измеряя ширину спектральной линии, можно оценить порядок времени существования атома в возбужденном состоянии.