Ряды для чайников. Примеры решений

Всех выживших приветствую на втором курсе! На этом уроке, а точнее, на серии уроков, мы научимся управляться с рядами. Тема не очень сложная, но для ее освоения потребуются знания с первого курса, в частности, необходимо понимать, что такое предел , и уметь находить простейшие пределы. Впрочем, ничего страшного, по ходу объяснений я буду давать соответствующие ссылки на нужные уроки. Некоторым читателям тема математических рядов, приемы решения, признаки, теоремы могут показаться своеобразными, и даже вычурными, нелепыми. В этом случае не нужно сильно «загружаться», принимаем факты такими, какими они есть, и просто учимся решать типовые, распространенные задания.

1) Ряды для чайников , и для самоваров сразу содержание:)

Для сверхбыстрой подготовки по теме есть экспресс-курс в pdf формате , с помощью которого реально «поднять» практику буквально за день.

Понятие числового ряда

В общем виде числовой ряд можно записать так: .
Здесь:
– математический значок суммы;
общий член ряда (запомните этот простой термин);
– переменная-«счётчик». Запись обозначает, что проводится суммирование от 1 до «плюс бесконечности», то есть, сначала у нас , затем , потом , и так далее – до бесконечности. Вместо переменной иногда используется переменная или . Суммирование не обязательно начинается с единицы, в ряде случаев оно может начинаться с нуля , с двойки либо с любого натурального числа .

В соответствии с переменной-«счётчиком» любой ряд можно расписать развёрнуто:
– и так далее, до бесконечности.

Cлагаемые – это ЧИСЛА , которые называются членами ряда. Если все они неотрицательны (больше либо равны нулю) , то такой ряд называют положительным числовым рядом .

Пример 1



Это уже, кстати, «боевое» задание – на практике довольно часто требуется записать несколько членов ряда.

Сначала , тогда:
Затем , тогда:
Потом , тогда:

Процесс можно продолжить до бесконечности, но по условию требовалось написать первые три члена ряда, поэтому записываем ответ:

Обратите внимание на принципиальное отличие от числовой последовательности ,
в которой члены не суммируются, а рассматриваются как таковые.

Пример 2

Записать первые три члена ряда

Это пример для самостоятельного решения, ответ в конце урока

Даже для сложного на первый взгляд ряда не составляет трудности расписать его в развернутом виде:

Пример 3

Записать первые три члена ряда

На самом деле задание выполняется устно: мысленно подставляем в общий член ряда сначала , потом и . В итоге:

Ответ оставляем в таком виде, полученные члены ряда лучше не упрощать , то есть не выполнять действия: , , . Почему? Ответ в виде гораздо проще и удобнее проверять преподавателю.

Иногда встречается обратное задание

Пример 4



Здесь нет какого-то четкого алгоритма решения, закономерность нужно просто увидеть .
В данном случае:

Для проверки полученный ряд можно «расписать обратно» в развернутом виде.

А вот пример чуть сложнее для самостоятельного решения:

Пример 5

Записать сумму в свёрнутом виде с общим членом ряда

Выполнить проверку, снова записав ряд в развернутом виде

Сходимость числовых рядов

Одной из ключевых задач темы является исследование ряда на сходимость . При этом возможны два случая:

1) Ряд расходится . Это значит, что бесконечная сумма равна бесконечности: либо суммы вообще не существует , как, например, у ряда
(вот, кстати, и пример ряда с отрицательными членами). Хороший образец расходящегося числового ряда встретился в начале урока: . Здесь совершенно очевидно, что каждый следующий член ряда больше, чем предыдущий, поэтому и, значит, ряд расходится. Ещё более тривиальный пример: .

2) Ряд сходится . Это значит, что бесконечная сумма равна некоторому конечному числу : . Пожалуйста: – этот ряд сходится и его сумма равна нулю. В качестве более содержательного примера можно привести бесконечно убывающую геометрическую прогрессию, известную нам ещё со школы: . Сумма членов бесконечно убывающей геометрической прогрессии рассчитывается по формуле: , где – первый член прогрессии, а – её основание, которое, как правило, записывают в виде правильной дроби. В данном случае: , . Таким образом: Получено конечное число, значит, ряд сходится, что и требовалось доказать.

Однако в подавляющем большинстве случаев найти сумму ряда не так-то просто, и поэтому на практике для исследования сходимости ряда используют специальные признаки, которые доказаны теоретически.

Существует несколько признаков сходимости ряда: необходимый признак сходимости ряда, признаки сравнения, признак Даламбера, признаки Коши , признак Лейбница и некоторые другие признаки. Когда какой признак применять? Это зависит от общего члена ряда , образно говоря – от «начинки» ряда. И очень скоро мы всё разложим по полочкам.

! Для дальнейшего усвоения урока необходимо хорошо понимать , что такое предел и хорошо уметь раскрывать неопределенность вида . Для повторения или изучения материала обратитесь к статье Пределы. Примеры решений .

Необходимый признак сходимости ряда

Если ряд сходится, то его общий член стремится к нулю: .

Обратное в общем случае неверно, т.е., если , то ряд может как сходиться, так и расходиться. И поэтому этот признак используют для обоснования расходимости ряда:

Если общий член ряда не стремится к нулю , то ряд расходится

Или короче: если , то ряд расходится. В частности, возможна ситуация, когда предела не существует вообще, как, например, предела . Вот сразу и обосновали расходимость одного ряда:)

Но гораздо чаще предел расходящегося ряда равен бесконечности, при этом в качестве «динамической» переменной вместо «икса» выступает . Освежим наши знания: пределы с «иксом» называют пределами функций , а пределы с переменной «эн» – пределами числовых последовательностей . Очевидное отличие состоит в том, что переменная «эн» принимает дискретные (прерывные) натуральные значения: 1, 2, 3 и т.д. Но данный факт мало сказывается на методах решения пределов и способах раскрытия неопределенностей.

Докажем, что ряд из первого примера расходится.
Общий член ряда:

Вывод : ряд расходится

Необходимый признак часто применяется в реальных практических заданиях:

Пример 6

В числителе и знаменателе у нас находятся многочлены. Тот, кто внимательно прочитал и осмыслил метод раскрытия неопределенности в статье Пределы. Примеры решений , наверняка уловил, что когда старшие степени числителя и знаменателя равны , тогда предел равен конечному числу .


Делим числитель и знаменатель на

Исследуемый ряд расходится , так как не выполнен необходимый признак сходимости ряда.

Пример 7

Исследовать ряд на сходимость

Это пример для самостоятельного решения. Полное решение и ответ в конце урока

Итак, когда нам дан ЛЮБОЙ числовой ряд, в первую очередь проверяем (мысленно или на черновике): а стремится ли его общий член к нулю? Если не стремится – оформляем решение по образцу примеров № 6, 7 и даём ответ о том, что ряд расходится.

Какие типы очевидно расходящихся рядов мы рассмотрели? Сразу понятно, что расходятся ряды вроде или . Также расходятся ряды из примеров № 6, 7: когда в числителе и знаменателе находятся многочлены, и старшая степень числителя больше либо равна старшей степени знаменателя . Во всех этих случаях при решении и оформлении примеров мы используем необходимый признак сходимости ряда.

Почему признак называется необходимым ? Понимайте самым естественным образом: для того, чтобы ряд сходился, необходимо , чтобы его общий член стремился к нулю. И всё бы было отлично, но этого ещё не достаточно . Иными словами, если общий член ряда стремится к нулю, ТО ЭТО ЕЩЕ НЕ ЗНАЧИТ, что ряд сходится – он может, как сходиться, так и расходиться!

Знакомьтесь:

Данный ряд называется гармоническим рядом . Пожалуйста, запомните! Среди числовых рядов он является прима-балериной. Точнее, балеруном =)

Легко заметить, что , НО. В теории математического анализа доказано, что гармонический ряд расходится .

Также следует запомнить понятие обобщенного гармонического ряда:

1) Данный ряд расходится при . Например, расходятся ряды , , .
2) Данный ряд сходится при . Например, сходятся ряды , , . Еще раз подчеркиваю, что почти во всех практических заданиях нам совершенно не важно, чему равна сумма , например, ряда , важен сам факт его сходимости .

Это элементарные факты из теории рядов, которые уже доказаны, и при решении какого-нибудь практического примера можно смело ссылаться, например, на расходимость ряда или сходимость ряда .

Вообще, рассматриваемый материал очень похож на исследование несобственных интегралов , и тому, кто изучал эту тему, будет легче. Ну а тому, кто не изучал – легче вдвойне:)

Итак, что делать, если общий член ряда СТРЕМИТСЯ к нулю? В таких случаях для решения примеров нужно использовать другие, достаточные признаки сходимости / расходимости:

Признаки сравнения для положительных числовых рядов

Заостряю ваше внимание , что здесь речь уже идёт только о положительных числовых рядах (с неотрицательными членами) .

Существуют два признака сравнения, один из них я буду называть просто признаком сравнения , другой – предельным признаком сравнения .

Сначала рассмотрим признак сравнения , а точнее, первую его часть:

Рассмотрим два положительных числовых ряда и . Если известно , что ряд – сходится , и, начиная с некоторого номера , выполнено неравенство , то ряд тоже сходится .

Иными словами: Из сходимости ряда с бОльшими членами следует сходимость ряда с меньшими членами . На практике неравенство часто выполнено вообще для всех значений :

Пример 8

Исследовать ряд на сходимость

Во-первых, проверяем (мысленно либо на черновике) выполнение :
, а значит, «отделаться малой кровью» не удалось.

Заглядываем в «пачку» обобщенного гармонического ряда и, ориентируясь на старшую степень, находим похожий ряд: Из теории известно, что он сходится.

Для всех натуральных номеров справедливо очевидное неравенство:

а бОльшим знаменателям соответствуют мЕньшие дроби:
, значит, по признаку сравнения исследуемый ряд сходится вместе с рядом .

Если у вас есть какие-то сомнения, то неравенство всегда можно расписать подробно! Распишем построенное неравенство для нескольких номеров «эн»:
Если , то
Если , то
Если , то
Если , то
….
и теперь-то уж совершенно понятно, что неравенство выполнено для всех натуральных номеров «эн».

Проанализируем признак сравнения и решенный пример с неформальной точки зрения. Все-таки, почему ряд сходится? А вот почему. Если ряд сходится, то он имеет некоторую конечную сумму : . И поскольку все члены ряда меньше соответствующих членов ряда , то ясен пень, что сумма ряда не может быть больше числа , и тем более, не может равняться бесконечности!

Аналогично можно доказать сходимость «похожих» рядов: , , и т.д.

! Обратите внимание , что во всех случаях в знаменателях у нас находятся «плюсы». Наличие хотя бы одного минуса может серьёзно осложнить использование рассматриваемого признака сравнения . Например, если ряд таким же образом сравнить со сходящимся рядом (выпишите несколько неравенств для первых членов), то условие не будет выполняться вообще! Здесь можно извернуться и подобрать для сравнения другой сходящийся ряд, например, , но это повлечёт за собой лишние оговорки и другие ненужные трудности. Поэтому для доказательства сходимости ряда гораздо проще использовать предельный признак сравнения (см. следующий параграф).

Пример 9

Исследовать ряд на сходимость

И в этом примере я предлагаю вам самостоятельно рассмотреть вторую часть признака сравнения :

Если известно , что ряд – расходится , и, начиная с некоторого номера (часто с самого первого), выполнено неравенство , то ряд тоже расходится .

Иными словами: Из расходимости ряда с меньшими членами следует расходимость ряда с бОльшими членами .

Что нужно сделать?
Нужно сравнить исследуемый ряд с расходящимся гармоническим рядом . Для лучшего понимания постройте несколько конкретных неравенств и убедитесь в справедливаости неравенства .

Решение и образец оформления в конце урока.

Как уже отмечалось, на практике только что рассмотренный признак сравнения применяют редко. Настоящей «рабочей лошадкой» числовых рядов является предельный признак сравнения , и по частоте использования с ним может конкурировать разве что признак Даламбера .

Предельный признак сравнения числовых положительных рядов

Рассмотрим два положительных числовых ряда и . Если предел отношения общих членов этих рядов равен конечному, отличному от нуля числу : , то оба ряда сходятся или расходятся одновременно .

Когда применяется предельный признак сравнения? Предельный признак сравнения применяется тогда, когда «начинкой» ряда у нас являются многочлены. Либо один многочлен в знаменателе, либо многочлены и в числителе и в знаменателе. Опционально многочлены могут находиться под корнями.

Разделаемся с рядом, для которого забуксовал предыдущий признак сравнения.

Пример 10

Исследовать ряд на сходимость

Сравним данный ряд со сходящимся рядом . Используем предельный признак сравнения. Известно, что ряд – сходится. Если нам удастся показать, что равен конечному, отличному от нуля числу, то будет доказано, что ряд – тоже сходится.


Получено конечное, отличное от нуля число, значит, исследуемый ряд сходится вместе с рядом .

Почему для сравнения был выбран именно ряд ? Если бы мы выбрали любой другой ряд из «обоймы» обобщенного гармонического ряда, то у нас не получилось бы в пределе конечного, отличного от нуля числа (можете поэкспериментировать).

Примечание : когда мы используем предельный признак сравнения, не имеет значения , в каком порядке составлять отношение общих членов, в рассмотренном примере отношение можно было составить наоборот: – это не изменило бы сути дела.

На практике часто не столь важно найти сумму ряда, как ответить на вопрос о сходимости ряда. Для этой цели используются признаки сходимости, основанные на свойствах общего члена ряда.

НЕОБХОДИМЫЙ ПРИЗНАК СХОДИМОСТИ РЯДА

ТЕОРЕМА 1 .

Если ряд сходится, то его общий член a n стремится к нулю при , т.е. .

Кратко: если ряд сходится, то его общий член стремится к нулю.

Следствие: если ,то ряд расходится.

Пример 15 .

Решение. Для этого ряда общий член и .

Следовательно, данный ряд расходится.

Пример 16 . Исследовать на сходимость ряд .

Решение. Очевидно, что общий член этого ряда, вид которого не указан ввиду громоздкости выражения, стремится к нулю при n®¥, т.е. необходимый признак сходимости ряда выполняется, однако этот ряд расходится, так как его сумма стремится к бесконечности.

ДОСТАТОЧНЫЕ ПРИЗНАКИ СХОДИМОСТИ

ЗНАКОПОЛОЖИТЕЛЬНЫХ РЯДОВ

Числовой ряд, все члены которого положительны, называется знакоположительным.

ТЕОРЕМА 2. (Первый признак сравнения).

Пусть даны два знакоположительных ряда:

a 1 +a 2 +a 3 +...+a n +...= (17)

b 1 +b 2 +b 3 +...+b n +...= , (18)

причем, начиная с некоторого номера N , для любого n >N выполняется неравенство a n £ b n . Тогда:

1) из сходимости ряда (“большего”) следует сходимость ряда (“меньшего”);

2) из расходимости ряда (“меньшего”) следует расходимость ряда (“большего”).

Схематическая запись первого признака сравнения:

a n £ b n

сход.сход.

расх.®расх.

Для применения этого признака часто используют такие ряды-эталоны, сходимость или расходимость которых известна заранее, например:

1) ¾ геометрический, (он сходится при и расходится при );


2) - гармонический (он расходится);

3) - ряд Дирихле (он сходится при a>1 и расходится при a£1).

Рассмотрим на конкретном примере схему исследования знакоположительного ряда на сходимость с помощью первого признака сравнения.

Пример 17 .

Решение. Шаг 1. Проверим знакоположительность ряда: .

Шаг 2. Проверим выполнение необходимого признака сходимости ряда: . Так как , то .

(Если вычисление предела вызывает трудности, то этот шаг можно пропустить.)

Шаг 3. Используем первый признак сравнения. Подберем для данного ряда ряд-эталон. Так как , то в качестве эталона можно взять ряд , т.е. ряд Дирихле. Этот ряд сходится, так как показатель степени a= >1. Следовательно, согласно первому признаку сравнения сходится и исследуемый ряд.

Пример 18 . Исследовать ряд на сходимость.

Решение. 1.Данный ряд знакоположительный, так как для n =1,2,3,... .


2.Необходимый признак сходимости ряда выполняется, ибо

3.Подберем ряд-эталон. Так как , то в качестве эталона можно взять геометрический ряд (). Этот ряд сходится, следовательно сходится и исследуемый ряд.

ТЕОРЕМА 3. (Второй признак сравнения)

Если для знакоположительных рядов и существует отличный от нуля конечный предел ,то ряды сходятся или расходятся одновременно.

Если a n ®0 при n®¥ (необходимый признак сходимости), то из условия , следует, что a n и b n – бесконечно малые одного порядка малости (эквивалентные при l=1). Следовательно, если дан ряд , где a n ®0 при n ®0, то для этого ряда можно брать ряд-эталон, где общий член b n имеет тот же порядок малости, что и общий член данного ряда.

Пример19 . Исследовать на сходимость ряд

Решение. Данный ряд знакоположительный, так как для любого nÎN.

Так как ~ ~ , то возьмем в качестве ряда-эталона гармонический расходящийся ряд . Поскольку предел отношения общих членов a n и конечен и отличен от нуля (он равен 1), то на основании второго признака сравнения данный ряд расходится.

ТЕОРЕМА 4. (Признак Даламбера)

Если для знакоположительного ряда существует конечный предел , то ряд сходится при l<1 и расходится при l>1.

Замечания:

1) Если l=1, теорема 4 не дает ответа на вопрос о сходимости ряда и поэтому необходимо использовать другие признаки сходимости.

2) Признак Даламбера удобен на практике тогда, когда общий член ряда содержит показательную функцию или факториал.

Пример 20 . Исследовать на сходимость ряд по признаку Даламбера.

Замечания:

1) Если l=1, теорема 5 не дает ответа на вопрос о сходимости ряда, поэтому необходимо использовать другие признаки сравнения.

2) Если l=¥ , то ряд расходится.

Пример 22 . Исследовать на сходимость ряд .

Решение. Данный ряд знакоположительный, так как для любого nÎN . Опуская проверку выполнимости необходимого признака сходимости ряда, сразу воспользуемся теоремой 5. Так как , то по признаку Коши данный ряд расходится.

ТЕОРЕМА 6. (Интегральный признак Коши )

Пусть функция f(x) непрерывна, неотрицательна и не возрастает для всех x³m, где m - некоторое неотрицательное число. Тогда числовой ряд

сходится, если сходится несобственный интеграл

$\sum \limits _{n=1}^{\infty }a_{n} $, члены которого удовлетворяют трём условиям:

  1. $a_{n} >0,\, \, \, n\ge 1$, т.е. исходный ряд с положительными членами;
  2. члены ряда монотонно убывают, т.е. $a_{1} >a_{2} >\ldots >a_{n-1} >a_{n} >\ldots >0$;
  3. общий член ряда стремится к нулю: $\mathop{\lim }\limits_{n\to \infty } a_{n} =0$.

Пусть существует непрерывная, монотонно убывающая, определ ённая при $x\ge 1$ функция f(x), такая что $f\left(1\right)=a_{1} ,\, \, \, f\left(2\right)=a_{2} ,\, \, \, \ldots ;\, \, \, f\left(n\right)=a_{n} ,\, \, \, \ldots $, т.е. $\sum \limits _{n=1}^{\infty }a_{n} =\sum \limits _{n=1}^{\infty }f(n) $. Тогда, если несобственный интеграл $\int \limits _{1}^{+\infty }f\left(x\right){\rm d}x $ сходится, то ряд $\sum \limits _{n=1}^{\infty }a_{n} $ тоже сходится; если указанный интеграл расходится, то этот ряд расходится.

Замечание 1

Теорема остаётся верной и тогда, когда её условия выполняются не для всех членов ряда, а лишь начиная с k-го ($n\ge k$), в таком случае рассматривается интеграл $\int \limits _{k}^{+\infty }f\left(x\right)\, {\rm d}x $.

Замечание 2

Интегральный признак Коши существенно облегчает исследование сходимости ряда, так как позволяет свести этот вопрос к выяснению сходимости интеграла от удачно подобранной соответствующей функции $f(x)$, что легко выполняется, применяя методы интегрального исчисления.

Теорема 2 (радикальный признак Коши)

Пусть дан ряд с положительными членами $\sum \limits _{n=1}^{\infty }a_{n} ,\, \, \, a_{n} >0$ и пусть существует конечный предел $\mathop{\lim }\limits_{n\to \infty } \sqrt[{n}]{a_{n} } =l.$Тогда:

  1. если $l
  2. если $l>1$, ряд расходится,
  3. если $l=1$, то для выяснения сходимости ряда радикальный признак Коши не применим.

Доказательство

  1. Пусть существует $\mathop{\lim }\limits_{n\to \infty } \sqrt[{n}]{a_{n} } =l0$, то $l\ge 0$. Рассмотрим число q такое, что $l 0$ существует $N=N({\rm \varepsilon })\in $N, начиная с которого $\forall n \ge N$ выполняется неравенство $\left|\sqrt[{n}]{a_{n} } -l\right|

    $\sum \limits _{n=1}^{\infty }a_{n} =\, a_{1} +\, a_{2} +\ldots +\, a_{N} +\, a_{N+1} +a_{N+2} +...$ . (1)

    Составим новый ряд

    $\sum \limits _{k=0}^{\infty }q^{N+k} =q^{N} +\, q^{N+1} +q^{N+2} +\ldots $ (2)

    Ряд (2) представляет собой ряд геометрической прогрессии со знаменателем $q$: $0\le q

  2. Пусть существует $\mathop{\lim }\limits_{n\to \infty } \sqrt[{n}]{a_{n} } =l>1$. Начиная с некоторого $N=N({\rm \varepsilon })\in {\rm N}$ $\forall n\ge N$, $\, \, \sqrt[{n}]{a_{n} } >1\, \, \, \Rightarrow \, \, \, \, a_{n} >1$, т.е. $\mathop{\lim }\limits_{n\to \infty } a_{n} \ne 0$, тогда исходный ряд расходится по необходимому признаку сходимости.
  3. Если $\mathop{\lim }\limits_{n\to \infty } \sqrt[{n}]{a_{n} } =l=1$ (или не существует), то для выяснения сходимости ряда радикальный признак Коши не применим.

Теорема доказана.

Теорема 3 (признак Даламбера)

Пусть дан ряд с положительными членами $\sum \limits _{n=1}^{\infty }a_{n} \, \, \, (a_{n} >0) $, и существует конечный предел $\mathop{\lim }\limits_{n\to \infty } \frac{a_{n+1} }{a_{n} } =l$, тогда:

  1. ряд $\sum \limits _{n=1}^{\infty }a_{n} $ сходится, если $l
  2. ряд $\sum \limits _{n=1}^{\infty }a_{n} $ расходится, если $l>1$,
  3. если $l=1$, то для выяснения сходимости ряда признак Даламбера не применим.

Доказательство

  1. Пусть предел $\mathop{\lim }\limits_{n\to \infty } \frac{a_{n+1} }{a_{n} } =l$ существует и $0\le l 0$ существует $N({\rm \varepsilon })\in $N, начиная с которого $\forall n\ge N=N({\rm \varepsilon })$ выполняется неравенство $\left|\frac{a_{n+1}} {a_n}-l\right|

    Запишем исходный ряд $\sum \limits _{n=1}^{\infty }a_{n} \, \, \, (a_{n} >0) $ в виде: $\sum \limits _{n=1}^{\infty }a_{n} =a_{1} +a_{2} +\ldots +a_{N} +a_{N+1} +a_{N+2} \, +...$. Рассмотрим новый ряд $\sum \limits _{k=0}^{\infty }a_{N} \cdot q^{k} =a_{N} +qa_{N} +q^{2} a_{N} +\ldots $ . Этот ряд есть ряд геометрической прогрессии с $b_{1} =a_{N} $ и $0

  2. Пусть $\mathop{\lim }\limits_{n\to \infty } \frac{a_{n+1} }{a_{n} } =l>1$. Рассмотрим число q такое, что $l>q>1$. ${\rm \varepsilon }=l-q>0$, из определения предела следует:$-{\rm \varepsilon } q > 1.$Таким образом, $a_{n+1} >a_n > 0$ и при $n\to \infty $ общий член ряда $a_{n} $ не стремится к 0, т.е. ряд $\sum \limits _{n=1}^{\infty }a_n $ расходится, так как не выполняется необходимое условие сходимости ряда. Вторая часть теоремы доказана.
  3. Если $l=1$,$\mathop{\lim }\limits_{n\to \infty } \frac{a_{n+1} }{a_{n} } $ равен единице или не существует, в этом случае для выяснения сходимости ряда признак Даламбера не применим.

Пример 1

Исследовать на сходимость ряд $\sum \limits _{n=1}^{\infty }\, \frac{n}{2^{n} } $.

Решение. Обозначим $\frac{n}{2^{n} } =a_{n} $, $a_{n} >0$; найдём $a_{n+1} =\frac{n+1}{2^{n+1} } $. Составим предел $l=\mathop{\lim }\limits_{n\to \infty } \frac{a_{n+1} }{a_{n} } =\mathop{\lim }\limits_{n\to \infty } \frac{(n+1)\cdot 2^{n} }{2^{n} \cdot 2\cdot n} =\frac{1}{2} \mathop{\lim }\limits_{n\to \infty } \frac{n+1}{n} =\frac{1}{2}

Ответ: ряд $\sum \limits _{n=1}^{\infty }\, \frac{n}{2^{n} } $сходится.

Пример 2

Исследовать на сходимость ряд $\sum \limits _{n=1}^{\infty }\, \frac{n!}{5^{n} } $.

Решение. Обозначим $\frac{n!}{5^{n} } =a_{n} ,a_{n} >0$; найдём $a_{n+1} =\frac{(n+1)!}{5^{n+1} } $. Составим предел

т.е. по признаку Даламбера ряд расходится.

Ответ: ряд $\sum \limits _{n=1}^{\infty }\, \frac{n!}{5^{n} } $ расходится.

Пример 3

Исследовать на сходимость ряд $\sum \limits _{n=1}^{\infty }\, \left(\frac{n}{2n+1} \right)^{n} $

Решение. Обозначим $\left(\frac{n}{2n+1} \right)^{n} =a_{n} ,^{} a_{n} >0$. Составим предел:

$l=\mathop{\lim }\limits_{n\to \infty } \sqrt[{n}]{a_{n} } =\mathop{\lim }\limits_{n\to } \frac{n}{2n+1} =\frac{1}{2}

Ответ: ряд $\sum \limits _{n=1}^{\infty }\, \left(\frac{n}{2n+1} \right)^{n} $сходится.

В данной теме рассмотрим некие критерии, с помощью которых можно сделать выбор между необходимым признаком сходимости ряда, признаками Д"Аламбера и Коши, а также признаками сравнения. Напомню, что признаки сравнения, а также интегральный и радикальный признаки Коши применяются лишь для положительных числовых рядов (т.е. рядов, общий член которых не меньше нуля, $u_n≥ 0$). Признак Д"Аламбера применяется для строго положительных рядов ($u_n > 0$).

Выбор признака, с помощью которого можно проверить сходимость числового ряда, - в общем случае задача непростая. Однако для тех рядов, которые используются в стандартных типовых расчётах и контрольных работах, можно дать некие общие рекомендации. Эти рекомендации я запишу в таблицу.

Пару слов насчёт самой таблицы. Второй столбец описывает сферу применения того или иного признака сходимости в большинстве стандартных контрольных работ. Третий столбец иллюстрирует информацию второго столбца наглядными примерами (все эти примеры решены в соответствующих темах). Четвёртый столбец содержит примеры рядов, которые несколько выбиваются из общей схемы или же встречаются в стандартных контрольных работах не так уж часто.

Название Основное применение Примеры рядов Дополнительное применение
Необходимый признак сходимости Общий член ряда представлен дробью, числитель и знаменатель которой есть некие многочлены. Или же могут присутствовать корни от многочленов. С помощью необходимого условия сходимости можно доказать расходимость произвольного числового ряда (не обязательно положительного). $\sum\limits_{n=1}^{\infty}\frac{3n^2+2n-1}{5n^2+7}$, $\sum\limits_{n=1}^{\infty}\frac{\sqrt{4n^7+5n^3-4}}{9n^2-n+12}$. $\sum\limits_{n=1}^{\infty}\left(5^n\sin\frac{8}{3^n}\right)$, $\sum\limits_{n=1}^{\infty}\frac{3^n}{n^2}$, $\sum\limits_{n=1}^{\infty}\left(\frac{2n+7}{2n+3}\right)^{9n+1}$, $\sum\limits_{n=1}^{\infty}\sin n$, $\sum\limits_{n=1}^{\infty}\frac{1-\cos\frac{1}{n}}{\ln\left(1+\frac{1}{n^2}\right)}$, $\sum\limits_{n=1}^{\infty}(-1)^n\frac{17n^5+4\cos(n!)}{6n^5+2n^2-1}$.
Признаки сравнения Общий член ряда представлен дробью, числитель и знаменатель которой есть некие многочлены. Или же вместо многочленов (или вместе с ними) могут присутствовать корни от многочленов. Для рядов такого вида приходится выбирать между необходимым признаком сходимости и признаками сравнения. Общий член ряда может содержать не только многочлен, но и некий "отвлекающий элемент", который не влияет на сходимость. Иногда, чтобы увидеть ряд для сравнения, приходится использовать эвивалентные бесконечно малые функции. $\sum\limits_{n=1}^{\infty}\frac{9n+7}{2n^3+5n^2-4}$, $\sum\limits_{n=1}^{\infty}\frac{4n^3+2n+9}{n^2(3n+5)^2}$, $\sum\limits_{n=1}^{\infty}\frac{5n^2-3}{\sqrt{7n^{10}+2n^3-4}}$, $\sum\limits_{n=1}^{\infty}\frac{\arcsin\frac{7n-1}{9n}}{\sqrt{4n^2-3}}$, $\sum\limits_{n=1}^{\infty}\frac{\arctg^2\sqrt{2n^3-1}}{\sqrt{3n^5-2}}$, $\sum\limits_{n=1}^{\infty}\frac{1}{n}\sin\left(\frac{2+(-1)^n}{6}\cdot\pi\right)$, $\sum\limits_{n=1}^{\infty}\frac{2^{3n}+\cos n!}{5^{2n+1}-n}$, $\sum\limits_{n=1}^{\infty}\frac{1}{\sqrt{n}}\arctg\frac{\pi}{\sqrt{2n-1}}$, $\sum\limits_{n=1}^{\infty}\left(1-\cos\frac{7}{n}\right)$, $\sum\limits_{n=1}^{\infty}n\left(e^\frac{3}{n}-1\right)^2$, $\sum\limits_{n=1}^{\infty}\ln\frac{n^3+7}{n^3+5}$. $\sum\limits_{n=1}^{\infty}\left(\sqrt{2n+3}-\sqrt{2n-1}\right)$, $\sum\limits_{n=1}^{\infty}\frac{n^n}{7^n\cdot n!}$.
Признак Д"Аламбера В выражении общего члена ряда присутствуют многочлен (многочлен может быть и под корнем) и степень вида $a^n$ или $n!$. Или же общий член ряда содержит произведение такого вида: $3\cdot 5\cdot 7\cdot\ldots\cdot(2n+1)$. $\sum\limits_{n=1}^{\infty}\frac{5^n\cdot(3n+7)}{2n^3-1}$, $\sum\limits_{n=1}^{\infty}\frac{\sqrt{4n+5}}{(3n-2)!}$, $\sum\limits_{n=1}^{\infty}\frac{(2n+5)!}{4^{3n+2}}$, $\sum\limits_{n=1}^{\infty}\frac{n^n}{3^n\cdot n!}$, $\sum\limits_{n=1}^{\infty}\frac{6^{2n+5}\left(3n^2-1\right)}{(n+3)!}$, $\sum\limits_{n=1}^{\infty}\frac{3\cdot 5\cdot 7\cdot\ldots\cdot(2n+1)}{2\cdot 5\cdot 8\cdot\ldots\cdot(3n-1)}$, $\sum\limits_{n=1}^{\infty}\frac{1\cdot 11\cdot 21\cdot\ldots\cdot(10n-9)}{(2n-1)!!}$. $\sum\limits_{n=1}^{\infty}\frac{4n-1}{n}\sin\frac{2}{3^n}$, $\sum\limits_{n=1}^{\infty}\frac{3^{2n+1}-4}{2^{5n}(n+1)!}$, $\sum\limits_{n=1}^{\infty}\frac{\left(n!\right)^2}{2^{n^2}}$.
Радикальный признак Коши В выражении общего члена ряда все элементы возведены в степень, которую можно сократить на $n$. $\sum\limits_{n=1}^{\infty}\left(\frac{3n^2-1}{5n^2+7n}\right)^{2n}$, $\sum\limits_{n=1}^{\infty}\left(\frac{2n+3}{7n-5}\right)^{n^2}$, $\sum\limits_{n=1}^{\infty}\left(\frac{2n+1}{2n-1}\right)^{n(3n+4)}$, $\sum\limits_{n=1}^{\infty}\frac{(5n+4)^n}{7^{2n}\cdot n^n}$, $\sum\limits_{n=1}^{\infty}\left(\sin\frac{4}{n^2+2n}\right)^{\frac{n}{2}}$. $\sum\limits_{n=1}^{\infty}\frac{\left(3n^2+7\right)\cdot 5^{2n-1}}{4^n}$, $\sum\limits_{n=1}^{\infty}\frac{n^n}{7^n\cdot n!}$.

Пусть задан положительный числовой ряд $ \sum_{n=1} ^\infty a_n $. Сформулируем необходимый признак сходимости ряда:

  1. Если ряд сходится, то предел его общего члена равен нулю: $$ \lim _{n \to \infty} a_n = 0 $$
  2. Если предел общего члена ряда не равен нулю, то ряд расходится: $$ \lim _{n \to \infty} a_n \neq 0 $$

Обобщенный гармонический ряд

Данный ряд записывается следующим образом $ \sum_{n=1} ^\infty \frac{1}{n^p} $. Причем в зависимости от $ p $ ряд сходится или расходится:

  1. Если $ p = 1 $, то ряд $ \sum_{n=1} ^\infty \frac{1}{n} $ расходится и называется гармоническим, несмотря на то, что общий член $ a_n = \frac{1}{n} \to 0 $. Почему так? В замечании говорилось, что необходимый признак не даёт ответа о сходимости, а только о расходимости ряда. Поэтому, если применить достаточный признак, такой как интегральный признак Коши, то станет ясно, что ряд расходится!
  2. Если $ p \leqslant 1 $, то ряд расходится. Пример,$ \sum_{n=1} ^\infty \frac{1}{\sqrt{n}} $, в котором $ p = \frac{1}{2} $
  3. Если $ p > 1 $, то ряд сходится. Пример, $ \sum_{n=1} ^\infty \frac{1}{\sqrt{n^3}} $, в котором $ p = \frac{3}{2} > 1 $

Примеры решений

Пример 1
Доказать расходимость ряда $ \sum_{n=1} ^\infty \frac{n}{6n+1} $
Решение

Ряд положительный, записываем общий член:

$$ a_n = \frac{n}{6n+1} $$

Вычисляем предел при $ n \to \infty $:

$$ \lim _{n \to \infty} \frac{n}{6n+1} = \frac{\infty}{\infty} = $$

Выносим за скобку $ n $ в знаменателе, а затем выполняем на него сокращение:

$$ = \lim_{n \to \infty} \frac{n}{n(6+\frac{1}{n})} = \lim_{n \to \infty} \frac{1}{6 + \frac{1}{n}} = \frac{1}{6} $$

Так как получили, что $ \lim_{n\to \infty} a_n = \frac{1}{6} \neq 0 $, то необходимый признак Коши не выполнен и ряд следовательно расходится.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
Ряд расходится