Аммиак, образующийся в почве, навозе и воде при разложении органических веществ, довольно быстро окисляется до азотистой, а затем азотной кислоты. Этот процесс получил название нитрификация.

До середины XIX в., точнее, до работ Л. Пастера явление образования нитратов объяснялось, как химическая реакция окисления аммиака атмосферным кислородом, причем предполагалось, что почва играет роль химического катализатора. Л. Пастер предположил, что образование нитратов - микробиологический процесс. Первые экспериментальные доказательства этого предположения были получены Т. Шлезингом и А. Мюнцем в 1879 г. Эти исследователи пропускали сточные воды через длинную колонку с песком и СаСО3. При фильтрации аммиак постепенно исчезал, и появлялись нитраты. Нагревание колонки или внесение антисептиков прекращало окисление аммиака.

Однако выделить культуры возбудителей нитрификации не удалось ни упомянутым исследователям, ни микробиологам, продолжавшим изучение нитрификации. Лишь в 1890-1892 гг. С. Н. Виноградский, применив особую методику, изолировал чистые культуры нитрификаторов. С. Н. Виноградский сделал допущение, что нитрифицирующие бактерии не растут на обычных питательных средах, содержащих органические вещества. Это было вполне правильным и объяснило неудачи его предшественников. Нитрификаторы оказались хемолитоавтотрофами, очень чувствительными к наличию в среде органических соединений. Эти микроорганизмы удалось выделить, используя минеральные питательные среды.

С. Н. Виноградский установил, что существуют две группы нитрификаторов - одна группа осуществляет окисление аммиака до азотистой кислоты (NH4+→NO2-) - первая фаза нитрификации, другая окисляет азотистую кислоту до азотной (NO2-→NO3-) - вторая фаза нитрификации.

Бактерии обеих групп в настоящее время относят к семейству Nitrobacteriaceae. Это одноклеточные грамотрицательные бактерии. Среди нитрифицирующих бактерий имеются виды с весьма различающейся морфологией - палочковидные, эллипсоидные, сферические, извитые и дольчатые, плеоморфные. Размеры клеток разных видов Nitrobacteriaceae колеблются от 0,3 до 1 мкм в ширину и от 1 до 6,5 мкм в длину. Имеются подвижные и неподвижные формы с полярным, субполярным и перитрихиальным жгутикованием. Размножаются в основном делением, за исключением Nitrobacter, который размножается почкованием. Почти у всех нитрификаторов имеется хорошо развитая система внутри - цитоплазматических мембран, значительно различающихся по форме и расположению в клетках разных видов. Эти мембраны подобны мембранам фотосинтезирующих пурпурных бактерий.

Бактерии первой фазы нитрификации представлены пятью родами: Nitrosomonas, Nitrosococcus, Nitrosospira, Nitrosolobus и Nitrosovibrio. Единственный микроорганизм, детально изученный к настоящему времени, - Nitrosomonas europaea.

Nitrosomonas представляет собой короткие овальные палочки размером 0,8 - 1X1-2 мкм. В жидкой культуре Nitrosomonas проходят ряд стадий развития. Две основные из них представлены подвижной формой и неподвижными зооглеями. Подвижная форма обладает субполярным жгутиком или пучком жгутиков. Помимо Nitrosomonas, описаны представители и других родов бактерий, вызывающие первую фазу нитрификации.

Вторую фазу нитрификации осуществляют представители родов Nitrobacter, Nitrospira и Nitrococcus. Наибольшее число исследований проведено с Nitrobacter winogradskii, однако описаны и другие виды (Nitrobacter agilis и др.).

Nitrobacter имеют удлиненную клиновидную или грушевидную форму, более узкий конец часто загнут в виде клювика. Согласно исследованиям Г. А. Заварзина, размножение Nitrobacter происходит путем почкования, причем дочерняя клетка бывает обычно подвижна, так как имеет один латерально расположенный жгутик. Известно чередование в цикле развития подвижной и неподвижной стадий. Описаны и другие бактерии, вызывающие вторую фазу нитрификации.

Нитрифицирующие бактерии обычно культивируют на простых минеральных средах, содержащих аммиак или нитриты (окисляемые субстраты) и углекислоту (основной источник углерода). В качестве источников азота эти организмы используют аммиак, гидроксиламин и нитриты.

Нитрифицирующие бактерии развиваются при pH 6-8,6, оптимум pH составляет 7,5-8. При pH ниже 6 и выше 9,2 эти бактерии не развиваются. Оптимальная температура развития нитрификаторов - 25-30°С. Изучение отношения различных штаммов Nitrosomonas europaea к температуре показало, что некоторые из них имеют оптимум развития при 26°С или около 40°С, а другие могут довольно быстро расти при 4°С.

Нитрификаторы - облигатные аэробы. С помощью кислорода они окисляют аммиак до азотистой кислоты (первая фаза нитрификации):

NH4++11/22О2→NO2-+H2O+2H+

А затем азотистую кислоту до азотной (вторая фаза нитрификации):

NO2-+1/2O2→NO3-

Предполагают, что процесс нитрификации проходит в несколько этапов. Первым продуктом окисления аммиака является гидроксилами, который затем превращается в нитроксил (NOH), либо пероксонитрит (ONOOH), который, в свою очередь, преобразуется в дальнейшем в нитрит или нитрит и нитрат.

Нитроксил, как и гидроксиламин, по-видимому, может димеризоваться в гипонитрит или превращаться в закись азота N2O - побочный продукт процесса нитрификации.

Кроме первой реакции (образования гидроксиламина из аммония), все последующие превращения сопровождаются синтезом макроэргических связей в виде АТФ, необходимых клеткам микроорганизмов для связывания СO2 и других биосинтетических процессов.

Фиксация СO2 нитрификаторами осуществляется через восстановительный пентозофосфатный цикл, или цикл Кальвина. В результате фиксации углекислоты образуются не только углеводы, но и другие важные для бактерий соединения - белки, нуклеиновые кислоты, жиры и т. д.

По существовавшим до последнего времени представлениям, нитрифицирующих бактерий относили к облигатным хемолитоавтотрофам.

Сейчас получены данные, свидетельствующие о способности нитрифицирующих бактерий использовать некоторые органические вещества. Так, отмечено стимулирующее действие на рост Nitrobacter в присутствии нитрита дрожжевого автолизата, пиридоксина, глютаминовой кислоты и серина. Поэтому предполагают, что нитрифицирующие бактерии обладают способностью переключаться с автотрофного на гетеротрофное питание. Нитрифицирующие бактерии все же не растут на обычных питательных средах, так как большое количество легкоусвояемых органических веществ, содержащихся в таких средах, задерживает их развитие.

Отрицательное отношение этих бактерий к органическому веществу в лабораторных условиях, казалось бы, противоречит естественным условиям их обитания. Известно, что нитрифицирующие бактерии хорошо развиваются, например, в черноземах, навозе, компостах, то есть в местах, где содержится много органического вещества.

Однако указанное противоречие легко устраняется, если сравнить количество легкоокисляемого углерода в почве с теми концентрациями органического вещества, которое нитрификаторы выдерживают в культурах, Так, органическое вещество почв представлено главным образом гуминовыми веществами, на которые приходится, например, в черноземе 71-91% общего углерода, а усвояемые водорастворимые органические вещества составляют не более 0,1% общего углерода. Следовательно, нитрификаторы не встречают в почве больших количеств легкоусвояемого органического вещества.

Этапность процесса нитрификации - характерный пример так называемого метабиоза, то есть такого рода трофических связей микробов, когда один микроорганизм развивается после другого на отходах его жизнедеятельности. Как было показано, аммиак - продукт жизнедеятельности аммонифицирующих бактерий используется Nitrosomonas, а нитриты, образующиеся последними, служат источником жизни для Nitrobacter.

Возникает вопрос о значении нитрификации для земледелия. Накопление нитратов происходит с неодинаковой интенсивностью на разных почвах. Однако этот процесс находится в прямой зависимости от плодородия почвы. Чем богаче почва, тем большее количество азотной кислоты она может накапливать. Существует метод определения доступного растениям азота в почве по показаниям ее нитрификационной способности. Следовательно, интенсивность нитрификации можно использовать для характеристики агрономических свойств почвы.

Вместе с тем при нитрификации происходит лишь перевод одного питательного для растений вещества - аммиака в другую форму - азотную кислоту. Нитраты, однако, обладают некоторыми нежелательными свойствами. В то время как ион аммония поглощается почвой, соли азотной кислоты легко вымываются из нее. Кроме того, нитраты могут восстанавливаться в результате денитрификации до N2, что также обедняет азотный запас почвы. Все это существенно снижает коэффициент использования нитратов растениями. В растительном организме соли азотной кислоты при их использовании для синтеза должны быть восстановлены, на что тратится энергия. Аммоний же используется непосредственно. В связи с этим ставится вопрос о подходах к искусственному снижению интенсивности процесса нитрификации путем использования специфических ингибиторов, подавляющих активность бактерий - нитрификаторов и безвредных для других организмов.

Следует отметить, что некоторые гетеротрофные микроорганизмы способны осуществлять нитрификацию. К гетеротрофным нитрификаторам относятся бактерии из родов Pseudomonas, Arthrobacter, Corynebacterium, Nocardia и некоторые грибы из родов Fusarium, Aspergillus, Penicillium, Cladosporium. Установлено, что Arthrobacter sp. окисляет в присутствии органических субстратов аммиак с образованием гидроксиламина, а затем нитрита и нитрата.

Некоторые бактерии способны вызывать нитрификацию таких азотсодержащих органических веществ, как амиды, амины, гидроксамовые кислоты, нитросоединения (алифатические и ароматические), оксимы и др.

Гетеротрофная нитрификация встречается в естественных условиях (почвах, водоемах и других субстратах). Она может приобретать главенствующее значение, особенно в атипичных условиях (например, при высоком содержании органических С - и N - соединений в щелочной почве и т. п.). Гетеротрофные микроорганизмы способствуют не только окислению азота в этих атипичных условиях, но и могут вызывать образование и накопление токсических веществ; веществ, обладающих канцерогенным и мутагенным действием, а также соединений с химиотерапевтическим действием. В связи с тем, что некоторые из этих соединений вредны для человека и животных даже при относительно низких концентрациях, следует тщательно изучить их образование в естественных условиях.

НИТРИФИЦИРУЮЩИЕ БАКТЕРИИ

превращают аммиак и аммонийные соли в соли азотной кислоты - нитраты: нитрозобактерии, нитробактерии. Распространены в почвах и водоемах.

БСЭ. Современный толковый словарь, БСЭ. 2003

Смотрите еще толкования, синонимы, значения слова и что такое НИТРИФИЦИРУЮЩИЕ БАКТЕРИИ в русском языке в словарях, энциклопедиях и справочниках:

  • НИТРИФИЦИРУЮЩИЕ БАКТЕРИИ
    превращают аммиак и аммонийные соли в соли азотной кислоты - нитраты: нитрозобактерии, нитробактерии. Распространены в почвах и …
  • НИТРИФИЦИРУЮЩИЕ БАКТЕРИИ
    бактерии, бактерии, превращающие аммиак и аммонийные соли в нитраты; аэробны, грамотрицательны, подвижны (имеют жгутики); обитают в почве и водоёмах. …
  • БАКТЕРИИ в Энциклопедии Биология:
    , микроскопические, обычно одноклеточные организмы, для которых характерно отсутствие оформленного ядра (см. прокариоты). Распространены повсеместно: в почве, воде, воздухе, …
  • БАКТЕРИИ в Большом энциклопедическом словаре:
    (от греч. bakterion - палочка) группа микроскопических, преимущественно одноклеточных организмов. Относятся к "доядерным" формам - прокариотам. В основу современной классификации …
  • БАКТЕРИИ в Большой советской энциклопедии, БСЭ:
    (греч. bakterion - палочка), большая группа (тип) микроскопических, преимущественно одноклеточных организмов, обладающих клеточной стенкой, содержащих много дезоксирибонуклеиновой кислоты (ДНК), имеющих …
  • БАКТЕРИИ
  • БАКТЕРИИ в Современном энциклопедическом словаре:
    (от греческого bakterion - палочка), группа микроскопических преимущественно одноклеточных организмов. Обладают клеточной стенкой, но не имеют четко оформленного ядра. Размножаются …
  • БАКТЕРИИ в Энциклопедическом словарике:
    [из древнегреческого (пал (оч) ка)] низшие одноклеточные растительные организмы, видимые только под микроскопом. широко распространены в природе (вызывают гниение, брожение …
  • НИТРИФИЦИРУЮЩИЕ
    НИТРИФИЦ́ИРУЮЩИЕ БАКТЕРИИ, превращают аммиак и аммонийные соли в соли азотной к-ты - нитраты: нитрозобактерии, нитробактерии. Распространены в почвах и …
  • БАКТЕРИИ в Большом российском энциклопедическом словаре:
    БАКТ́ЕРИИ (от греч. bakt;rion - палочка), группа микроскопич., преим. одноклеточных организмов. Относятся к "доядерным" формам - прокариотам. В зависимости от …
  • БАКТЕРИИ
  • БАКТЕРИИ в Словаре Кольера:
    обширная группа одноклеточных микроорганизмов, характеризующихся отсутствием окруженного оболочкой клеточного ядра. Вместе с тем генетический материал бактерии (дезоксирибонуклеиновая кислота, или ДНК) …
  • БАКТЕРИИ в Новом словаре иностранных слов:
    ((гр. bakteria пал(оч)ка) группа (тип) микроскопических, преимущ. одноклеточных организмов, обладающих клеточной стенкой, но не имеющих оформленного ядра (роль его …
  • БАКТЕРИИ в Словаре иностранных выражений:
    [ группа (тип) микроскопических, преимущ. одноклеточных организмов, обладающих клеточной стенкой, но не имеющих оформленного ядра (роль его выполняет молекула дезоксирибонуклеи-новой …
  • БАКТЕРИИ в Новом толково-словообразовательном словаре русского языка Ефремовой:
    мн. Одноклеточные …
  • БАКТЕРИИ в Словаре русского языка Лопатина:
    бакт`ерии, -ий, ед. -`ерия, …
  • БАКТЕРИИ в Полном орфографическом словаре русского языка:
    бактерии, -ий, ед. -ерия, …
  • БАКТЕРИИ в Орфографическом словаре:
    бакт`ерии, -ий, ед. -`ерия, …
  • БАКТЕРИИ в Современном толковом словаре, БСЭ:
    (от греч. bakterion - палочка), группа микроскопических, преимущественно одноклеточных организмов. Относятся к «доядерным» формам - прокариотам. В основу современной классификации …
  • БАКТЕРИИ в Толковом словаре Ефремовой:
    бактерии мн. Одноклеточные …
  • БАКТЕРИИ в Новом словаре русского языка Ефремовой:
    мн. Одноклеточные …
  • БАКТЕРИИ в Большом современном толковом словаре русского языка:
    мн. Одноклеточные …
  • БАКТЕРИИ: БАКТЕРИИ И БОЛЕЗНИ в Словаре Кольера.
  • МИКРООРГАНИЗМ НИТРИФИЦИРУЮЩИЕ в Медицинских терминах:
    (син. бактерии нитрифицирующие) аэробные почвенные М., вызывающие окисление аммиака и аммонийных солей в нитриты, а нитритов в нитраты с выделением …
  • БАКТЕРИЯ НИТРИФИЦИРУЮЩИЕ в Медицинских терминах:
    см. Микроорганизмы …
  • ХРОМОГЕННЫЕ БАКТЕРИИ
    образующие различные красящие вещества или пигменты, вследствие чего их скопища в природе и в искусственных культурах являются окрашенными в различный …
  • СЕРНЫЕ БАКТЕРИИ в Энциклопедическом словаре Брокгауза и Евфрона.
  • СВЕТЯШИЕСЯ БАКТЕРИИ в Энциклопедическом словаре Брокгауза и Евфрона:
    (фотогенные)— одна из замечательных физиологических групп среди бактерий. Они — причина свечения, иначе фосфоресценции, мертвых обитателей морей рыб, раков, а …
  • ХРОМОГЕННЫЕ БАКТЕРИИ
    ? образующие различные красящие вещества или пигменты, вследствие чего их скопища в природе и в искусственных культурах являются окрашенными в …
  • СЕРНЫЕ БАКТЕРИИ* в Энциклопедии Брокгауза и Ефрона.
  • СВЕТЯШИЕСЯ БАКТЕРИИ в Энциклопедии Брокгауза и Ефрона:
    (фотогенные) ? одна из замечательных физиологических групп среди бактерий. Они? причина свечения, иначе фосфоресценции, мертвых обитателей морей …
  • БАКТЕРИИ: СТРОЕНИЕ И ЖИЗНЕДЕЯТЕЛЬНОСТЬ БАКТЕРИЙ в Словаре Кольера:
    К статье БАКТЕРИИ Бактерии гораздо мельче клеток многоклеточных растений и животных. Толщина их обычно составляет 0,5-2,0 мкм, а длина - …
  • ХЕМОСИНТЕЗИРУЮЩИЕ БАКТЕРИИ в Энциклопедии Биология:
    , используют энергию химических реакций (окисление неорганических веществ в процессе дыхания), как источник углерода - углекислый газ. Нитрифицирующие бактерии, встречающиеся …
  • ВИНОГРАДСКИЙ СЕРГЕЙ НИКОЛАЕВИЧ в Краткой биографической энциклопедии:
    Виноградский, Сергей Николаевич - известный ботаник, бактериолог. Родился в 1856 г. Образование получил в Киевском, С.-Петербургском, Страсбургском и Цюрихском университетах. …
  • ХЕМОСИНТЕЗ в Большой советской энциклопедии, БСЭ:
    (от хемо... и синтез), правильнее - хемолитоавтотрофия, тип питания, свойственный некоторым бактериям, способным усваивать CO2 как единственный источник углерода …
  • ОБМЕН ВЕЩЕСТВ в Большой советской энциклопедии, БСЭ:
    веществ, или метаболизм, - лежащий в основе жизни закономерный порядок превращения веществ и энергии в живых системах, направленный на …
  • МИКРООРГАНИЗМЫ в Большой советской энциклопедии, БСЭ:
    микробы, обширная группа преимущественно одноклеточных живых существ, различимых только под микроскопом и организованных проще, чем растения и животные. К М. …
  • АЭРОБЫ в Большой советской энциклопедии, БСЭ:
    аэробные организмы (от аэро... и греч. bios - жизнь), организмы, обладающие аэробным типом дыхания, т. е. способные жить и …
Фильтрация и цихлидный аквариум. Часть 1.
Евгений Грановский

Этот материал, замысленный еще в стародавние времена, до создания этого сайта, оказался для меня настоящей ловушкой. Активная позиция на интернет-форумах требовала каждый раз писать слишком много слов, хотелось скомпоновать и систематизировать информацию, чтобы потом просто ссылаться. На деле же это означало новый уровень погружения в тусклый мир патрубков и губок вместо того, чтобы писать о диковинных тропических рыбах и далеких биотопах. И, в итоге, я вовсе перестал что-либо писать. Материал наверное бы так и остался у меня в компьютере, если бы Сергей Аникштейн не сподвиг меня довести работу до какого-то более или менее читаемого состояния и, собравшись с духом, так опубликовать. Текст, несмотря то, что в него добавлен ряд новых параграфов, изрядно сырой. Кое-какие моменты мне и самому по прошествии лет кажутся спорными или, как минимум, требующими дополнительной проверки. Впрочем, аквариумистика – это не та область, где может и должно быть единственно правильное мнение, и подчас противоположные решения приводят в нашем деле к одинаково хорошему результату. В любом случае, думаю, что представленный материал окажется хорошим отправным пунктом для аквариумиста, который хочет разобраться в этих вопросах. Но самое главное здесь – это не впасть в излишний технофетишизм, ибо на свете существует еще очень много всего, гораздо более интересного и занимательного, чем химические реакции, фильтры и помпы.

* * *

В современной аквариумистике фильтры являются одним из важнейших средств жизнеобеспечения. Аквариум - замкнутое биологическое пространство, в котором происходит постоянное накопление органических остатков: рыбы производят выделения, которые загрязняют воду; плюс несъеденный корм, помертвевшие части растений и т.д. В природных водоемах концентрация отходов в воде достаточно стабильна, поскольку часть их перерабатывается в минеральные вещества и ассимилируется растениями, а другая часть выносится вместе с водными потоками. В аквариуме плотность посадки рыб существенно превышает природную, поэтому продукты обмена и их неорганические производные могут оказывать негативное воздействие на его обитателей.

Основными способами удаления из аквариума излишков минеральных и органических остатков и налаживания в нем приемлемых условий жизни рыб является фильтрация, чистка, подмены воды и применение сорбирующей химии.

Наряду с навыками обращения с фильтрующими системами, помпами, сифонами и абсорбентами аквариумист должен обладать также определенным объемом теоретических знаний. Неотъемлемой частью современной аквариумной науки является так называемый "азотный цикл". Если вы откроете старые книжки, то не найдете там ни слова ни о биофильтрах, ни об азотном цикле. Первого тогда просто не существовало, второе же протекало само собою, о чем аквариумисты "старой школы" лишь смутно догадывались говоря об неком "биологическом равновесии", которое наступает само собой через несколько недель после запуска. То, как правило, были густо заросшие аквариумы с нейтральной или подкисленной водой, населенные "харацинкой" или "живородкой", где живые растения достаточно энергично поглощали ядовитые аммонийные соединения, а если те и присутствовали в незначительных остаточных дозах, то преимущественно в виде относительно безопасных ионов аммония NH 4 +. Более того, в "голландские аквариумы", с большим количеством растений и малым числом рыб, нитраты вносились искусственно!

Увлечение цихлидами, захватившее аквариумистику начиная с 1970-х годов, потребовало от аквариумистов намного более углубленных знаний в области биофильтрации. Хотя до того этот сегмент был уже в значительной мере освоен морскими аквариумистами. Именно они первыми столкнулись с проблемой ядовитых нитрогенов и стали разрабатывать соответствующие системы водоочистки. Вслед за "моряками" и цихлидоводами на эту проблему обратили и другие аквариумисты, а производство аквариумных фильтров превратилось в целую отрасль аквариумной индустрии.

В настоящем материале обобщены и систематизированы личный практический опыт и информация, почерпнутая в различных источниках. Их список приведен в конце. Хочу поблагодарить всех, чьи публикации и высказывания на аквафорумах помогли мне в составлении этого материала.

Азотный цикл, нитрификация

Не съеденный корм и выделенные с экскрементами не потребленные рыбой белки - это основные поставщики органических соединений в воде, в которой начинается цикл биологических превращений, осуществляемых различными микроорганизмами. На первом этапе этого цикла сложные азотсодержащие органические соединения утилизируются до простых неорганических - так называемая минерализация. Азот - один из основных элементов, необходимых для животных и растений. Он входит в животные и растительные белки. В результате разложения экскрементов рыб, остатков корма и растений, погибших организмов образуется аммиак NH 3 (ammonia). Аммиак обладает способностью взаимодействовать с ионами водорода H + , находящимися в воде, или с молекулами воды, образуя ионы аммония NH 4 + (ammonium):

NH 3 + H + = NH 4 +

2NH 3 + 3O 2 = 2NO 2 - + 2H + + 2H 2 O,

либо 2NH 4 + + 3O 2 = 2NO 2 - + 4H + + 2H 2 O,

а затем в нитрат-ионы (с буквой "а") NO 3 - .

2NO 2 - + O 2 = 2NO 3 - .

Процессы окисления аммиака и ионов аммония до нитрит-ионов, а затем до нитрат-ионов называются нитрификацией. Эти процессы протекают в аэробной (т.е. богатой кислородом) среде под действием бактерий-нитрификаторов, существующих в аквариуме. Практический смысл нитрификации заключается в переводе соединений азота из очень токсичных форм (аммиак, нитрит) в малотоксичную (нитрат). Нитраты - тоже вредны, однако не настолько, как предыдущие соединения азота. Но на этом цикл азота не прекращается. Существует и обратный - восстановительный процесс, называемый денитрификацией, который мы, в большинстве своем, на настоящий момент не используем. Потому в аквариумной практике азотный цикл чаще всего рассматривается в только в аспекте нитрификации. В этом аспекте современная аквариумистика фактически построена на принципе "пролонгированной протоки", т.е. нитрат выводится из аквариума посредством замены загрязненной воды на свежую. Также существенную роль играют живые растения, поглощающие нитраты. В цихлидом аквариуме, где растительности мало или она вовсе отсутствует, биологическое равновесие биосистемы и здоровье рыб во многом зависит от технического оснащения и регулярности обслуживания. Хорошая аэрация и фильтрация является обязательным условием нормального функционирования такой системы, а поддержание концентрации нитратов на безопасном уровне осуществляется посредством интенсивных вливаний свежей воды. Несмотря на существование ряда альтернативных решений (включая биологические методы денитрификации, о которых будет рассказано в третьей части статьи), ведра и шланги являются неотъемлемым аквариумным инвентарем.

Токсичность азотных соединений

Сам по себе газообразный азот, молекулы которого состоят из двух атомов N 2 , химически и биологически инертен и практически безвреден. А вот азотные соединения, накапливающиеся в аквариуме, способны нанести вред его обитателям. Схематически изменение концентраций соединений азота в аквариуме в процессе нитрификации и изображено на графике.

Изменение концентраций соединений азота в аквариуме

Согласно "Перечню рыбохозяйственных нормативов предельно допустимых концентраций (ПДК) и ориентировочно безопасного уровня воздействия (ОБУВ) вредных веществ для воды водных объектов, имеющих рыбохозяйственное значение" (М.: Изд. ВНИРО, 1999), ПДК азотных соединений для рыб:
аммиак - 0,05 мг/л;
аммоний - 0,5 мг/л;
нитрит - 0,08 мг/л (значение нитритно-азотной концентрации);
нитрат - 40 мг/л.

Хотя практика показывает, что аквариумные рыбы кратковременно способны переносить значительно более высокие дозы нитрогенов, эти значения не следует превышать.

Аммиак является сильно токсичным соединением. Он легко попадает в кровь и внутренние органы рыбы, накапливается там и потом выводится очень долго, вплоть до недель, т.е. рыба единожды отравившаяся аммиаком может через какое-то время погибнуть, причем без всяких внешних признаков. Отравления аммиаком также делает рыб подверженными стрессу и ослабляет их сопротивляемость болезням. Летальный уровень неионизированного аммиака составляет примерно 0,2–0,5 мг/л для различных видов рыб. Ионы аммония тоже токсичны, но в меньшей степени. Токсичность аммиака уменьшается в соленой воде. Соотношение концентраций NH 3 и NH 4 + в воде также зависит от ее кислотности и температуры: в кислой и холодной воде аммиак практически отсутствует, в щелочной и теплой среде его концентрация возрастает. Поэтому в аквариумной литературе советуют подкислять воду для предотвращения отравления рыб. Понижение pH действительно приводит к снижению токсичности аммиака, однако при этом активность нитрифицирующих бактерий, перерабатывающих аммиак падает. А при pH ниже 5, их жизнедеятельность практически прекращается.

Проблема усугубляется тем, что имеющиеся в нашем распоряжение тесты показывают общую концентрацию аммонийных соединений, не отделяя аммиак от аммония. Их процентное соотношение можно определить, используя специальные таблицы, исходя из показателей pH и температуры воды. Но лучше всего устроить фильтрацию так, чтобы тест показывал нулевое значение.

Существующее однако мнение, что при значениях рН=7 и менее риск вероятность аммиачного отравления является практически нулевым. В подтверждение чего указывается, что в "доцихлидную" эпоху, когда аквариумисты содержали преимущественно тропических "кисловодных" рыб, случаи отравлений аммиаком были очень редки, и эта проблема возникла только с наступлением "моды" на африканских цихлид, требующих щелочной воды. На мой взгляд, это неверная аргументация, т.к она не принимает во внимание тот существенный момент, что в прежние времена все аквариумы, в т.ч. выростные, в обязательном порядке содержали растения, которые и выполняли роль естественного биофильтра и аэратора, причем довольно успешно. Тем более, как выше указано, ионы аммония тоже не безвредны и при накапливании могут вызвать длительное отравление.

Отдельной проблемой является наличие аммонийных соединений (далее по тексту мы будем называть их обобщенно "аммиак") в водопроводной воде - в период осенних дождей и весеннего паводка концентрация может достигать 0,5–1 мг/л. Более детально это рассмотрено в статье " ". Причем здесь аммиак опасен даже не столько своей абсолютной концентрацией, сколько резким скачком его содержания в аквариуме при обильной подмене воды.

Нитрит также ядовит. Длительное пребывание рыб в воде с нитритно-азотной концентрацией более 0,1 мг/л (или общей нитритно-ионовой концентрацией более 0,33 мг/л) нежелательно, летальными могут оказаться дозы от 1 мг/л.

Примечание: существуют две измерительные шкалы содержания нитрита: общей нитритно-ионовой концентрации (NO 2 -), т.е. содержание азота и кислорода; и нитритно-азотной концентрации (NO 2 – N), т.е. содержание только азота в нитрит-ионе. Коэффициент соотношения этих показателей равен 3,3, то есть, зная одно значение, можно вычислить другое. В книгах обычно указывается показатель нитритно-азотной концентрации, а вот в аквариумных тестах - как правило общей нитритно-ионовой.

Хочу еще раз подчеркнуть - в нормально функционирующем аквариуме содержание аммиака и нитрита должно быть нулевым.

Нитраты - значительно менее токсичны, чем аммиак и нитриты. Безопасной для большинства видов рыб считается концентрация ионов NO 3 - до 50 мг/л. Хотя известны случаи аквариумов с содержанием нитрата до 400 мг/л (!!!), что ни в коем случае не должно рассматриваться как рекомендация к действию. В тоже время, существуют виды цихлид, например, у дикарей Uaru fernandezyepezi самочувствие ухудшается уже при концентрации 10-20 мг/л. Однако даже если мы не видим очевидных признаков отравления или ухудшения самочувствия, рыба внешне здорова и нерестится, в долговременном аспекте нитраты являются одной из главных причин гексамитоза и др. заболеваний у проблемных видов и возрастных рыб и оказывают воздействие даже более вредное, чем неправильное кормление, хотя негативный их эффект проявляется не сразу. Даже в относительно небольших и формально "безопасных" концентрациях нитраты незаметно, но верно укорачивают срок жизни нашим питомцам. Также есть основания предположить наличие токсичного "кумулятивного эффекта" при сочетании с нитратов с нитритным или аммонийным фоном (при недостаточной биофильтрации). Поэтому и для сравнительно неприхотливых видов, лучше установить такой режим подмен воды, чтобы концентрация NO 3 - была минимальной. Следует также избегать резких изменений концентрации нитратов не только в большую сторону, но и в меньшую, в частности, при пересадке рыб в другую емкость или при больших подменах воды.

Симптомы отравления рыб азотными соединениями достаточно хорошо описаны в литературе. В частности, об этом можно прочесть в статье "Состав аквариумной воды: основные проблемы" , размещенной на веб-сайте vitawater.ru. Оттуда же можно узнать, как с помощью специальных препаратов, как фирменных, так и "народных" (соль, марганцовка, метиленовая синь) улучшить самочувствие рыбок. Однако если изначально сделать все по уму: оснастить аквариум хорошим фильтрационным оборудованием и обеспечить должный режим обслуживания, т.е. устранить причину "заболевания", не будет нужды бороться с его симптомами.

Виды фильтрации

Основное назначение аквариумных фильтров - очистка воды, удаление из нее нежелательных составляющих (органических и минеральных частиц, молекул, ионов, микроорганизмов). Фильтрацию можно разделить на три основных вида:

Механическая;
- биологическая;
- химическая.

Механическая фильтрация - улавливание взвешенных в воде частиц. При механической фильтрации поток воды проходит через какой-либо мелкопористый материал, на котором задерживаются сравнительно крупные частички грязи и аквариумного мусора. В качестве фильтрующего субстрата обычно применяются синтетические губки и мочалки, специальный поролон, синтепон и т.д.

Теоретически, эффективность очистки возрастает при уменьшении размера частиц фильтрующего материала или диаметра проходных каналов. Однако это уменьшение возможно лишь до определенных пределов, поскольку при этом начинает возрастать сопротивление потоку жидкости и снижается производительность фильтра. Считается, что лучше применять фильтрующие элементы с различной величиной проходных каналов. Вода, последовательно минуя слои со все уменьшающимися каналами, будет равномерно очищаться во всем объеме фильтра. Во внешних и в некоторых видах внутренних фильтров используется многослойный фильтрующий элемент (керамические кольца - крупнопористые и мелкопористые губки - синтепон). При работе механического фильтра в нем происходит накопление отфильтрованного материала, поэтому необходимо регулярно проводить промывку фильтрующего элемента.

К механической фильтрации можно и отнести и регулярную чистку дна сифоном (сифонка грунта) при подменах воды.

Биологическая фильтрация - многостадийный, многоступенчатый процесс, осуществляемый аммонифицирующими и нитрифицирующими, по разложению органики и преобразованию сильнотоксичных аммиака, аммония и нитрита в малотоксичный нитрат (а при полном цикле - в газообразные азот). Этот процесс может протекать естественным образом непосредственно в аквариуме, но для получения хорошего результата требует специального устройства - биофильтра.

Биологическая и механическая фильтрация тесно между собой связаны. Во-первых, потому, что один и тот же фильтр может выполнять роль и механического, и биологического. Во-вторых, тем, что задача очистки аквариума от органических нечистот решается одновременно как в биологически, посредством нитрификации, так и механически, т.е непосредственно удалением грязи из аквариума. И таким образом сильная механическая фильтрация ослабляет нагрузку, ложащуюся на биофильтр, и наоборот.

Химическая фильтрация , под которой в аквариумной практике понимают прежде всего сорбцию , является специфичным видом. С помощью химических фильтров из аквариумной (или вновь заливаемой) воды удаляются вредные органические и неорганические вещества, а также могут изменяться параметры воды и вноситься в нее полезные вещества. В зависимости от характера сорбции различают адсорбенты - тела, поглощающие вещество на своей (обычно сильно развитой) поверхности, и химические поглотители, которые связывают поглощаемое вещество, вступая с ним в химическое взаимодействие. Отдельную группу составляют ионообменные сорбенты, поглощающие из растворов ионы одного типа с выделением в раствор эквивалентного количества ионов другого типа. Химическая фильтрация наиболее распространена и популярна с помощью активированного угля в качестве адсорбента. Применяется и ряд других химических наполнителей. Это минералы из группы цеолитов, синтетические ионообменные смолы, а также торф. Цеолиты и ионообменные смолы поглощают аммиак, нитраты, фосфаты и др. и вместо них выделяют безвредные ионы натрия, хлора, сульфата и т.д. Торф слегка подкисляет воду и вносит в нее различные биологически активные вещества. К химической фильтрации можно отнести и пеноотделительные колонки, которые удаляют органические молекулы из воды прежде, чем они будут разложены с выделением аммиака. Озонаторы тоже в какой-то степени выполняют химическую фильтрацию путем окисления органики.

Кроме фильтрации, в аквариумной практике применяется также стерилизация воды как метод ее очистки. Способами стерилизации являются озонирование и ультрафиолетовое облучение.

Нитрифицирующие бактерии

Процесс нитрификации - это процесс окисления, основную роль в котором, естественно, играет кислород. Однако этот процесс происходил бы намного медленнее, не будь в аквариуме множества микроорганизмов, принимающих в нем участие. Эти микроорганизмы известны также под собирательным названием "активный ил ".

Предварительную работу делают минерализаторы, превращающие органику в аммиак. Такой способностью обладают многие микроскопические водные обитатели. Поэтому, в принципе, набор видов может быть свой для каждого конкретного аквариума. В частности, это бактерии Achromobacter, Micrococcus, Flavobacterium, Paracoccus и др. Их колонии образуются стадийно. Одни виды вытесняют другие. Помутнение воды в недавно запущенном аквариуме (т.н. "бактериальная муть") является как раз проявлением взрывообразного размножения одних микроорганизмов, чаще - инфузорий, с постепенной заменой их другими и/или падением размера популяции.

Каждая из стадий азотного цикла осуществляется своими бактериями. Аммиак-окисляющие бактерии Nitrosococcus и Nitrosomonas осуществляют процесс NH 3 (NH 4 +) => NO 2 - , а нитрит-окисляющие Nitraspira и Nitrobacter - процесс NO 2 - => NO 3 - .

Процесс заселения аквариума полезными бактериями происходит постепенно. Для успешной работы им требуется определенные условия: пища (аммиак и нитриты), кислород, приемлемая гидрохимия, температура и субстрат, где они будут селиться. Согласно исследованиям оптимальные условия для развития бактерий Nitraspira spp.: концентрация нитритов 0,35 mM, pH 7,6–8,0, температура 39°C. Последнее, естественно, это не означает необходимости разогревать аквариум до столь экстремальной температуры, для большинства аквариумных рыб она является смертельной. Нитрификаторы будут замечательно работать и при 22–28°С. Следует также помнить, что при повышенных значениях температуры и pH возрастает процентное содержание неионизированного аммиака.

Основным местом жительства (субстратом) для аммонифицирующих и нитрифицирующих бактерий являются фильтры, особенно внешние, с внушительным объемом и большой площадью поверхности различных наполнителей. Конечно, эти бактерии живут и в толще воды, но там их значительно меньше. В принципе, в качестве субстрата подходит любая поверхность, но она должна иметь достаточно большую площадь. Голых стенок аквариума для создания работоспособной популяции недостаточно. В аквариумах, лишенных биологического фильтра, в роли субстрата, выступает грунт, однако в нем ощущается дефицит другого жизненно важного компонента нитрификации - кислорода. Поэтому проточный биофильтр является оптимальным для заселения нитрификаторами. См. также статью " ".

Хотя нитрифицирующие бактерии присутствуют повсюду, даже в хлорированной водопроводной воде и в воздухе (отдельные клетки или микроколонии), в свежезапущенном аквариуме их катастрофически мало. Размножаются бактерии быстро - удвоение популяции происходит за 12–32 часа. Однако, согласно исследованиям аквариумов и биофильтров, для налаживания нитрификации требуется от 12 до 22 дней.

Вначале в аквариуме нет нитритов, только аммиак и аммоний, и нарождаются одни аммиак-окисляющие бактерии. По мере появления нитритов в действие включаются нитрит-окисляющие бактерии. Причем есть основания считать, что колония нитрит-окисляющих бактерий прихотливее, рост ее более медленный, и ей может быть причинен больший урон, чем первой колонии при том же воздействии. Например, известно, что Nitraspira могут подавляться даже избытками аммиака. А если учесть, что пищу для их поставляет первая колония, то неудивительно почему задержка в переработке нитритов в новом аквариуме может быть долгой. А потом наоборот исчерпывается аммиак, и аммиак-окисляющие бактерии начинают голодать и сокращать популяцию, зато теперь много пищи для нитрит-окисляющих бактерий... Таким образом, получаются два взаимосвязанных, но разбалансированных цикла со своими пиками и спадами, и задача биофильтрации состоит в том, чтобы эти циклы синхронизировать и развить, и добившись баланса обеих групп бактерий, гибко реагировать на любые изменения аквариумной биохимии.

"Опрокидывание" биофильтра

При неблагоприятных условиях, например, отсутствие питания или достаточного количества кислорода, бактерии переходят в т.н. инактивное состояние ("спячка"), когда минимальный энергетический обмен поддерживается для обеспечения основных функций клетки. При возобновлении подходящих условий бактерия "просыпается". Но если инактивный период длится слишком долго, наступает смерть и распад бактериальной клетки.

Особенно критичны для колоний нитрифицирующих бактерий в биофильтре длительные отключения электричества и сильное загрязнение субстрата с образованием в нем застойных анаэробных зон. Причем опасно не столько само прекращение процесса нитрификации, сколько то, что на их месте поселяются другие, гетеротрофные бактерии, и в анаэробной (безкислородной) среде начинается противоположный процесс - . И при этом велика вероятность, что он пойдет по "неправильным" сценариям - с образованием таких таких ядовитых соединений, как сероводород (H 2 S) и метан (CH 4), или остановится на стадии восстановления нитрата в нитрит. И хорошо, если обойдется просто временным помутнением воды, но может обернуться и массовым замором рыбы. Падение производительности (напора воды) фильтра, как правило, свидетельствует о загрязнении субстрата. Если напор упал ниже 30–40% от максимального, фильтр следует промыть и перезапустить заново, иначе это может привести к его биологическому "опрокидыванию". Не следует также отключать фильтр на продолжительное время. Сильно загрязненный фильтр может представлять опасность для обитателей аквариума уже через 2–3 часа простоя; менее загрязненные могут сравнительно легко пережить без притока свежей воды нескольких часов или даже суток. Кроме степени загрязненности фильтра это зависит от многих факторов, в т.ч. объема аквариума (в больших аквариумах биохимия гораздо более стабильна) и плотности посадки рыб. Но лучше лишний раз этим не рисковать.

"Бактериальная муть"

Под этим термином обычно понимается помутнение или побеление воды, нередко сопровождающееся затхлым запахом. Данное явление характерно для аквариумов с неразвитой или нарушенной биофильтрацией, либо случается от переизбытка органики (при перекорме или при перенаселении). Также может быть вызвано большим вливанием свежей воды или использованием "аквахимии". Еще один "верный" способ получить сильное помутнение воды - налить в аквариум некоторую дозу спирта или водки (но об этом чуть позже). "Бактериальная" или, как ее еще называют "инфузорная" муть является проявлением бурного размножения в аквариумной воде одноклеточных организмов, в большинстве своем гетеротрофных, и их конкуренции между собой. Эти процессы Самвел Купалян метко назвал "междоусобными войнами" микроорганизмов. Сама по себе "бактериальная муть" не опасна для рыб, хотя косвенно является признаком неблагоприятной обстановки в аквариуме и внешне представляет собой малоэстетичное зрелище. Но прямой зависимости между мутностью воды и содержанием вредных веществ в аквариуме нет. Растворенные в воде токсичные соединения азота, возникающие в результате отсутствия или нарушения биофильтрации, незаметны для глаза. Возможна ситуация, когда вода помутнела, а тесты на аммиак и нитрит показывают нулевую или очень низкую концентрацию этих веществ. Но может быть и наоборот: вода в аквариуме кристально прозрачная, а нитриты зашкаливают.

В заново запускаемом аквариуме вода может сильно помутнеть на второй-третий день (хрестоматийный, но вовсе не обязательный случай). Если система правильно оборудована и обслуживается, то через несколько дней "бактериальная муть" исчезает сама собой. Когда помутнение возникает в зрелом аквариуме, оно проходит после устранения причины его возникновения. И первое, что я рекомендую сделать, если обнаружилось, что вода "ни с того ни с сего" помутнела - это усилить аэрацию. В качестве радикального способа устранения бактериальной мути нередко советуют УФ-стерелизатор. При прохождении через ультрафиолетовое излучение создающие муть микроорганизмы гибнут, и вода становится прозрачной. Однако следует понимать, что таким образом не устраняется первопричина возникновения мути.

Немного истории

Если вы откроете старые книжки, то прочтете там много интересного и правильного о таких химических показателях воды как PH, электропроводимость и жесткость, а также хитроумных способах их измерения, однако не найдете ни слова ни о биофильтрах, ни об азотном цикле. Первого тогда просто не существовало, второе же характеризовалось неким абстрактным понятием "биологическое равновесие", которое наступает само собой через несколько недель после запуска аквариума. Видовой состав рыб - в основном, "живородка" и "харацинка" - и наличие в аквариумах большого числа живых растений в значительной мере компенсировали эти пробелы в теоретических знаниях и технической оснащенности. Думаю, что серьезное отставание нашей страны в области цихлидоводства было в известной мере обусловлено именно этими "особенностями национальной аквариумистики". Ведь содержание цихлид предъявляет к фильтрации повышенные требования. В более поздних публикациях наших авторитетных аквариумистов необходимость аквариумных фильтров признается. " Современная аквариумистика отвечает на этот вопрос положительно",- декларирует Игорь Иванович Ванюшин в опубликованной в 1999 г. в журнале "Миллион Друзей" статье "Нужна ли в аквариуме фильтрация?" Тогда же в литературе появилось множество руководств по изготовлению самодельных внутренних фильтров из пластиковой бутылки и т.п. "Невозможно себе представить, сколько существует конструкций фильтров,- пишет Игорь Иванович,- более того, почти каждый аквариумист вносит свой вклад, изменяя виденное или создавая что-то оригинальное, свое, в ту пору когда всерьез заинтересуется фильтрацией воды".

Одновременно пришло понимание необходимости регулярных подмен воды с целью устранения из нее нитратов и других вредных веществ. То было удивительное время прозрения, когда аквариумистам открылись причины необъяснимых смертей и заболеваний их питомцев. Первые отечественные биофильтры появились еще в 1980-х годах, причем подчас обладали весьма замысловатыми конструкциями. Недостатками самодельных внешних фильтров, которые в значительной мере сводили на нет их достоинства, были громоздкость и ненадежность. Поэтому отношение к внешним фильтрам, даже несмотря на появление в продаже эргономичных и надежных импортных канистровых фильтров, по-прежнему было настороженным. Мнение И.И. Ванюшина (статья "Покупаем Аквариумы" в журнале "Миллион Друзей" №1.2000) на этот счет достаточно показательно: " Не вникая в детали, все фильтры можно разделить на наружные и внутренние. Какой лучше - судите сами, если свою главную задачу по очистке от мусора и вредных примесей они выполняют примерно одинаково... Наружный фильтр почти не ограничивает собой внутреннего пространства аквариума. Внутри проходят только две трубки - для откачивающей и нагнетающей магистралей, все остальное - снаружи. Этим, пожалуй, и ограничиваются его достоинства" . Серьезным противопоказанием против брендовых канистр была их высокая стоимость, а китайские сильно уступали им по качеству. Поэтому многие аквариумисты-любители отдавали предпочтение широко распространившимся у нас в стране в конце 1990-х годов стаканным внутренним фильтрам, сочетающим в себе стильный дизайн и доступную цену, при этом явно преувеличивая их возможности в отношении биофильтрации, а в профессиональной аквариумистике получили распространение встроенные биофильтры. Еще одной альтернативой и своеобразным этапом становления биофильтрационной техники в России был так называемый эрлифт, состоящий из большой губки, подъемной трубы и аэратора. Этот вид фильтра и сейчас успешно используется в выростных аквариумах.

Рассказ Евгения Цигельницкого: "Никогда не забуду свой первый фильтр - разбирающуюся пополам, щелястую коробочку в полстакана из розово-белого "под мрамор" пластика (из такого делали самые дешевые мыльницы) на сизой, скверно пахнущей присоске, жиденько заполненную какими-то нитками, через неделю ставшими совершенно похожими на сопли. К нему сверху через поганенький резиновый переходник крепился простейший эрлифт из пары стеклянных трубок - потолще и потоньше. А набитые в фильтр нитки "сообразительные мы" (с отцом) заменили на мочалку для посуды. Помню и тот фильтр, и мое детское изумление от того, сколько эта маленькая, убогая штуковина за неделю собирала всякой грязи в моем скромном, чистеньком на взгляд трехведерном аквариуме (полностью нагружая собой целый трескучий компрессор). Продвинутые люди тогда пользовали эрлифты из братской ГДР, мне тоже такой привез после долгого нытья дед аж из Ленинграда. И я стал продвинутым – с нереальной, убойной ГДРовской губкой в трехведернике и переехавшей в ведерный ("школьный") малечник мраморной "мыльницей". Целых два фильтра было - во как! Кстати, эта губка у меня трудилась–служила–кочевала по аквариумам почти пятнадцать лет. До сих пор жалею, что она куда-то делась… То есть - воду в аквариумах люди фильтровали еще при советской власти, но большинство фильтрующих – не делало из этого культа, и никоим образом не заботилось происходящими при этом биохимическими событиями… Грязь собрал - и ладно…"

Денитрификация и денитрифицирующие бактерии

Процесс восстановления нитратов до газообразных оксидов и молекулярного азота называется денитрификацией. Это вторая часть азотного цикла. В пресноводной аквариумистике этот процесс используется крайне редко, но тем не менее несомненно заслуживает рассмотрения. В отличие от нитрификации, где важнейшую роль играет растворенный в воде кислород, процессы денитрификации происходят в среде, лишенной кислорода, или, говоря научным языком, анаэробной. Денитрификация определена как превращение нитрата в азот - безвредный газ, который уходит пузырьками наружу. Между начальным продуктом (нитратом) и конечным продуктом (газообразным азотом) существуют три промежуточных продукта: в порядке их возникновения, это нитрит (NO 2), окись азота (NO) и закись азота (N 2 O). То есть денитрификация (как и нитрификация) - это процесс многоступенчатый, и его промежуточные продукты, и в частности нитрит, токсичны. Если денитрификация происходит не до конца, качество воды становится для рыб много хуже, чем до этого процесса. Существуют и еще два других процесса, которые могут происходить в аквариуме. Это диссимилятивное и ассимилятивное поглощение нитрата. Оба они опасны, т.к. производят аммоний. Фактически это полная противоположность нитрификации - нитрат редуцируется в нитрит, который затем редуцируется в гидроксиламин (NH 2 OH) и затем в аммоний.

За все эти превращения ответственны бактерии. Важное различие между нитрификацией и денитрификацией заключается в видах бактерий, которые участвуют в этих процессах. Нитрификация производится так называемыми автотрофными бактериями. Это означает, что они получают углерод, необходимый для роста, из неорганических веществ, в частности, из углекислого газа. Денитрифицирующие бактерии (Bacillus, Denitrobacillas, Micrococcus, Pseudomonas и др.) являются гетеротрофными, то есть получают углерод из органических источников, как сахароза, глюкоза, спирты, органические кислоты, аминокислоты и др. (существует, впрочем, особый вид фильтра-денитратора, в котором для переработки нитрата в азот используется серные бактерии - автотрофы, см. 3-ю часть статьи). Суть полезного действия бактерий-денитрифаторов в том, что в условиях анаэробной, т.е. крайне бедной кислородом среды, они извлекают необходимый для дыхания кислород из нитрата, при этом редуцируя его. Денитрифицирующие бактерии – это анаэробные бактерии. Хотя, если быть совсем корректным, есть бактерии, которые являются факультативными анаэробами и в зависимости от содержания в среде кислорода способны черпать его как из вне, так и извлекать из нитратов (поэтому, кстати, считается, что приспособление денитрифицирующих бактерий к анаэробным условиям - вторичного происхождения). Но в целом, как об этом пишет Мартин Сандер, "можно исходить из того, что кислород препятствует денитрификации".

Таким образом, для успешного протекания процесса денитрификации нужно соблюдение трех условий: наличие в аквариуме нитратов, бедная кислородом среда и наличие органических углеродосодержащих веществ. Углерод используется бактериями как основное питательное средство, в то время как потребность в кислороде удовлетворяется за счет нитрата. Четвертое условие, о котором позже будет рассказано, - это достаточно низкий окислительно-востановительный (или как его обычно называют, редокс) потенциал.

Реакцию денитрификации в классическом ее виде можно выразить уравнениями:

первая ступень 3NO 3 - + CH 3 OH = 3NO 2 - + CO 2 + 2H 2 O и

вторая ступень 2NO 2 - + CH 3 OH = N 2 + CO 2 + H 2 O + 2OH - .

Как видно из уравнений, нитраты при этом не сразу трансформируются в газообразный азот, а прежде образуются токсичные нитриты. И лишь на второй ступени азот удаляется из цикла путем образования газообразного азота. Добиться, чтобы эти процессы происходили контролируемо, - непростая задача. Во всяком случае, это гораздо сложнее, чем наладить биологическое преобразование аммиака в нитрат. Кроме того, с денитрификацией связано немало заблуждений, в том числе исходящих от аквариумистистов, использующих эти технологии на практике. Процесс денитрификации не всегда происходит безмятежно. Наряду с полезным действием по удалению нитратов, в ходе денитрификационных процессов могут образовываться другие вещества, чрезвычайно вредные - метан (СН 4) и сероводород (H 2 S), поскольку наряду денитрифицирующими бактериями в анаэробные процессы подключаются и другие виды микроорганизмов, в частности метанобразующие археи и сульфатвосстанавливающие бактерии, тоже анаэробы. В частности, такое происходит, при недостатке нитратов, либо очень низком редокс-потенциале. Тогда анаэробная микрофлора начинает удовлетворять потребность в кислороде за счет других кислородосодержащих химических соединений - с выделением сероводорода и метана, оба газа токсичны. Метанобразующие бактерии могут синтезировать метан, используя в качестве энергии реакции окисления углекислого газа (СО 2). В природных водоемах метан является одним из конечных продуктов разложения органических веществ в донной анаэробной зоне и образуется узкоспециализированной группой строгих анаэробов - метанобразующих архей. Сульфатвосстанавливающие бактерии забирают кислород из сульфатов (SO 4 2-). В этом процессе, который называется десульфуризация, возникает сероводород, который известен запахом тухлых яиц. Также выше упомянуты биопроцессы диссимилятивного и ассимилятивного восстановления нитратов до гидроксиламина (NH 2 OH) и затем аммония. Способностью к этому обладают различные бактерии, а также некоторые актиномицеты и грибы. Понятно, что всеми этими процессами, которые также происходят в природе, трудно управлять в аквариуме, стимулируя лишь полезные и препятствуя вредным процессам.

Теперь несколько слов об окислительно-восстановительном потенциале - мере способности химического вещества присоединять электроны (восстанавливаться). Его величина определяет равновесие между восстановительными и окислительными реакциями в воде. Другое название - редокс-потенциал (от англ. redox - reduction-oxidation reaction). Этот показатель связан с уровнем загрязненности аквариумной воды органическими веществами, а также с возрастом аквариума. Недавно запущенный аквариум характеризуется, как правило, высокими значениями редокс потенциала, затем, по мере старения аквариума, его редокс-потенциал снижается. Поддерживать редокс-потенциал на определенном уровне можно путем регулярного ухода за аквариумом, чистки грунта, подмены воды и т.д. Высокий положительный редокс-потенциал (в нормальном аквариуме он составляет 200 – 400 mV (минивольт)) указывает на доминирование окислительных реакций над восстановительными. Отрицательный редокс потенциал указывает на отсутствие кислорода в воде, что смертельно для большинства беспозвоночных. А вот для нормального течения процесса денитрификации окислительно-восстановительный потенциал должен быть отрицательным и удерживаться в пределах примерно от -50 до -250 mV. Таким образом, реакция денитрификации не может происходить непосредственно аквариумной воде, а требует специальных анаэробных зон, которые могут образовываться, например, в грунте или фильтре. Если же окислительно-восстановительный потенциал будет выше, чем -50 mV (но меньше нуля), то процесс денитрификации скорее всего остановится на стадии образования нитритов. А если он упадет ниже -300 mV, то бактерии возьмутся за сульфаты.

Следующая проблема - наличие достаточного количества органического углерода, необходимого для этого виды бактерий. Органических веществ, находящихся в аквариуме, не достаточно для поддержки процесса, поэтому требуется вносить их дополнительно. В выше приведенных уравнениях в качестве органического вещества фигурирует метанол, однако на практике метиловый спирт - яд. Концепция классического углеродного нитратредуктора подразумевает использование лактозы. Еще вариант - этиловый спирт или водка. Кстати, несколько лет назад очень популярной была идея запуска денитрификации посредством внесения в аквариум водки. Правда, отваживались на это не многие, но обсуждали активно. На самом деле, как пишет об этом Дитер Брокманн, эта технология не имеет ничего общего с денитрификацией, то есть расщеплением нитратов для дыхания бактерий, а скорее ближе к ассимиляции и производству биомассы. "Алкоголем, в отличие от денитрифицирующих фильтров, мы стимулируем преимущественно аэробных бактерий и только затем анаэробных бактерий, играющих менее важную роль. Под ассимиляцией подразумевается усвоение нитратов и фосфатов, например, водорослями. Последние используют оба вещества для получения азота и фосфора, необходимых для собственного обмена веществ и, соответственно, жизнеобеспечения и роста. Из этого следует вывод, что усиленный рост водорослей влияет на понижение концентрации фосфатов и нитратов в аквариуме. Раньше этот эффект использовали в водорослевых фильтрах для редукции нитратов. Подливая водку в аквариум, мы тем самым поддерживаем ассимиляцию, стимулируя, правда, не водоросли, а бактерии. Мы предоставляем им источник легко перерабатываемой пищи - этанол в водке. За счет наращивания биомассы уровень содержания фосфатов и нитратов в аквариумной воде снижается. Однако практика показала, что денитрификация может протекать только в субстрате, содержащем анаэробные зоны. И о его наличии тоже надо позаботиться".

И еще. Нужно сбалансировать систему так, чтобы промежуточные продукты денитрификации не накапливались. Как выше указывалось, при переработке нитрата сначала производится нитрит, он токсичен и накапливаться в аквариуме не должен. Опасность роста концентрации нитрита - одно из слабых мест денитрифицирующих систем. Ну и чтобы совсем сгустить краски, надо напомнить, что кроме нитратов в аквариуме еще есть фосфаты и наверное еще много разных веществ и соединений, которые нельзя проконтролировать с помощью стандартного набора аквариумных тестов, из-за чего дискусы в зацикленном с помощью денитратора аквариуме вдруг становятся вялыми и отказываются нереститься. Селективным устранением нитратов мы добиваемся только видимости создания системы замкнутого цикла.

Впрочем все это не означает, что денитрификация, в принципе, недоступна или не имеет смысла для аквариумистики. Нитратные фильтры уже много лет успешно используются в морских аквариумах и сейчас начали внедряться для обслуживания в пресноводных. Но более всего хочется надеяться, что денитрификация все еще представляет собой перспективную область для исследований, и последнее слово в этом вопросе еще не сказано.

Литература

Аникштейн С. Нитраты – такие вредные и такие полезные.
Аникштейн С. Не пренебрегайте аэрацией.
Бейли М. Бергесс П. Золотая книга аквариумиста.
Берсенев А. Загадка биофильтра.
Брокман Д. Нитраты.
Ванюшин И.И. Нужна ли в аквариуме фильтрация?
Ванюшин И.И. Покупаем аквариумы.
Горюшкин С. Обратный осмос в системе фильтрации аквариума.
Горюшкин С. Фильтрация и дискусы.
Гусев М.В., Минеева Л.А. Микробиология.
Дубиновский М. и др. Вода в аквариуме.
Дубиновский М. и др. Фильтрация в аквариуме.
Дубиновский М. Запуск аквариума.
Информационные материалы по морской аквариумистике, разные.
Кубасов А.А. Цеолиты – кипящие камни.
Ковалев В. В аквариуме что-то не так??? Попробуем разобраться!
Ковалев В. Пять очень важных параметров качества воды и как ими пользоваться не запутавшись.
Ковалев В. Состав аквариумной воды: основные проблемы.
Кусков В. Как создавать и поддерживать биологическое равновесие.
Сандер М. Техническое оснащение аквариума.
Серга Т. Nitrospira – нитрит-окисляющие бактерии в аквариумах.
Спиридонов М. Цеолит в аквариуме. Польза или вред?
Телегин А. Устройство открытых фильтров.
Успех с нитратным фильтром. Пер. А.И. Горюшкина.
Фролов Ю., Юдаков В. Основы биологической фильтрации.
Хахинов В.В. и др. Гидрохимия экстремальных водных систем с основами гидробиологии.
Хованек Т. Что такое денитрификация?
Хомченко И.Г. и др. Современный аквариум и химия.
Цигельницкий Е. Фитофильтрация.
Шереметьев И. Орошаемый фильтр для аквариума.
Элбакян В. Жуть нитратная.
Юдаков В. Краткие основы аквариумной фильтрации.
Ярцев В. Заметки по поводу биошаров (Bioballs).
Ярцев В. Фильтры с орошением (sump).
Brockmann D. Fische und Korallen im Meer und im Aquarium.
Holmes-Farley R. Chemistry and the aquarium: Nitrate in the reef aquarium.
Foster С. Exclusive: Hagen announces launch of Fluval G filter.

© Е. Грановский, 2009-2010

Еще в 1870 г. Шлезинг и Мюнц (Schloesing, Miintz) доказали, что нитрификация имеет биологическую природу. Для этого они добавляли к сточным водам хлороформ. В результате окисление аммиака прекращалось. Однако специфические микроорганизмы, вызывающие этот процесс, были выделены лишь Виноградским. Им же было показано, что хемоавтотрофные нитрификаторы могут быть подразделены на бактерий, осуществляющих первую фазу этого процесса, а именно окисление аммония до азотистой кислоты (NH4+->N02-), и бактерий второй фазы нитрификации, переводящих азотистую кислоту в азотную (N02-->-N03-). И те и другие микроорганизмы являются грамотрицательными. Их относят к семейству Nitrobacteriaceae.


Бактерии первой фазы нитрификации представлены четырьмя родами: Nitrosomonas, Nitrosocystis, Nitrosolobus и Nitrosospira. Из них наиболее изучен вид Nitrosomonas euroраеа, хотя получение чистых культур этих микроорганизмов, как и других нитрифицирующих хемоавтотрофов, до сих пор остается достаточно сложным. Клетки N. europaea обычно овальные (0,6 -1,0 X 0,9-2,0 мкм), размножаются бинарным делением. В процессе развития культур в жидкой среде наблюдаются подвижные формы, имеющие один или несколько жгутиков, и неподвижные зооглеи.


У Nitrosocystis oceanus клетки округлые, диаметром 1,8-2,2 мкм, но бывают и крупнее (до 10 мкм). Способны к движению благодаря наличию одного жгутика или пучка жгутиков. Образуют зооглеи и цисты.


Размеры Nitrosolobus multiformis составляют 1,0-1,5 X 1,0-2,5 мкм. Форма этих бактерий не совсем правильная, так как клетки разделены на отсеки, дольки (-lobus, отсюда и название Nitrosolobus), которые образуются в результате разрастания внутрь цитоплазматической мембраны.


У Nitrosospira briensis клетки палочковидные и извитые (0,8-1,0 X 1,5-2,5 мкм), имеют от одного до шести жгутиков.


Среди бактерий второй фазы нитрификации различают три рода: Nitrobacter, Nitrospina и Nitrococcus.


Большая часть исследований проведена с разными штаммами Nitrobacter, многие из которых могут быть отнесены- к Nitrobacter winogradskyi, хотя описаны и другие виды. Бактерии имеют преимущественно грушевидную форму клеток. Как показано Г. А. Заварзиным, размножение Nitrobacter происходит путем почкования, причем дочерняя клетка бывает обычно подвижна, так как снабжена одним латерально расположенным жгутиком. Отмечают также сходство Nitrobacter с почкующимися бактериями рода Hyphomicrobium по составу жирных кислот, входящих в липиды.


Данные относительно таких нитрифицирующих бактерий, как Nitrospina gracilis и Nitrococcus mobilis, пока весьма ограниченны. По имеющимся описаниям, клетки N. gracilis палочковидные (0,3-0,4 X 2,7-6,5 мкм), но обнаружены и сферические формы. Бактерии неподвижны. Напротив, N. mobilis обладает подвижностью. Клетки его округлые, диаметром около 1,5 мкм, с одним-двумя жгутиками.


По строению клеток исследованные нитрифицирующие бактерии похожи на другие грамотрицательные микроорганизмы. У некоторых видов обнаружены развитые системы внутренних мембран, которые образуют стопку в центре клетки (Nitrosocystis oceanus), или располагаются по периферии параллельно цитоплазматической мембране (Nitrosomonas europaea), или образуют чашеподобную структуру из нескольких слоев (Nitrobacter winogradskyi). Видимо, с этими образованиями связаны ферменты, участвующие в окислении нитрификаторами специфических субстратов.


Нитрифицирующие бактерии растут на простых минеральных средах, содержащих окисляемый субстрат в виде аммония или нитритов и углекислоту. Источником азота в конструктивных процессах могут быть, кроме аммония, гидроксиламин и нитриты.


Показано также, что Nitrobacter и Nitrosomonas europaea восстанавливают нитриты с образованием аммония.


Такой микроорганизм, как Nitrosocystis oceanus, выделенный из Атлантического океана, относится к облигатным галофилам и растет на среде, содержащей морскую воду. Область значений рН, при которой наблюдается рост разных видов и штаммов нитрифицирующих бактерий, приходится на 6,0-8,6, а оптимальное значение рН чаще всего 7,0-7,5. Среди Nitrosomonas europaea известны штаммы, имеющие температурный оптимум при 26 или около 40 °С, и штаммы, довольно быстро растущие при 4 °С.


Все известные нитрифицирующие бактерии являются облигатными аэробами. Кислород необходим им как для окисления аммония в азотистую кислоту:



так и для окисления азотистой кислоты в азотную:



Но весь процесс превращения аммония в нитраты происходит в несколько этапов с образованием соединений, где азот имеет разную степень окисленности.


Первым продуктом окисления аммония является гидроксиламин, который, возможно, образуется в результате непосредственного включения в NH+4 молекулярного кислорода:



Однако окончательно механизм окисления аммония до гидроксиламина не выяснен. Превращение гидроксиламина в нитрит:



как предполагают, идет через образование гипонитрита NOH, а также окись азота (NO). Что касается закиси азота (N2O), обнаруживаемой при окислении Nitrosomonas europaea аммония и гидроксиламина, то большинство исследователей считает ее побочным продуктом, образующимся в основном в результате восстановления нитрита.


Исследование окисления Nitrobacter нитрита с использованием в опытах тяжелого изотопа кислорода (18O) показало, что образующиеся нитраты содержат значительно больше 18O, когда меченой является вода, а не молекулярный кислород. Поэтому предполагают, что сначала происходит образование комплекса NO2-H2O, который далее окисляется до NO2-. При этом происходит передача электронов через промежуточные акцепторы на кислород. Весь процесс нитрификации можно представить в виде следующей схемы (рис. 137), отдельные этапы которой требуют, однако, уточнения.



Кроме первой реакции, а именно образования из аммония гидроксиламина, последующие стадии обеспечивают организмы энергией в виде аденозинтрифосфата (АТФ). Синтез АТФ сопряжен с функционированием окислительновосстановительных систем, передающих электроны на кислород, подобно тому как это имеет место у гетеротрофных аэробных организмов. Но поскольку окисляемые нитрификаторами субстраты имеют высокие окислительно-восстановительные потенциалы, они не могут взаимодействовать с никотинамидадениндинуклеотидами (НАД или НАДФ, E1/0 = -0,320 В), какэто бывает при окислении большинства органических соединений. Так, передача электронов в дыхательную цепь от гидроксиламина, видимо, происходит на уровне флавина:



Когда окисляется нитрит, то включение его электронов в цепь, вероятно, идет на уровне либо цитохрома типа с, либо цитохрома типа а. В связи с этой особенностью большое значение у нитрифицирующих бактерий имеет так называемый обратный, или обращенный, транспорт электронов, идущий с затратой энергии части АТФ или трансмембрапного потенциала, образуемых при передаче электронов на кислород (рис. 138).



Таким образом происходит обеспечение хемоавтотрофных нитрифицирующих бактерий не только АТФ, но и НАДН, необходимых для усвоения углекислоты и для других конструктивных процессов.


Согласно расчетам эффективность использования свободной энергии Nitrobacter может составлять 6,0-50,0%, a Nitrosomonas - и больше.


Ассимиляция углекислоты происходит в основном в результате функционирования пентоэофосфатного восстановительного цикла углерода, иначе называемого циклом Кальвина (см. рис. 134).



Итог его выражают следующим уравнением:



где (СН2О) означает образующиеся органические вещества, имеющие уровень восстановленности углеродов. Однако в действительности в результате ассимиляции углекислоты через цикл Кальвина и другие реакции, прежде всего путем карбоксилирования фосфоенолпирувата, образуются не только углеводы, но и все другие компоненты клеток - белки, нуклеиновые кислоты, липиды и т. д. Показано также, что Nitrococcus mobilis и Nitrobacter winogradskyi могут образовывать в качестве запасных продуктов поли-β-оксибутират и гликогеноподобный полисахарид. Такое же соединение обнаружено в клетках Nitrosolobus multiformis. Кроме углеродсодержащих запасных веществ, нитрифицирующие бактерии способны накапливать полифосфаты, входящие в состав метахроматиновых гранул.


Еще в первых работах с нитрификатором Виноградский отметил, что для их роста неблагоприятно присутствие в среде органических веществ, таких, как пептон, глюкоза, мочевина, глицерин и др. Отрицательное действие органических веществ на хемоавтотрофные нитрифицирующие бактерии неоднократно отмечалось и в дальнейшем. Сложилось даже мнение, что эти микроорганизмы вообще не способны использовать экзогенные органические соединения. Поэтому их стали называть «облигатными автотрофами». Однако в последнее время показано, что использовать некоторые органические соединения эти бактерии способны, но возможности их ограничены. Так, отмечено стимулирующее действие на рост Nitrobacter в присутствии нитрита дрожжевого автолизата, пиридоксина, глутамата и серина, если они в низкой концентрации вносятся в среду. Показано также включение в белки и другие компоненты клеток Nitrobacter 14С из пирувата, а-кетоглутарата, глутамата и аспартата. Известно, кроме того, что Nitrobacter медленно, но окисляет формиат. Включение 14С из ацетата, пирувата, сукцината и некоторых аминокислот, преимущественно в белковую фракцию, обнаружено при добавлении этих субстратов к суспензиям клеток Nitrosomonas europaea. Ограниченная ассимиляция глюкозы, пирувата, глутамата и аланина установлена для Nitrosocystis oceanus. Есть данные об использовании 14С-ацетата Nitrosolobus multiformis.


Недавно установлено также, что некоторые штаммы Nitrobacter растут на среде с ацетатом и дрожжевым автолизатом не только в присутствии, но и в отсутствие нитрита, хотя и медленно. При наличии нитрита окисление ацетата подавляется, но включение его углерода в разные аминокислоты, белок и другие компоненты клеток увеличивается. Имеются, наконец, данные, что возможен рост Nitrosomonas и Nitrobacter на среде с глюкозой в анализируемых условиях, которые обеспечивают удаление продуктов ее метаболизма, оказывающих ингибиторное действие на данные микроорганизмы. На основании этого делается вывод о способности нитрифицирующих бактерий переключаться на гетеротрофный образ жизни. Однако для окончательных выводов необходимо большее число экспериментов. Важно прежде всего выяснить, как долго нитрифицирующие бакте рии могут расти в гетеротрофных условиях при отсутствии специфических окисляемых субстратов.

Хемоавтотрофные нитрифицирующие бактерии имеют широкое распространение в природе и встречаются как в почве, так и в разных водоемах. Осуществляемые ими процессы могут происходить весьма в крупных масштабах и имеют существенное значение в круговороте азота в природе. Раньше считали, что деятельность нитрификаторов всегда способствует плодородию почвы, поскольку они переводят аммоний в нитраты, которые легко усваиваются растениями, а также повышают растворимость некоторых минералов. Сейчас, однако, взгляды на значение нитрификации несколько изменились. Во-первых, показано, что растения усваивают аммонийный азот и ионы аммония лучше удерживаются в почве, чем нитраты. Во-вторых, образование нитратов иногда приводит к нежелательному подкислению среды. В-третьих, нитраты могут восстанавливаться в результате денитрификации до N2, что приводит к обеднению почвы азотом.


Следует также отметить, что наряду с нитрифицирующими хемоавтотрофными бактериями известны гетеротрофные микроорганизмы, способные вести близкие процессы. К гетеротрофным нитрификаторам относятся некоторые грибы из рода Fusarium и бактерии таких родов, как Alcaligenes, Corynebacterium, Achromobacter, Pseudomonas, Arthrobacter, Nocardia.


Показано, что Arthrobacter sp. окисляет в присутствии органических субстратов аммоний с образованием гидроксиламина и далее нитритов и нитратов. Кроме того, может образовываться гидроксамовая кислота. У ряда бактерий выявлена способность осуществлять нитрификацию органических азотсодержащих соединений: амидов, аминов, оксимов, гидроксаматов, нитросоединений и др. Пути их превращения представляют следующим образом:



Размеры гетеротрофной нитрификации в некоторых случаях бывают довольно большие. Кроме того, при этом образуются некоторые продукты, обладающие токсичным, канцерогенным, мутагенным действием и соединения с химиотерапевтическим эффектом. Поэтому исследованию данного процесса и выяснению его значения для гетеротрофных микроорганизмов сейчас уделяют значительное внимание.

Жизнь растений: в 6-ти томах. - М.: Просвещение. Под редакцией А. Л. Тахтаджяна, главный редактор чл.-кор. АН СССР, проф. А.А. Федоров . 1974 .


    Превращают аммиак и аммонийные соли в соли азотной кислоты нитраты: нитрозобактерии, нитробактерии. Распространены в почвах и водоемах … Большой Энциклопедический словарь

    Превращают аммиак и аммонийные соли в соли азотной кислоты нитраты: нитрозобактерии, нитробактерии. Распространены в почвах и водоёмах. * * * НИТРИФИЦИРУЮЩИЕ БАКТЕРИИ НИТРИФИЦИРУЮЩИЕ БАКТЕРИИ, превращают аммиак и аммонийные соли в соли азотной… … Энциклопедический словарь

    нитрифицирующие бактерии - nitrifikatoriai statusas T sritis ekologija ir aplinkotyra apibrėžtis Nitritinės (Nitrosomonas genties) ir nitratinės (Nitrobacter genties) bakterijos, paverčiančios amonio druskas nitratais. atitikmenys: angl. nitrifiers; nitrifying bacteria vok … Ekologijos terminų aiškinamasis žodynas - проводят реакции окисления восстановленных соединений азота. Представители рода Nitrosomonas окисляют аммиак до нитритов, а бактерии рода Nitrobacter окисляют нитриты до нитратов. Относятся к автотрофным хемосинтезирутощим аэробным… … Геологическая энциклопедия

    По типу питания все организмы делятся на автотрофов и гетеротрофов. Автотрофы, что в переводе с греческого означает «самопитающиеся», могут строить все соединения своих клеток из углекислоты и других неорганических веществ. Источником… … Биологическая энциклопедия

Аммиак, образующийся в почве, навозе и воде при разложении органических веществ, довольно быстро окисляется до азотистой, а затем азотной кислоты. Такой процесс называют нитрификацией.

До середины XIX в., точнее, до работ Л. Пастера явление образования нитратов объясняли как химическую реакцию окисления аммиака атмосферным кислородом, причем предполагалось, что почва в этом процессе играет роль катализатора. Л. Пастер предположил, что образование нитратов - микробиологический процесс. Первые экспериментальные доказательства его гипотезы были получены Т. Шлезингом и А. Мюнцем в 1879 г. Исследователи пропускапи сточные воды через длинную колонку с песком и СаС0 3 . При фильтрации аммиак постепенно исчезал и появлялись нитраты. Нагревание колонки или внесение антисептиков прекращало окисление аммиака.

Однако выделить культуры возбудителей нитрификации не удалось ни упомянутым исследователям, ни микробиологам, продолжавшим изучение нитрификации. Лишь в 1890-1892 гг. С. Н. Виноградский, применив особую методику, изолировал чистые культуры нитрификаторов. Ученый предположил, что нитрифицирующие бактерии не растут на обычных питательных средах, содержащих органические вещества, это объяснило неудачи его предшественников.

Действительно, нитрификаторы оказались хемолитоавтотро- фами, т. е. бактериями, использующими энергию окисления аммиака или азотистой кислоты для синтеза органических веществ из С0 2 (хемосинтез). Поэтому их клетки очень чувствительны к присутствию в среде органических соединений. Нитрифицирующие бактерии удалось выделить на минеральных питательных средах.

С. Н. Виноградский установил, что существуют две группы ни- трификаторов: одна осуществляет окисление аммиака до азотистой кислоты (NHJ-? N0 2) - первая фаза нитрификации, другая - окисление азотистой кислоты до азотной (NOj-? NOj) -

вторая фаза нитрификации.

Представителей обеих групп относят к семейству Nitrobacte- riaceae. Это одноклеточные грамотринательные бактерии. Среди нитрифицирующих бактерий есть палочковидные клетки, эллиптические, сферические, извитые и дольчатые, плеоморфные. Размеры клеток колеблются от 0,3 до 1 мкм в ширину и от 1 до 3 мкм в длину. Существуют подвижные и неподвижные формы с полярным, субполярным и перитрихальным жгутикованием.

Размножаются бактерии-нитрификаторы в основном делением, за исключением Nitrobacter, для которого характерно почкование. Почти у всех нитрификаторов хорошо развита система внутри цитоплазматических мембран, значительно различающихся по форме и расположению в клетках отдельных видов. Мембраны цитоплазмы подобны мембранам фотосинтезирующих пурпурных бактерий.

Бактерии первой фазы нитрификации представлены родами: Nitrosomonas, Nitrosococcus, Nitrosospira, Nitrosolobus и Nitroso- vibrio. Наиболее детально к настоящему времени изучен Nitrosomonas еигораеа (рис. 42, А). Он представляет собой короткие овальные палочки размером 0,8-1 х 1-2 мкм. В жидкой культуре клетки Nitrosomonas проходят ряд стадий развития. Две основные из них представлены подвижной формой и неподвижными зооглеями. Подвижная форма обладает субполярным жгутиком или пучком жгутиков.

Описаны представители и других родов бактерий, вызывающих первую фазу нитрификации.

Вторую фазу нитрификации осуществляют представители родов Nitrobacter, Nitrospira и Nitrococcus. Наибольшее число исследований проведено с Nitrobacter winogradskyi (рис. 42, />), однако описаны и другие виды (например, Nitrobacter agilis). Клетки нитро- бактера имеют удлиненную, клиновидную или грушевидную форму, более узкий конец часто загнут в клювик, размеры клеток - 0,6-0,8 х 1-2 мкм. При почковании дочерняя клетка обычно подвижна, так как имеет один полярный жгутик. Известно чередование в цикле развития подвижной и неподвижной стадий.

Рис. 42.

А - Nitrosomonas euro раса ; Б - Nitrobacter winogradskyi

Описаны и другие виды бактерий, вызывающие вторую фазу нитрификации.

Нитрифицирующие бактерии культивируют на простых минеральных средах, содержащих аммиак или нитриты (окисляемые субстраты) и диоксид углерода (основной источник углерода). Источником азота для этих организмов служат аммиак, гидроксилам и н и нитриты.

Нитрифицирующие бактерии развиваются при pH 6,0- 8,6, оптимум реакции среды составляет pH 7,5-8,0. При значениях ниже pH 6 и выше pH 9,2 бактерии не развиваются. Оптимальная температура для развития нитрификаторов 25-30 °С. Изучение отношения различных штаммов Nitrosomonas еигораеа к температуре показало, что некоторые из них имеют оптимум развития при 26 °С или около 40 °С, другие способны довольно быстро расти при 4 °С.

Нитрификаторы - облигатные аэробы . Используя кислород воздуха, они окисляют аммиак до азотистой кислоты (первая фаза нитрификации):

Следовательно, аммиак - продукт жизнедеятельности аммонифицирующих бактерий - использует для получения энергии Nitrosomonas, а нитриты, образующиеся в процессе жизнедеятельности последних, служат источником энергии для Nitrobacter.

Согласно современным представлениям, процесс нитрификации осуществляется на цитоплазматической и внутри цитоплазматических мембранах и проходит в несколько этапов. Первым продуктом окисления аммиака становится гидроксиламин, затем превращающийся в нитроксил (NOH) или пероксонитрит (ONOOH), последний, в свою очередь, преобразуется в дальнейшем в нитрит, а нитрит в нитрат. Весь процесс нитрификации иллюстрирует следующая схема:


Нитроксил, как и гидроксиламин, по-видимому, может димеризоваться в гипонитрит или превращаться в закись азота N 2 0 - побочный продукт нитрификации. Кроме первой реакции (образования гидроксиламина из аммония), все последующие превращения сопровождаются синтезом макроэргических связей в виде АТФ.

Нитрификаторы осуществляют фиксацию С0 2 через восстановительный пентозофосфагный цикл (цикл Кальвина). В результате последующих реакций образуются не только углеводы, но и другие важные для бактерий соединения - белки, нуклеиновые кислоты, жиры и т. д.

Долгое время нитрифицирующих бактерий относили к облигатным хемолитоавтотрофам. Позднее были получены данные о способности этих бактерий использовать некоторые органические вещества. Так, отмечено стимулирующее действие на рост Nitrobacter нитрита, дрожжевого автолизата, пиридоксина, глутаминовой кислоты и серина. Предполагают, что некоторые нитрифицирующие бактерии обладают способностью переключаться с автотрофного на гетеротрофное питание. Однако нитрификаторы нс растут на обычных питательных средах, так как большое количество легкоусвояемых органических веществ, содержащихся в таких средах, задерживает их развитие. Однако в природе такие бактерии хорошо развиваются в черноземах, навозе, компостах, т. с. в местах, где содержится много органического вещества.

Указанное противоречие оказывается несущественным, если сравнивать количество легкоокисляемого углерода в почве с теми концентрациями органического вещества, которые нитрификаторы должны выдерживать в культурах. Так, органическое вещество почв представлено главным образом гуминовыми веществами, на которые приходится в черноземе 71-91% общего углерода, а легко усвояемые водорастворимые органические вещества составляют не более 0,1% общего углерода. Следовательно, нитрификаторы не встречают в почве больших количеств легкоусвояемого органического вещества.

Накопление нитратов происходит с неодинаковой интенсивностью на разных почвах. Чем богаче почва, тем больше соединений азотной кислоты она может накапливать. Существует метод определения доступного растениям азота в почве по показаниям се нитрификационной способности. Следовательно, интенсивность нитрификации можно использовать для характеристики агрономических свойств почвы.

Вместе с тем при нитрификации происходит лишь перевод одного питательного для растений вещества - аммиака в другую форму - азотную кислоту. Нитраты, однако, обладают некоторыми нежелательными свойствами. В то время как ион аммония поглощается почвой, соли азотной кислоты легко вымываются из нее. Кроме того, нитраты восстанавливаются в результате денитрификации до N 2 , что также обедняет азотный запас почвы. Все перечисленное существенно снижает коэффициент использования нитратов растениями.

В растительном организме соли азотной кислоты перед включением в синтез должны быть восстановлены, на что тратится энергия. Аммоний же используется непосредственно. В связи с этим ученые поставили вопрос о возможности искусственного снижения интенсивности нитрификации при помощи специфических ингибиторов, подавляющих активность бактсрий-нитрификаторов и безвредных для других организмов. Уже предложены многочисленные промышленные препараты ингибиторов нитрификации (2-хлор-6- (трихлорметил)-пиридин, нитропирин и др.), синтезированные на пиридиновой основе. Ингибиторы нитрификации подавляют только первую фазу нитрификации и не действуют на вторую, а также на гетеротрофную нитрификацию. При применении ингибиторов нитрификации (нитропирин) эффективность азотных удобрений повышается с 50 до 80%.

««sb Гетеротрофная нитрификация. Способны осуществлять нитрификацию и некоторые гетеротрофные микроорганизмы. К ним относятся бактерии из родов Pseudomonas, Arthrobacter, Corynebacteri- ит, Nocardia и отдельные виды грибов из родов Fusarium, Aspergillus, Penici/lium, Cladosporium. Установлено, что Arthrobacter sp. в присутствии органических субстратов вызывает окисление аммиака с образованием гидроксиламина, а затем нитрита и нитрата. Некоторые бактерии вызывают нитрификацию таких азотсодержащих органических веществ, как амиды, амины, гидроксамовые кислоты, нитросоединения (алифатические и ароматические), оксимы и др. Однако считают, что гетеротрофная нитрификация не служит источником энергии для перечисленных организмов.

Гетеротрофная нитрификация встречается в естественных условиях (почвах, водоемах и других субстратах). Она может приобретать главенствующее значение, особенно в атипичных условиях (например, при высоком содержании органических С- и N-соединений в щелочной почве и т. п.). Гетеротрофные микроорганизмы не только способствуют окислению азота в таких условиях, но и вызывают образование и накопление токсичных веществ, соединений канцерогенного и мутагенного, а также химиотерапевтического действия. В связи с тем что некоторые из перечисленных соединений вредны для человека и животных даже в относительно низких концентрациях, тщательно изучают возможность их образования в природе.

  • В последние годы обнаружена способность бактерий к анаэробномуокислению аммиака. Этот процесс, получивший название «анаммокс» (Ап-аттох), играет важную роль при очистке сточных вод. Осуществляющие егобактерии относятся к группе планктомицстов. {Прим. ре