Многие реакции замещения открывают путь к получению разнообразных соединений, имеющих хозяйственное применение. Огромная роль в химической науке и промышленности отводится электрофильному и нуклеофильному замещению. В органическом синтезе эти процессы имеют ряд особенностей, на которые следует обратить внимание.

Разнообразие химических явлений. Реакции замещения

Химические изменения, связанные с превращениями веществ, отличаются целым рядом особенностей. Разными могут быть конечные результаты, тепловые эффекты; одни процессы идут до конца, в других наступает Изменение веществ часто сопровождается повышением или понижением степени окисления. При классификации химических явлений по их конечному результату обращают внимание на качественные и количественные отличия реагентов от продуктов. По этим признакам можно выделить 7 типов химических превращений, в том числе замещение, идущее по схеме: А—В + С А—С + В. Упрощенная запись целого класса химических явлений дает представление о том, что среди исходных веществ есть так называемая «атакующая» частица, замещающая в реагенте атом, ион, функциональную группу. Реакция замещения характерна для предельных и

Реакции замещения могут происходить в виде двойного обмена: А—В + С—Е А—С + В—Е. Один из подвидов — вытеснение, например, меди железом из раствора медного купороса: CuSO 4 + Fe = FeSO 4 + Cu. В качестве «атакующей» частицы могут выступать атомы, ионы или функциональные группы

Замещение гомолитическое (радикальное, SR)

При радикальном механизме разрыва ковалентных связей электронная пара, общая для разных элементов, пропорционально распределяется между «осколками» молекулы. Образуются свободные радикалы. Это неустойчивые частицы, стабилизация которых происходит в результате последующих превращений. Например, при получении этана из метана возникают свободные радикалы, участвующие в реакции замещения: СН 4 СН 3 . + .Н; СН 3 . + .СН 3 → С2Н5; Н. + .Н → Н2. Гомолитический разрыв связи по приведенному механизму замещения носит цепной характер. В метане атомы Н можно последовательно заменять на хлор. Аналогично идет реакция с бромом, но йод неспособен напрямую замещать водород в алканах, фтор слишком энергично с ними реагирует.

Гетеролитический способ разрыва связи

При ионном механизме протекания реакций замещения электроны неравномерно распределяются между вновь возникшими частицами. Связывающая пара электронов отходит полностью к одному из «осколков», чаще всего, к тому партнеру по связи, в сторону которого была смещена отрицательная плотность в полярной молекуле. К реакциям замещения относится реакция образования метилового спирта CH 3 OH. В бромметане CH3Br разрыв молекулы носит гетеролитический характер, заряженные частицы являются стабильными. Метил приобретает положительный заряд, а бром — отрицательный: CH 3 Br → CH 3 + + Br - ; NaOH → Na + + OH - ; CH 3 + + OH - → CH 3 OH; Na + + Br - ↔ NaBr.

Электрофилы и нуклеофилы

Частицы, которые испытывают нехватку электронов и могут их принять, получили название «электрофилы». К ним относятся атомы углерода, соединенные с галогенами в галогеналканах. Нуклеофилы обладают повышенной электронной плотностью, они «жертвуют» пару электронов при создании ковалентной связи. В реакциях замещения богатые отрицательными зарядами нуклеофилы подвергаются атаке электрофилов, испытывающих нехватку электронов. Это явление связано с перемещением атома или другой частицы — уходящей группы. Другая разновидность реакций замещения — атака электрофила нуклеофилом. Подчас трудно разграничить два процесса, отнести замещение к тому или другому типу, поскольку сложно точно указать, какая из молекул — субстрат, а какая — реагент. Обычно в таких случаях учитываются следующие факторы:

  • природа уходящей группы;
  • реакционная способность нуклеофила;
  • природа растворителя;
  • структура алкильной части.

Замещение нуклеофильное (SN)

В процессе взаимодействия в органической молекуле наблюдается усиление поляризации. В уравнениях частичный положительный или отрицательный заряд отмечают буквой греческого алфавита. Поляризация связи позволяет судить о характере ее разрыва и дальнейшем поведении «осколков» молекулы. Например, атом углерода в йодметане обладает частичным положительным зарядом, является электрофильным центром. Он притягивает ту часть диполя воды, где расположен кислород, обладающий избытком электронов. При взаимодействии электрофила с нуклеофильным реагентом образуется метанол: CH 3 I + H 2 O → CH 3 OH + HI. Реакции нуклеофильного замещения проходят при участии отрицательно заряженного иона либо молекулы, обладающей свободной электронной парой, не участвующей в создании химической связи. Активное участие йодметана в SN 2 -реакциях объясняется его открытостью для нуклеофильной атаки и подвижностью йода.

Замещение электрофильное (SE)

В органической молекуле может присутствовать нуклеофильный центр, для которого характерен избыток электронной плотности. Он вступает в реакцию с испытывающим недостаток отрицательных зарядов электрофильным реагентом. К таким частицам относятся атомы, имеющие свободные орбитали, молекулы с участками пониженной электронной плотности. В углерод, обладающий зарядом «-», взаимодействует с положительной частью диполя воды — с водородом: CH 3 Na + H 2 O → CH 4 + NaOH. Продукт этой реакции электрофильного замещения — метан. При гетеролитических реакциях взаимодействуют противоположно заряженные центры органических молекул, что придает им сходство с ионами в химии неорганических веществ. Не следует упускать из виду, что превращение органических соединений редко сопровождается образованием настоящих катионов и анионов.

Мономолекулярные и бимолекулярные реакции

Нуклеофильное замещение бывает мономолекулярным (SN1). По такому механизму протекает гидролиз важного продукта органического синтеза — третичного бутилхлорида. Первая стадия проходит медленно, она связана с постепенной диссоциацией на катион карбония и хлорид-анион. Второй этап идет быстрее, протекает реакция иона карбония с водой. замещения галогена в алкане на оксигруппу и получение первичного спирта: (CH 3) 3 C—Cl → (CH 3) 3 C + + Cl - ; (CH 3) 3 C + + H 2 O → (CH 3) 3 C—OH + H + . Для одностадийного гидролиза первичных и вторичных алкилгалогенидов характерно одновременное разрушение связи углерода с галогеном и образование пары С—ОН. Это механизм нуклеофильного бимолекулярного замещения (SN2).

Механизм гетеролитического замещения

Механизм замещения связан с переносом электрона, созданием промежуточных комплексов. Реакция идет тем быстрее, чем легче возникают характерные для нее промежуточные продукты. Нередко процесс идет одновременно в нескольких направлениях. Преимущество обычно получает тот путь, в котором используются частицы, требующие наименьших энергетических затрат для своего образования. К примеру, наличие двойной связи увеличивает вероятность появления аллильного катиона СН2=СН—СН 2 + , по сравнению с ионом СН 3 + . Причина кроется в электронной плотности кратной связи, которая влияет на делокализацию положительного заряда, рассредоточенного по всей молекуле.

Реакции замещения бензола

Группа для которых характерно электрофильное замещение, — арены. Бензольное кольцо — удобный объект для электрофильной атаки. Процесс начинается с поляризации связи во втором реагенте, в результате чего образуется электрофил, примыкающий к электронному облаку бензольного кольца. В результате появляется переходный комплекс. Полноценной связи электрофильной частицы с одним из атомов углерода пока еще нет, она притягивается ко всему отрицательному заряду «ароматической шестерки» электронов. На третьей стадии процесса электрофил и один углеродный атом кольца связывает общая пара электронов (ковалентная связь). Но в таком случае происходит разрушение «ароматической шестерки», что невыгодно с точки зрения достижения стабильного устойчивого энергетического состояния. Наблюдается явление, которое можно назвать «выбросом протона». Происходит отщепление Н + , восстанавливается устойчивая система связи, характерная для аренов. Побочное вещество содержит катион водорода из бензольного кольца и анион из состава второго реагента.

Примеры реакций замещения из органической химии

Для алканов особенно характерна реакция замещения. Примеры электрофильных и нуклеофильных превращений можно привести для циклоалканов и аренов. Подобные реакции в молекулах органических веществ идут при обычных условиях, но чаще — при нагревании и в присутствии катализаторов. К распространенным и хорошо изученным процессам относится электрофильное замещение в ароматическом ядре. Важнейшие реакции этого типа:

  1. Нитрование бензола в присутствии H 2 SO 4 — идет по схеме: C 6 H 6 → C 6 H 5 —NO 2 .
  2. Каталитическое галогенирование бензола, в частности хлорирование, по уравнению: C 6 H 6 + Cl 2 → C 6 H 5 Cl + HCl.
  3. Ароматическое протекает с «дымящей» серной кислотой, образуются бензолсульфокислоты.
  4. Алкилирование — замена атома водорода из состава бензольного кольца на алкил.
  5. Ацилирование — образование кетонов.
  6. Формилирование — замена водорода на группу СНО и образование альдегидов.

К реакциям замещения относится реакция в алканах и циклоалканах, в которой галогены атакуют доступную связь С—Н. Получение производных может быть связано с замещением одного, двух или всех атомов водорода в предельных углеводородах и циклопарафинах. Многие из галогеноалканов с небольшой молекулярной массой находят применение в производстве более сложных веществ, относящихся к разным классам. Успехи, достигнутые в изучении механизмов реакций замещения, дали мощный толчок для развития синтезов на основе алканов, циклопарафинов, аренов и галогенопроизводных углеводородов.

CH 3 -CH 3 + Cl 2 – (hv) ---- CH 3 -CH 2 Cl + HCl

C 6 H 5 CH 3 + Cl 2 --- 500 C --- C 6 H 5 CH 2 Cl + HCl

    Реакции присоединеия

Такие реакции характерны для органических соединений, содержащих кратные(двойные или тройные) связи. К реакциям этого типа относятся реакции присоединения галогенов, галогеноводородов и воды к алкенам и алкинам

CH 3 -CH=CH 2 + HCl ---- CH 3 -CH(Cl)-CH 3

    Реакции отщепления (элиминирования)

Это реакции, приводящие к образованию кратных связей. При отщеплении галогеноводородов и воды наблюдается определенная селективность реакции, описываемая правилом Зайцева, согласно которому атом водорода отщепляется от того атома углерода, при котором находится меньше атомов водорода. Пример реакции

CH3-CH(Cl)-CH 2 -CH 3 + KOH →CH 3 -CH=CH-CH 3 + HCl

    Полимеризации и поликонденсации

n(CH 2 =CHCl)  (-CH 2 -CHCl)n

    Окислительно-восстановительные

Наиболее интенсивная из окислительных реакций – это горение, реакция, характерная для всех классов органических соединений. При этом в зависимости от условий горения углерод окисляется до С (сажа), СО или СО 2 , а водород превращается в воду. Однако для химиков-органиков большой интерес представляют реакции окисления, проводимые в гораздо более мягких условиях, чем горение. Используемые окислители: растворы Br2 в воде или Cl2 в CCl 4 ; KMnO 4 в воде или разбавленной кислоте; оксид меди; свежеосажденные гидроксиды серебра (I) или меди(II).

3C 2 H 2 + 8KMnO 4 +4H 2 O→3HOOC-COOH + 8MnO 2 + 8KOH

    Этерификации (и обратной ей реакции гидролиза)

R 1 COOH + HOR 2 H+  R 1 COOR 2 + H 2 O

    Циклоприсоединение

Y R Y-R

+ ‖ → ǀ ǀ

R Y R-Y

+ →

11. Классификация органических реакций по механизму. Примеры.

Механизм реакции предполагает детальное постадийное описание химических реакций. При этом устанавливают, какие именно ковалентные связи разрываются, в каком порядке и каким путем. Столь же тщательно описывают образование новых связей в процессе реакции. Рассматривая механизм реакции, прежде всего обращают внимание на способ разрыва ковалентной связи в реагирующей молекуле. Таких способов два – гомолитический и гетеролитический.

Радикальные реакции протекают путем гомолитического (радикального) разрыва ковалентной связи:

Радикальному разрыву подвергаются неполярные или малополярные ковалентные связи (С–С, N–N, С–Н) при высокой температуре или под действием света. Углерод в радикале СН 3 имеет 7 внешних электронов (вместо устойчивой октетной оболочки в СН 4). Радикалы неустойчивы, они стремятся захватить недостающий электрон (до пары или до октета). Один из способов образования устойчивых продуктов – димеризация (соединение двух радикалов):

СН 3 + СН 3 СН 3 : СН 3 ,

Н + Н Н : Н.

Радикальные реакции – это, например, реакции хлорирования, бромирования и нитрования алканов:

Ионные реакции протекают с гетеролитическим разрывом связи. При этом промежуточно образуются короткоживущие органические ионы – карбкатионы и карбанионы – с зарядом на атоме углерода. В ионных реакциях связывающая электронная пара не разъединяется, а целиком переходит к одному из атомов, превращая его в анион:

К гетеролитическому разрыву склонны сильно полярные (Н–O, С–О) и легко поляризуемые (С–Вr, С–I) связи.

Различают нуклеофильные реакции (нуклеофил – ищущий ядро, место с недостатком электронов) и электрофильные реакции (электрофил – ищущий электроны). Утверждение, что та или иная реакция является нуклеофильной или электрофильной, условно всегда относится к реагенту. Реагент – участвующее в реакции вещество с более простой структурой. Субстрат – исходное вещество с более сложной структурой. Уходящая группа – это замещаемый ион, который был связан с углеродом. Продукт реакции – новое углеродсодержащее вещество (записывается в правой части уравнения реакции).

К нуклеофильным реагентам (нуклеофилам) относят отрицательно заряженные ионы, соединения с неподеленными парами электронов, соединения с двойными углерод-углеродными связями. К электрофильным реагентам (электрофилам) относят положительно заряженные ионы, соединения с незаполненными электронными оболочками (АlCl 3 , ВF 3 , FeCl 3), cоединения с карбонильными группами, галогены. Электрофилы – любые атом, молекула или ион, способные присоединить пару электронов в процессе образования новой связи. Движущая сила ионных реакций – взаимодействие противоположно заряженных ионов или фрагментов разных молекул с частичным зарядом (+ и –).

Примеры ионных реакций разных типов.

Нуклеофильное замещение :

Электрофильное замещение :

Нуклеофильное присоединение (сначала присоединяется CN – , потом Н +):

Электрофильное присоединение (сначала присоединяется Н + , потом Х –):

Элиминирование при действии нуклеофилов (оснований) :

Элиминирование при действии электрофилов (кислот) :

Органические реакции можно подразделить на два общих типа.

Гемолитические реакции. Эти реакции протекают по радикальному механизму. Мы подробнее познакомимся с ними в следующей главе. Кинетика и механизм реакций этого типа обсуждались в гл. 9.

Гетеролитические реакции. Эти реакции в сущности являются ионными реакциями. Их можно в свою очередь подразделить на реакции замещения, присоединения и элиминирования (отщепления).

Реакции замещения

В этих реакциях какой-либо атом или группа атомов замещается другим атомом либо группой. В качестве примера реакций данного типа приведем гидролиз хлорометана с образованием метанола:

Гидроксильный ион представляет собой нуклеофил. Поэтому рассматриваемое замещение называется нуклеофильным замещением. Оно обозначается символом SN. Замещаемая частица (в рассматриваемом случае ион хлора) называется уходящей группой.

Если обозначить нуклеофил символом а уходящую группу-символом , то можно записать обобщенное уравнение реакции нуклеофильного замещения у насыщенного атома углерода в алкильной группе R следующим образом:

Исследование скорости протекания реакций этого типа показывает, что -реакции можно подразделить на

Реакции типа Для некоторых реакций типа SN кинетическое уравнение скорости реакции (см. разд. 9.1) имеет вид

Таким образом, эти реакции имеют первый порядок по субстрату но нулевой порядок по реагенту Кинетика, характерная для реакции первого порядка, является достоверным указанием на то, что лимитирующая стадия реакции представляет собой мономолекулярный процесс. Поэтому реакции подобного типа обозначаются символом .

Реакция имеет нулевой порядок по реагенту поскольку ее скорость не зависит от концентрации реагента Поэтому можно записать:

Поскольку нуклеофил не участвует в лимитирующей стадии реакции, механизм такой реакции должен включать по меньшей мере две стадии. Для подобных реакций предложен следующий механизм:

Первая стадия представляет собой ионизацию с образованием карбкатиона Эта стадия является лимитирующей (медленной).

Примером реакций типа является щелочный гидролиз третичных алкилгало-генидов. Например

В рассматриваемом случае скорость реакции определяется уравнением

Реакции типа Для некоторых реакций нуклеофильного замещения SN уравнение скорости имеет вид

В данном случае реакция имеет первый порядок по нуклеофилу и первый порядок по . В целом она является реакцией второго порядка. Это является достаточным основанием считать, что лимитирующая стадия этой реакции представляет собой бимолекулярный процесс. Поэтому реакция рассматриваемого типа обозначается символом Поскольку в лимитирующей стадии реакции одновременно участвуют и нуклеофил, и субстрат можно думать, что эта реакция протекает в одну стадию через переходное состояние (см. разд. 9.2):

Гидролиз первичных алкилгалогенидов в щелочной среде протекает по механизму

Эта реакция имеет следующее кинетическое уравнение:

До сих пор мы рассматривали нуклеофильное замещение только у насыщенного атома углерода. Нуклеофильное замещение возможно также у ненасыщенного атома углерода:

Реакции такого типа называются нуклеофильным ацильным замещением.

Электрофильное замещение. На бензольных циклах могут протекать также реакции электрофильного замещения. При замещении такого типа бензольное кольцо поставляет электрофилу два из своих делокализованных -электронов. При этом образуется промежуточное соединение - неустойчивый -комплекс из электрофила и уходящей группы. Для схематического изображения таких комплексов используется незамкнутая окружность, указывающая на потерю двух -электронов:

Примером реакций электрофильного замещения может служить нитрование бензола:

Нитрование бензола проводится в установке с обратным холодильником при температуре от 55 до 60 °С с использованием нитрующей смеси. Такая смесь содержит равные количества концентрированных азотной и серной кислот. Реакция между этими кислотами приводит к образованию нитроильного катиона

Реакции присоединения

В реакциях этого типа происходит присоединение электрофила либо нуклеофила к ненасыщенному атому углерода. Мы рассмотрим здесь по одному примеру электрофильного присоединения и нуклеофильного присоединения.

Примером электрофильного присоединения может служить реакция между бромоводородом и каким-либо алкеном. Для получения бромоводорода в лабораторных условиях может использоваться реакция между концентрированной серной кислотой и бромидом натрия (см. разд. 16.2). Молекулы бромоводорода полярны, потому что атом брома оказывает отрицательный индуктивный эффект на водород. Поэтому молекула бромоводорода обладает свойствами сильной кислоты. Согласно современным воззрениям, реакция бромоводорода с алкенами протекает в две стадии. На первой стадии положительно заряженный атом водорода атакует двойную связь, которая выступает в роли источника электронов. В результате образуются активированный комплекс и бромид-ион:

Затем бромид-ион атакует этот комплекс, в результате чего образуется алкилбромид:

В качестве примера нуклеофильного присоединения можно привести присоединение циановодорода к какому-либо альдегиду либо кетону. Сначала альдегид или кетон обрабатывают водным раствором цианида натрия Затем добавляют избыточное количество какой-либо минеральной кислоты, что приводит к образованию циановодорода HCN. Цианидный ион является нуклеофилом. Он атакует положительно заряженный атом углерода на карбонильной группе альдегида или кетона. Положительный заряд и полярность карбонильной группы обусловлены мезомерным эффектом, который был описан выше. Реакцию можно представить следующей схемой:

Реакции элиминирования (отщепления)

Эти реакции являются обратными по отношению к реакциям присоединения. Они приводят к удалению каких-либо атомов или групп атомов от двух углеродных атомов, связанных между собой простой ковалентной связью, в результате чего между ними образуется кратная связь.

Примером подобной реакции является отщепление водорода и галогена от алкилгалогенидов:

Для проведения этой реакции алкилгалогенид обрабатывают гидроксидом калия в спирте при температуре 60 °С.

Следует отметить, что обработка алкилгалогенида гидроксидом приводит также к нуклеофильному замещению (см. выше). В результате одновременно протекают две конкурирующие между собой реакции замещения и отщепления, что приводит к образованию смеси продуктов замещения и отщепления. Какая из этих реакций окажется преобладающей, зависит от целого ряда факторов, в том числе от среды, в которой проводится реакция. Нуклеофильное замещение алкилгалогенидов проводится в присутствии воды. В отличие от этого реакции отщепления проводятся в отсутствие воды и при более высоких температурах.

Итак, повторим еще раз!

1. При гемолитическом расщеплении связи два обобществленных электрона распределяются равномерно между атомами.

2. При гетеролитическом расщеплении связи два обобществленных электрона распределяются неравномерно между атомами.

3. Карбанион это ион, содержащий атом углерода с отрицательным зарядом.

4. Карбкатион - это ион, содержащий атом углерода с положительным зарядом.

5. Эффекты растворителя могут оказывать значительное влияние на химические процессы и их константы равновесия.

6. Влияние химического окружения функциональной группы внутри молекулы на реакционную способность этой функциональной группы называется структурным эффектом.

7. Электронные эффекты и стерические эффекты вместе называются структурными эффектами.

8. Двумя важнейшими электронными эффектами являются индуктивный эффект и мезомерный (резонансный) эффект.

9. Индуктивный эффект заключается в смещении электронной плотности от одного атома к другому, что приводит к поляризации связи между двумя атомами. Этот эффект может быть положительным либо отрицательным.

10. Молекулярные частицы с кратными связями могут существовать в форме резонансных гибридов между двумя или несколькими резонансными структурами.

11. Мезомерный (резонансный) эффект заключается в стабилизации резонансных гибридов вследствие делокализации -электронов.

12. Стерическое препятствие может возникать в тех случаях, когда объемистые группы в какой-либо молекуле механически препятствуют протеканию реакции.

13. Нуклеофил - частица, которая атакует атом углерода, поставляя ему свою электронную пару. Нуклеофил представляет собой основание Льюиса.

14. Электрофил - частица, которая атакует атом углерода, акцептируя его электронную пару. Нуклеофил представляет собой кислоту Льюиса.

15. Гемолитические реакции являются радикальными реакциями.

16. Гетеролитические реакции представляют собой главным образом ионные реакции.

17. Замещение какой-либо группы в молекуле нуклеофильным реагентом называется нуклеофильным замещением. Замещаемая группа в этом случае называется уходящей группой.

18. Электрофилъное замещение на бензольном кольце включает донирование двух делокализованных электронов какому-либо электрофилу.

19. В реакциях электрофильного присоединения происходит присоединение какого-либо электрофила к ненасыщенному атому углерода.

20. Присоединение циановодорода к альдегидам или кетонам является примером нуклеофильного присоединения.

21. В реакциях элиминирования (отщепления) происходит отрыв каких-либо атомов или групп атомов от двух атомов углерода, связанных между собой простой ковалентной связью. В результате образуется кратная связь между этими атомами углерода.


Теория замещения в ароматических соединениях. Реакции электрофильного замещения. Ориентанты 2 рода (мета- ориентанты).

Заместители, обладающие отрицательным индуктивным эффектом или отрицательными как индуктивным, так и мезомерным эффектами, направляют электрофильное замещение в мета-положение бензольного кольца и носят название ориентантов второго рода.

Органические реакции, как и неорганические, подразделяются на 3 основных типа:

1) реакция замещения: СН 4 + CI 2 → СН 3 CI + НCI;

2) реакция отщепления: СН 3 СН 2 Br → СН 2 = СН 2 + НBr;

3) реакция присоединения: СН 2 = СН 2 + НBr → CН 3 СН 2 Br.( реакции полимеризации)

Классифицировать по механизму разрыва ковалентных связей в реагирующих молекулах.

Два способа разрыва ковалентных связей.

1. Если общая электронная пара делится между атомами, образуя радикалы. Радикалы -частицы, имеющие неспаренные электроны. Такой разрыв связи называется радикальным (гомолитическим). Особенность данной связи заключается в том, что радикалы, которые образуются, взаимодействуют с имеющимися в реакционной системе молекулами или друг с другом.

Образующиеся радикалы взаимодействуют с имеющимися в реакционной системе молекулами или друг с другом: CН· 3 + CI 2 → СН 3 CI + CI.

По радикальному механизму протекают реакции, в которых разрыву подвергаются связи малой полярности (С-С, С-Н, N-N) при высокой температуре, под действием света или радиоактивного излучения.

2. Если при разрыве связи общая электронная пара остается у одного атома, то образуются ионы – катион и анион. Такой механизм называется ионным или гетеролитическим. Он приводит к образованию органических катионов или анионов: 1) хлористый метил образует метил-катион и хлорид-анион; 2) метил-литий образует литий-катион и метил-анион.

Органические ионы вступают в дальнейшие превращения. При этом катионы взаимодействуют с нуклеофильными («любящими ядра») частицами, а органические анионы – с электрофильными («любящими электроны») частицами (катионы металлов, галогены и др.).

Ионный механизм наблюдается при разрыве полярной ковалентной связи (углерод – галоген, углерод – кислород и др.).

Органические ионные частицы подобны ионам в неорганической химии – имеют соответствующие заряды. Однако они и резко отличаются: ионы неорганических соединений присутствуют в водных растворах постоянно, а органические ионные частицы возникают только в момент реакции.

Поэтому во многих случаях необходимо говорить не о свободных органических ионах, а о сильно поляризованных молекулах.

Радикальный механизм наблюдается при разрыве неполярной или малополярной ковалентной связи (углерод – углерод, углерод – водород и т. д.).

Органические ионные частицы подобны ионам в неорганической химии – они имеют соответствующие заряды.