В настоящее время известно более 500 тысяч неорганических соединений, знать их формулы, названия, а тем более свойства практически невозможно. Для того чтобы легче ориентироваться в огромном многообразии химических веществ, все вещества разделены на отдельные классы, включающие соединения, сходные по строению и свойствам.

Первоначально все химические вещества делятся на простые и сложные.

Простые вещества подразделяются на металлы и неметаллы.

Помимо типичных металлов и неметаллов есть большая группа веществ, обладающая промежуточными свойствами, их называют металлоидами.

Сложные вещества подразделяются на четыре класса химических соединений: оксиды , основания, кислоты и соли. Эта классификация разработана выдающимися химиками XVIII-XIX веков Антуаном Лораном Лавуазье , Михаилом Васильевичем Ломоносовым , Йёнсом Якобом Берцелиусом , Джоном Дальтоном .

На рис. 8 приведены важнейшие классы неорганических соединений.

Рисунок 8 - Важнейшие классы неорганических соединений

Гидроксиды - тип сложных веществ, в состав которых входят атомы некоторого элемента Е (кроме фтора и кислорода) и гидроксогруппы ОН; общая формула гидроксидов Е(ОН) n , где n = 1÷6. Форма гидроксидов Е(ОН) n называется орто -формой; при n > 2 гидроксид может находиться также в мета -форме, включающей кроме атомов Е и групп ОН еще атомы кислорода О, например Е(ОН) 3 и ЕО(ОН), Е(ОН) 4 и Е(ОН) 6 и ЕО 2 (ОН) 2 .

Гидроксиды делят на две противоположные по химическим свойствам группы: кислотные и основные гидроксиды.

Кислотные гидроксиды содержат атомы водорода , которые могут замещаться на атомы металла при соблюдении правила стехиометрической валентности. Большинство кислотных гидроксидов находится в мета -форме, причем атомы водорода в формулах кислотных гидроксидов ставят на первое место, например H 2 SO 4 , HNO 3 и H 2 CO 3 , а не SO 2 (OH) 2 , NO 2 (OH) и CO(OH) 2 . Общая формула кислотных гидроксидов - Н х ЕО у , где электроотрицательную составляющую ЕО у х - называют кислотным остатком. Если не все атомы водорода замещены на металл, то они остаются в составе кислотного остатка.

Названия распространенных кислотных гидроксидов состоят из двух слов: собственного названия с окончанием «ая» и группового слова «кислота».

Названия кислот и кислотного остатка представлены в табл. Приложения А.

Названия кислотных остатков используют при построении названий солей.

Основные гидроксиды содержат гидроксид-ионы, которые могут замещаться на кислотные остатки при соблюдении правила стехиометрической валентности. Все основные гидроксиды находятся в орто -форме; их общая формула М(ОН) n , где n = 1,2 (реже 3,4) и М n +- катион металла.


Примеры формул и названий основных гидроксидов:

Важнейшим химическим свойством основных и кислотных гидроксидов является их взаимодействие их между собой с образованием солей (реакция солеобразования ), например:

Ca(OH) 2 + H 2 SO 4 = CaSO 4 + 2H 2 O

Ca(OH) 2 + 2H 2 SO 4 = Ca(HSO 4) 2 + 2H 2 O

2Ca(OH) 2 + H 2 SO 4 = Ca 2 SO 4 (OH) 2 + 2H 2 O

Соли - тип сложных веществ, в состав которых входят катионы М n + и кислотные остатки.

Соли с общей формулой М х (ЕО у ) n называют средними солями, а соли с незамещенными атомами водорода, - кислыми солями. Иногда соли содержат в своем составе также гидроксид - или (и) оксид - ионы; такие соли называют основными солями.

Приведем примеры и названия солей:

Кислые и основные соли могут быть превращены в средние соли взаимодействием с соответствующим основным и кислотным гидроксидом, например:

Ca(HSO 4) 2 + Ca(OH) = CaSO 4 + 2H 2 O

Ca 2 SO 4 (OH) 2 + H 2 SO 4 = 2CaSO 4 + 2H 2 O

Встречаются также соли, содерхащие два разных катиона: их часто называют двойными солями , например:

Кислотные и осн?вные оксиды

Оксиды Е х О у - продукты полной дегидратации гидроксидов:

Кислотным гидроксидам (H 2 SO 4 , H 2 CO 3) отвечают кислотные оксиды (SO 3 , CO 2), а основным гидроксидам (NaOH, Ca(OH) 2) - основные оксиды (Na 2 O, CaO), причем степень окисления элемента Е не изменяется при переходе от гидроксида к оксиду.

Пример формул и названий оксидов:

Кислотные и основные оксиды сохраняют солеобразующие свойства соответствующих гидроксидов при взаимодействии с противоположными по свойствам гидроксидами или между собой:

N 2 O 5 + 2NaOH = 2NaNO 3 + H 2 O

3CaO + 2H 3 PO 4 = Ca 3 (PO 4) 2 + 3H 2 O

La 2 O 3 + 3SO 3 = La 2 (SO 4) 3

Амфотерные оксиды и гидроксиды

Амфотерность гидроксидов и оксидов - химическое свойство, заключающееся в образовании ими двух рядов солей, например, для гидроксида и оксида алюминия:

(а) 2Al(OH) 3 + 3SO 3 = Al 2 (SO 4) 3 + 3H 2 O

Al 2 O 3 + 3H 2 SO 4 = Al 2 (SO 4) 3 + 3H 2 O

(б) 2Al(OH) 3 + Na 2 O = 2NaAlO 2 + 3H 2 O

Al 2 O 3 + 2NaOH = 2NaAlO 2 + H 2 O

Так, гидроксид и оксид алюминия в реакциях (а) проявляют свойства основных гидроксидов и оксидов, т.е. реагируют с кислотными гидроксидам и оксидом, образуя соответствующую соль - сульфат алюминия Al 2 (SO 4) 3 , тогда как в реакциях (б) они же проявляют свойства кислотных гидроксидов и оксидов, т.е. реагируют с основными гидроксидом и оксидом, образуя соль - диоксоалюминат (III) натрия NaAlO 2 . В первом случае элемент алюминий проявляет свойство металла и входит в состав электроположительной составляющей (Al 3+), во втором - свойство неметалла и входит в состав электроотрицательной составляющей формулы соли (AlO 2 -).

Если указанные реакции протекают в водном растворе, то состав образующихся солей меняется, но присутствие алюминия в катионе и анионе остаётся:

2Al(OH) 3 + 3H 2 SO 4 = 2 (SO 4) 3

Al(OH) 3 + NaOH = Na

Здесь квадратными скобками выделены комплексные ионы 3+ - катион гексаакваалюминия(III), - - тетрагидроксоалюминат(III)-ион.

Элементы, проявляющие в соединениях металлические и неметаллические свойства, называют амфотерными, к ним относятся элементы А-групп периодической системы - Be, Al, Ga, Ge, Sn, Pb, Sb, Bi, Po и др., а также большинство элементов Б-групп - Cr, Mn, Fe, Zn, Cd, Au и др. Амфотерные оксиды называют так же, как и основные, например:

Амфотерные гидроксиды (если степень окисления элемента превышает + II) могут находиться в орто - или (и) мета - форме.

Примеры амфотерных гидроксидов:

Амфотерным оксидам не всегда соответствуют амфотерные гидроксиды, поскольку при попытке получения последних образуются гидратированные оксиды, например:

Если амфотерному элементу в соединениях отвечает несколько степеней окисления, то амфотерность соответствующих оксидов и гидроксидов (а следовательно, и амфотерность самого элемента) будет выражена по-разному. Для низких степеней окисления у гидроксидов и оксидов наблюдается преобладание основных свойств, а у самого элемента - металлических свойств, поэтому он почти всегда входит в состав катионов. Для высоких степеней окисления, напротив, у гидроксидов и оксидов наблюдается преобладание кислотных свойств, а у самого элемента - неметаллических свойств, поэтому он почти всегда входит в состав анионов.

Солеобразующие оксиды:

1). Основные оксиды – это оксиды, которым соответствуют основания. К основным оксидам относятся оксиды металлов 1 и 2 групп, а также металлов побочных подгрупп с валентностью I и II (кроме ZnO - оксид цинка и BeO – оксид берилия):оксид лития Li 2 O; оксид натрия Na 2 O; оксид калия K 2 O; оксид меди CuO; оксид серебра Ag2O; оксид магния MgO; оксид кальция CaO; оксид стронция SrO; оксид цезия Cs 2 O; оксид ртути (2) HgO; оксид рубидия Rb 2 O; оксид железа (2) FeO; оксид хрома CrO; оксид никеля NiO.

2). Кислотные оксиды – это оксиды, которым соответствуют кислоты. К кислотным оксидам относятся оксиды неметаллов (кроме несолеобразующих – безразличных), а также оксиды металлов побочных подгрупп с валентностью от V до VII:
оксид углерода(IV) CO 2 ; оксид серы(IV) SO 2 ; оксид серы(VI) SO 3 ; оксид кремния(IV) SiO 2 ; оксид фосфора(V) P 2 O 5 ; ксид хрома(VI) CrO 3 ; ксид марганца(VII) Mn 2 O 7 ; оксид азота NO 2 ; ксиды хлора Cl 2 O 5 и Cl 2 O 3 .

3). Амфотерные оксиды – это оксиды , которым соответствуют основания и кислоты. Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют степень окисления от +3 до +4, за исключением ZnO, BeO, SnO, PbO: оксид цинка ZnO; оксид хрома(III) Cr 2 O 3 ; оксид алюминия Al 2 O 3 ; оксид олова(II) SnO; оксид олова(IV) SnO 2 ; оксид свинца(II) PbO; оксид свинца(IV) PbO 2 ; оксид титана(IV) TiO 2 ; оксид марганца(IV) MnO 2 ; оксид железа(III) Fe 2 O 3 ; оксид бериллия BeO.

Несолеобразующие оксиды

1). Несолеобразующие оксиды – это оксиды безразличные к кислотам и основаниям. К ним относятся оксиды неметаллов с валентностью I и II:
оксид углерода(II) CO; оксид азота(II) NO; оксид азота(I) N 2 O; оксид кремния(II) SiO, оксид серы(I) S 2 O; оксид водорода H 2 O.

Основания. Классификация оснований

Основаниями называют гидроксиды, которые диссоциируют (распадаются) на гидроксильную группу и положительно заряженный катион. Общая формула оснований - Э(OН)m, где m – степень окисления металла.

Классификация оснований по силе:

1). Сильные основания.
Растворимые в воде основания называются щелочами:
NaOH - гидроксид натрия (едкий натр); KOH - гидроксид калия (едкое кали); LiOH - гидроксид лития; Ba(OH) 2 - гидроксид бария; Ca(OH) 2 - гидроксид кальция (гашеная известь).

2). Слабые основания:
Mg(OH) 2 - гидроксид магния; Fe(OH) 2 - гидроксид железа (II); Zn(OH) 2 - гидроксид цинка; NH 4 OH - гидроксид аммония; А1 (ОН) 3 - гидроксид алюминия; Fe(OH) 3 - гидроксид железа (III) и т.д. (большинство гидроксидов металлов).

Классификация оснований по растворимости

Более приемлемой является классификация оснований по растворимости их в воде.

1) Растворимые основания. Щёлочи – это основания растворимые в воде. К щелочам относят гидроксиды щелочных и щелочноземельных металлов: LiOH, NaOH, KOH, RbOH, CsOH, CaOH) 2 , Sr(OH) 2 , Ba(OH) 2 .

2). Нерастворимые основания - это так называемые амфотерные гидроксиды, которые при взаимодействии с кислотами выступают как основания, а со щёлочью -как кислоты.

Классификация оснований по числу гидроксильных групп (ОН):

1). Однокислотные основания (n = 1) - это основание, в состав которых входит одна группа - (ОН): LiOH, KOH, NaOH, NH4OH.

2). Двухкислотные основания - (n = 2) - это основание, в состав которых входит две группы - (ОН): Ba(OH) 2 , Mg(OH) 2 , Zn(OH) 2 , Fe(OH) 2 .

3). Трехкислотные основания - (n = 3) - это основание, в состав которых входит три группы - (ОН): Fe(OH) 3 , А1(ОН) 3 и др.


Кислоты. Классификация кислот

Кислота – это сложное вещество, в молекуле которого имеется один или несколько атомов водорода и кислотный остаток. Кислоты классифицируют по таким признакам: а) по наличию или отсутствию кислорода в молекуле и б) по числу атомов водорода.

а) Классификация кислот по наличию или отсутствию кислорода в молекуле:

1). Кислородсодержащие кислоты: H 2 SO 4 - серная кислота; H 2 SO 3 - сернистая кислота; HNO 3 - азотная кислота; H 3 PO 4 - фосфорная кислота; H 2 CO 3 - угольная кислота; Н 2 SiO 3 - кремниевая кислота; HClO 4 - хлорная кислота; HClO 3 - триоксохлорат(V) водорода (хлорноватая кислота); HClO 2 - диоксохлорат(III) водорода (хлористая кислота); HClO - оксохлорат(I) водорода (хлорноватистая кислота); H 2 Cr 2 O 7 - гептаоксодихромат(VI) диводорода (дихромовая кислота); H 2 S 4 O 6 - гексаоксотетрасульфат диводорода (тетратионовая кислота); Н 2 В 4 О 6 - гексаоксотетраборат диводорода (тетраметаборная кислота); H - гексагидроксостибат(V) водорода; H 3 PO 3 S - тиофосфорная кислота; HбSO 3 S - тиосерная кислота; H 3 PO 3 - фосфористая (фосфоновая) кислота.

2). Бескислородные кислоты: HF - фтороводородная кислота; HCl - хлороводородная кислота (соляная кислота); HBr - бромоводородная кислота; HI - иодоводородная кислота; H 2 S - сероводородная кислота; HAuCl4 - тетрахлороаурат(III) водорода (золотохлористоводородная кислота); HSCN - роданистоводородная кислота; HN3 - азидоводородная кислота.

б) Классификация кислот по числу атомов водорода:

1). Одноосновные кислоты - это кислоты, в состав которых входит один ион (Н +): HNO 3 - азотная кислота; HF - фтороводородная кислота; HCl - хлороводородная кислота; HBr - бромоводородная кислота; HI - иодоводородная кислота; HClO 4 - хлорная кислота; HClO 3 - триоксохлорат(V) водорода (хлорноватая кислота); HClO 2 - диоксохлорат(III) водорода (хлористая кислота); HClO - оксохлорат(I) водорода (хлорноватистая кислота); HAuCl 4 - тетрахлороаурат(III) водорода (золотохлористоводородная кислота); H - гексагидроксостибат(V) водорода; HSCN - роданистоводородная кислота.

2). Двухосновные кислоты - это кислоты, в состав которых входит два иона (Н +): H 2 SO 4 - серная кислота; H 2 SO 3 - сернистая кислота; H 2 S - сероводородная кислота; H 2 CO 3 - угольная кислота; H 2 SiO 3 - кремниевая кислота; H 2 Cr 2 O 7 - гептаоксодихромат(VI) диводорода (дихромовая кислота); H 2 S 4 O 6 - гексаоксотетрасульфат диводорода (тетратионовая кислота); Н 2 В 4 О 6 - гексаоксотетраборат диводорода (тетраметаборная кислота); H 2 SO 3 S - тиосерная кислота.

3). Трехосновные кислоты - это кислоты, в состав которых входит три иона (Н +): H 3 PO 4 - фосфорная кислота; H3BO3 - борная кислота; H 3 AsO 4 - мышьяковая кислота; H 3 PO 3 S - тиофосфорная кислота; H 3 AlO 3 - ортоалюминиевая кислота; H 3 PO 3 - фосфористая (фосфоновая) кислота.

4). Многоосновные (полиосновные) кислоты - это кислоты, в состав которых входит четыре и более ионов (Н +): H 4 SiO 4 - ортокремниевая кислота; H 4 CO 4 - ортоугольная кислота; H 4 P 2 O 7 - дифосфорная (пирофосфорная) кислота; Н 6 P 6 O 18 - гексафосфорная кислота; H 6 TeO 6 - теллуровая кислота.

Другие классификации кислот:

По силе кислот:
Сильные кислоты - диссоциируют практически полностью, константы диссоциации больше 1 . 10 -3 (HNO 3); HCl; H 2 SO 4);
Слабые кислоты - константа диссоциации меньше 1 . 10 -3 (уксусная кислота Kд = 1,7 . 10 -5).

По устойчивости:
Устойчивые кислоты (H 2 SO 4);
Неустойчивые кислоты (H 2 CO 3).

По принадлежности к классам химических соединений:
Неорганические кислоты: (HBr); (H 2 SO 4);
Органические кислоты: (HCOOH,CH3COOH).

По летучести:
Летучие кислоты: (HNO 3 ,H 2 S);
Нелетучие кислоты: (H 2 SO 4).

По растворимости в воде:
Растворимые кислоты (H 2 SO 4);
Нерастворимые кислоты (H 2 SiO 3).

Соли.

Солями называются вещества, в которых атомы металла связаны с кислотными остатками. Исключением являются соли аммония, в которых с кислотными остатками связаны не атомы металла, а частицы NH4+, например, (NH4)2SO4 – сульфат аммония.

Классификация солей:

1). Средние соли.
Средние соли - это сложные вещества, которые в водных растворах диссоциируют на катионы металлов и анионы кислотных остатков, т.е. они являются продуктами замещения всех катионов водорода в молекулах кислоты на катионы металла (Na 2 CO 3 , K 3 PO 4).

2). Кислые соли.
Кислые соли - это продукты частичного замещения катионов водорода в кислотах на катионы металла (NaHCO 3 , KH 2 PO 4 , K 2 HPO 4). Они образуются при нейтрализации основания избытком кислоты (то есть в условиях недостатка основания или избытка кислоты).

3). Основные соли.
Основные соли - это продукты неполного замещения гидроксогрупп основания (OH -) кислотными остатками (CuOH) 2 CO 3 , CoNO 3 (OH). Они образуются в условиях избытка основания или недостатка кислоты.

4). Комплексные соли.
Комплексные соли - соли, имеющие сложные катионы или анионы, в которых связь образована по донорно-акцепторному механизму. Комплексные ионы, соединяясь с другими ионами, образуют комплексные соли, например, K 4 , Cl, K 2 , (Na 2 ) и др.

Классификация солей по числу присутствующих в структуре катионов и анионов

Вывыделяют следующие типы солей:

1). Простые соли.
Простые соли - это соли, состоящие из одного вида катионов и одного вида анионов (NaCl).

2). Двойные соли.
Двойные соли - это соли, содержащие два различных типа катионов. примером двойных солей являются (KAl(SO 4) 2 . 12H 2 O) (алюмокалиевые квасцы), KAl(SO4) 2 (сульфат алюминия-калия), MgK 2 (SO4) 2 , AgK(CN) 2 . Двойные соли существуют только в твердом виде.

3). Смешанные соли.
Смешанные соли - это соли, в составе которых присутствует два различных аниона (Ca(OCl)Cl), Fe(NH 4) 2 (SO 4) 2 [сульфат диаммония-железа(II)], LiAl(SiO 3) 2 (метасиликат алюминия-лития), Ca(ClO)Cl (хлорид-гипохлорит кальция), Na 3 CO 3 (HCO 3) (гидрокарбонат-карбонат натрия), Na 2 IO 3 (NO 3) (нитрат-иодат натрия)

4). Гидратные соли (кристаллогидраты).
Гидратные соли или кристаллогидраты - это соли, в состав которых входят молекулы кристаллизационной воды, например, Na 2 SO 4 ·10 H 2 O, CaSO 4 · 2H 2 O (гиппс), MgCl 2 · KCl· 6H 2 O (карналлит), CuSO 4 · 5H 2 O (медный купорос), FeSO 4 · 7H 2 O (железный купорос), Na 2 CO 3 · 10H 2 O (кристаллическая сода).

5). Внутренние соли.
Внутренние соли - это соли, которые образованы биполярными ионами, то есть молекулами, содержащими как положительно заряженный, так и отрицательно заряженный атом (+) NН 3 -CH 2 -COO (-) (биполярный ион аминокислоты глицина), (+) NH 3 -C 6 H 4 -SO 3 (-) (сульфаниловая кислота или таурин). Таурин - сульфокислота, образующаяся в организме из аминокислоты цистеина.

Классификация неорганических веществ основана на их способности к разложению. Простые вещества, состоящие из атомов только одного химического элемента (O 2 , H 2 , Mg), не распадаются. Легко разлагаются сложные вещества, состоящие из атомов двух и более элементов (CO 2 , H 2 SO 4 , NaOH, KCl).

Простые

Классификация классов неорганических веществ включает:

  • металлы - элементы, обладающие тепло- и электропроводностью, высокой пластичностью, ковкостью, металлическим блеском;
  • неметаллы - более хрупкие, чем металлы, элементы, не обладающие электропроводностью и проявляющие окислительные свойства.

Рис. 1. Схема классификации неорганических веществ.

Металлы расположены в нижнем левом углу периодической таблицы, неметаллы - в правом верхнем углу и включают благородные газы.

Рис. 2. Расположение металлов и неметаллов в таблице Менделеева.

Многие простые химические элементы обладают аллотропией - свойством образовывать несколько простых веществ. Например, при присоединении ещё одного атома к кислороду образуется простое вещество озон (О 3), углерод в зависимости от количества атомов образует графит, уголь или алмаз.

Сложные

Сложные вещества классифицируют на следующие классы:

  • оксиды - состоят из двух элементов, один из которых является кислородом;
  • кислоты - состоят из атомов водорода и кислотного остатка;
  • основания - состоят из металла и одной или нескольких гидроксильных групп;
  • соли - состоят из металла и кислотного остатка.

Отдельно выделяют амфотерные гидроксиды, которые проявляют свойства кислот и оснований. Это твёрдые вещества, являющиеся слабыми электролитами. К ним относятся гидроксиды металлов со степенью окисления +3 и +4. Исключениями являются Be(OH) 2 , Zn(OH) 2 , Sn(OH) 2 , Pb(OH) 2 .

Более подробная классификация сложных веществ представлена в таблице с примерами.

Вид

Номенклатура

Химические свойства

Пример

Оксиды - Е х О у

Оксид элемента (степень окисления)

Выделяют основные оксиды, которые при взаимодействии с кислотами образуют соли, и кислотные оксиды, образующие при взаимодействии с основаниями кислоты. Отдельно выделяют амфотерные оксиды, взаимодействующие с кислотами и основаниями (образуется соль)

Na 2 O - оксид натрия, Fe 2 O 3 - оксид железа (III), N 2 O 5 - оксид азота (V)

Основания - Ме(ОН) х

Гидроксид металла (степень окисления)

В соответствии с растворимостью выделяют щёлочи и нерастворимые в воде основания. Щёлочи взаимодействуют с неметаллами и кислотными оксидами. Нерастворимые основания взаимодействуют с кислотами и способны разлагаться при высоких температурах

Fe(OH) 2 - гидроксид железа (II), Cu(OH) 2 - гидроксид меди (II), NaOH - гидроксид натрия

Кислоты - H n Ac

Читается в зависимости от кислотного остатка

Взаимодействуют с металлами, стоящими левее водорода в ряде активности, с оксидами, солями. Способны разлагаться при высоких температурах

H 2 SO 4 - серная кислота, HCl - соляная кислота, HNO 3 - азотная кислота

Соли - Ме х (Ас) у

Кислотный остаток металла (степень окисления)

Реагируют с кислотами, щелочами, металлами и солями

Na 2 SO 4 - сульфат натрия, CaCO 3 - карбонат кальция, KCl - хлорид калия

Рис. 3. Список названий кислот.

Генетические связи между классами основаны на взаимном превращении веществ. При химических реакциях атомы переходят от одного вещества к другому, образуя генетические ряды (ряды превращений). Металл при присоединении кислорода образует оксид, который при взаимодействии с водой превращается в основание. Из неметалла образуется кислотный оксид, который, взаимодействуя с водой, образует кислоту. Любой генетический ряд заканчивается солью.

Что мы узнали?

Неорганические вещества включают простые и сложные соединения. Простые вещества состоят из атомов одного и того же элемента. К ним относятся металлы и неметаллы. Сложные соединения включают вещества, состоящие из нескольких элементов. К ним относятся оксиды, кислоты, основания, соли и амфотерные гидроксиды. Все вещества генетически связаны между собой. Из простого вещества можно получить более сложное вещество. Наиболее сложными веществами считаются соли.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 102.

Химические вещества можно разделить на две неравные группы: простые и сложные.

Простые вещества состоят из атомов одного элемента (О 2 , P 4).

Сложные вещества состоят из атомов двух и более элементов (CaO, H 3 PO 4).

Простые вещества можно разделить на металлы и неметаллы .

Металлы – это простые вещества, в которых атомы соединены между собой металлической химической связью. Металлы стремятся отдавать электроны и характеризуются металлическими свойствами (металлический блеск, высокая электро- и теплопроводность, пластичность и др.).

Неметаллы – это простые вещества, в которых атомы соединены ковалентными (или межмолекулярными) связями. Неметаллы стремятся принимать или притягивать электроны. Неметаллические свойства – это способность принимать или притягивать электроны.

Все элементы в Периодической системе химических элементов (ПСХЭ) расположены либо в главной подгруппе , либо в побочной . В различных формах короткопериодной ПСХЭ главные и побочные подгруппы расположены по-разному. Есть простой способ, который позволит вам быстро и надежно определять, к акой подгруппе относится элемент. Дело в том, что все элементы второго периода расположены в главной подгруппе. Те элементы, которые расположены в ячейке точно под элементами второго периода (справа или слева), относятся к главной подгруппе. Остальные — к побочной.

Например , в таблице Менделеева, которая используется на ЕГЭ по химии , элемент номер 32, галлий, расположен в ячейке справа, точно под соответствующим ему элементом второго периода, бором. Следовательно, галлий относится к главной подгруппе. А вот скандий, элемент номер 21, расположен в ячейке слева. Следовательно, скандий относится к побочной подгруппе.

Неметаллы расположены в главных подгруппах, в правом верхнем угле ПСХЭ . К металлам относятся все элементы побочных подгрупп и элементы главных подгрупп, расположенные в левой нижней части ПСХЭ . Разделяют металлы и неметаллы обычно, проводя условную линию от бериллия до астата. На рисунке показано точное разделение на металлы и неметаллы. Закрашены цветом неметаллы.

Основные классы сложных веществ — это оксиды , гидроксиды , соли .

Оксиды — это сложные вещества, которые состоят из атомов двух элементов, один из которых кислород, имеющий степень окисления -2.

В зависимости от второго элемента оксиды проявляют разные химические свойства. Некоторым оксидам соответствуют гидроксиды (солеобразующие оксиды), а некоторым нет (несолеобразующие).

Солеобразующие оксиды делят на основные, амфотерные и кислотные.

Основные оксиды — это оксиды, которые проявляют характерные основные свойства. К ним относят оксиды, образованные атомами металлов со степенью окисления +1 и +2 . Например , оксид лития Li 2 O, оксид железа (II) FeO.

Кислотные оксиды — это оксиды, которые проявляют кислотные свойства. К ним относят оксиды, образованные атомами металлов со степенью окисления +5, +6 и +7 , а также атомами неметаллов с любой степенью окисления . Например , оксид хлора (I) Cl 2 O, оксид хрома (VI) CrO 3 .

Амфотерные оксиды — это оксиды, которые проявляют и основные, и кислотные свойства. Это оксиды металлов со степенью окисления +3 и +4 , а также четыре оксида со степенью окисления +2: ZnO, PbO, SnO и BeO .

Несолеобразующие оксиды не проявляют характерных основных или кислотных свойств, им не соответствуют гидроксиды. К несолеобразующим относят четыре оксида: CO, NO, N 2 O и SiO .

Встречаются и оксиды, похожие на соли, т.е. солеобразные (двойные).

Двойные оксиды — это некоторые оксиды, образованные элементом с разными степенями окисления. Например , магнетит (магнитный железняк) FeO·Fe 2 O 3 .


Алгоритм определения типа оксида: сначала определяем, какой элемент образует оксид – металл или неметалл . Если это металл, то определяем степень окисления, затем определяем тип оксида. Если это неметалл, то оксид кислотный (если это не исключение).

Гидроксиды — это сложные вещества, в составе которых есть группа Э-O-H. К гидроксидам относятся основания, амфотерные гидроксиды, и кислородсодержащие кислоты.

Каждому солеобразующему оксиду соответствует гидроксид:

основному оксиду соответствует гидроксид основание ,

кислотному оксиду соответствует гидроксид кислота ,

амфотерному оксиду соответствует амфотерный гидроксид .

Например , оксид хрома (II) CrO — основный, ему соответствует гидроксид основание. Формулу гидроксида легко получить, просто добавив к металлу гидроксидную группу OH: Cr(OH) 2 .

Оксид хрома (VI) — кислотный, ему соответствует гидроксид кислота H 2 CrO 4, и кислотный остаток хромат-ион CrO 4 2- .

Если все индексы кратны 2, то мы делим все индексы на 2.

Например : N 2 O 5 + H 2 O → H 2 N 2 O 6 , делим на 2, получаем HNO 3 . Так получаем мета-формулу кислоты. Если мы добавим еще одну молекулу воды, то получим орто-формулу кислоты.

Например : оксид P 2 O 5 , мета-форма: HPO 3 . Добавляем воду, орто-форма: H 3 PO 4 . Орто-форма устойчива у фосфора и мышьяка.

Оксид хрома (III) — Cr 2 O 3 — амфотерный, ему соответствует амфотерный гидроксид, который может выступать и как основание, и как кислота: Cr(OH) 3 = HCrO 2 , кислотный остаток хромит: CrO 2 — .

Взаимосвязь оксидов и гидроксидов:

Основания (основные гидроксиды) — это сложные вещества, которые при диссоциации в водных растворах в качестве анионов (отрицательных ионов) образуют только гидроксид-ионы OH — .

Основания можно разделить на растворимые в воде (щелочи ), нерастворимые в воде, и самопроизвольно разлагающиеся .

К разлагающимся в воде (неустойчивым) основаниям относят гидроксид аммония, гидроксид серебра (I), гидроксид меди (I). В водном растворе такие соединения практически необратимо распадаются:

NH 4 OH → NH 3 + H 2 O

2AgOH → Ag 2 O + H 2 O

2CuOH → Cu 2 O + H 2 O

Основания с одной группой ОН – однокислотные (например, NaOH ) , с двумя – двухкислотные (Ca(OH) 2) и с тремя – трехкислотные (Fe(OH) 3) .

Кислоты – это сложные вещества, которые при диссоциации в водных растворах образуют в качестве катионов только ионы гидроксония H 3 O + (H +). Кислоты состоят из водорода H + и кислотного остатка.

По числу атомов водорода, которые можно заместить на металлы, кислоты разделяют на одноосновные (HNO 3), двухосновные (H 2 SO 4), трехосновные (H 3 PO 4) и т.д.

Кислоты также можно разделить на сильные и слабые.

Сильные кислоты. К ним относятся:

  • Бескислородные кислоты: HCl, HBr, HI . Остальные бескислородные кислоты, как правило, слабые.
  • Некоторые высшие кислородсодержащие кислоты: H 2 SO 4 , HNO 3 , HClO 4 и др.

Слабые кислоты . К ним относятся:

  • Слабые и растворимые кислоты : это H 3 PO 4 , CH 3 COOH , HF и др.
  • Летучие или неустойчивые кислоты : H 2 S — газ; H 2 CO 3 H 2 CO 3 → Н 2 О + СО 2 ; H 2 SO 3 — распадается на воду и оксид: H 2 SO 3 → H 2 O+ SО 2 .
  • Нерастворимые в воде кислоты : H 2 SiO 3 , H 3 BO 3 и другие.

Определить, сильная кислота перед вами, или слабая, позволяет простой прием. Мы вычитаем из числа атомов O в кислоте число атомов H. Если получаем число 2 или 3, то кислота сильная . Если 1 или 0 — то кислота слабая .

Соли – сложные вещества, состоящие из катиона металла (или металлоподобных катионов, например, иона аммония NH 4 +) и аниона кислотного остатка. Также солями называют вещества, которые могут быть получены при взаимодействии кислот и оснований с выделением воды.

Если рассматривать соли, как продукты взаимодействия кислоты и основания , то соли делят на средние , кислые и основные .

Средние соли – продукты полного замещения катионов водорода в кислоте на катионы металла (например , Na 2 CO 3 , K 3 PO 4 ).

Кислые соли – продукты неполного замещения катионов водорода в кислоте на катионы металлов (например , NaHCO 3 , K 2 HPO 4 ).

Основные соли – продукты неполного замещения гидроксогрупп основания на анионы кислотных остатков кислоты (например , малахит (CuOH) 2 CO 3 ).

По числу катионов и анионов соли разделяют на:

Простые соли – состоящие из катиона одного типа и аниона одного типа (например , хлорид кальция CaCl 2 ).

Двойные соли – это соли, состоящие из двух или более разных катионов и аниона одного типа (например , алюмокалиевые квасцы – KAl(SO 4) 2 ).

Смешанные соли – это соли, состоящие из катиона одного типа и двух или более анионов разного типа (например , хлорид-гипохлорит кальция Ca(OCl)Cl ).

По структурным особенностям выделяют также гидратные соли и комплексные соли.

Гидратные соли (кристаллогидраты ) – это такие соли, в состав которых входят молекулы кристаллизационной воды (например , декагидрат сульфата натрия Na 2 SO 4 ·10 H 2 O ).

Комплексные соли – это соли, содержащие комплексный катион или комплексный анион (K 3 , (OH) 2 ).

Помимо основных классов неорганических соединений, существует большое количество других. Например, бинарные соединения элементов с водородом.

Водородные соединения – это сложные вещества, состоящие из двух элементов, один из которых водород. Водород образует солеобразные гидриды и летучие водородные соединения.

Солеобразные гидриды ЭН х – это соединения металлов IA, IIA групп и алюминия с водородом. Степень окисления водорода равна -1. Например , гидрид натрия NaH .

Летучие водородные соединения Н х Э – это соединения неметаллов с водородом, в которых степень окисления водорода равна +1. Например , аммиак NH 3 , фосфин PH 3 .

Химия изучает превращения химических веществ, которых на сегодняшний день известно более 20 миллионов. Поэтому важна классификация химических соединений, т. е. объединение их в группы или классы, обладающие сходными свойствами. Данный урок поможет изучить современную классификацию неорганических веществ и познакомит с правилами составления их названий по химическим формулам.

Тема: Основные классы соединений, их свойства и типичные реакции

Урок: Классификация и номенклатура неорганических веществ

Неорганические вещества по составу принято делить на две группы: немногочисленную группу простых веществ (их насчитывается около 400) и очень многочисленную группу сложных веществ. Простые вещества состоят из одного химического элемента, а сложные - из нескольких.

Все простые вещества можно разделить на металлы и неметаллы, поскольку их свойства существенно отличаются. Металлы обладают металлическим блеском, высокой тепло- и электропроводностью, пластичны, проявляют восстановительные свойства. Неметаллы обладают очень разными физическими и химическими свойствами, но, как правило, в твердом состоянии хрупкие, плохо проводят электрический ток и тепло.

Граница между металлами и неметаллами условна. Существуют вещества, обладающие свойствами как металлов, так и неметаллов. Например, серый мышьяк имеет металлический блеск и электрическую проводимость (рис. 1), а другая аллотропная модификация - желтый мышьяк - имеет чисто неметаллические свойства.

Рис. 1. Серый мышьяк

Сложные вещества обычно делят на классы: оксиды, кислоты, основания, амфотерные гидроксиды и соли (Рис. 2). Данная классификация несовершенна, т. к. в ней нет места для аммиака, соединений металлов с фосфором, азотом, углеродом и т. д.


Рис. 2. Классификация неорганических веществ

Оксиды могут быть солеобразующими и несолеобразующими. Солеобразующим оксидам соответствуют гидроксиды и соли с элементом в той же степени окисления, что и в оксиде. Несолеобразующие оксиды не имеют соответствующих гидроксидов и солей. Таких оксидов немного: N 2 O, NO, SiO, CO.

Солеобразующие оксиды в зависимости от кислотно-основного характера делятся на кислотные, амфотерные и основные.

Основные оксиды образованы металлами с небольшими степенями окисления +1, +2. Амфотерные оксиды образованы переходными металлами со степенями окисления +3, +4, а также Be, Zn, Sn, Pb. Кислотные оксиды образованы неметаллами, а также металлами со степенью окисления больше, чем +4. Рис. 3.

Рис. 3. Классификация оксидов

Кислоты - это сложные вещества, состоящие из атомов водорода, способных замещаться на металлы, и кислотных остатков. Кислоты можно разделить на группы по содержанию кислорода: кислородосодержащие (например, HNO 3 , H 2 SO 4 , H 3 PO 4) и бескислородные (HI, H 2 S). Рис. 4.

Рис. 4. Классификация кислот

Основания - это сложные вещества, состоящие из катионов металла и одного или нескольких гидроксид-анионов. В основу классификации оснований могут быть положены разные признаки. Например, их отношение к воде. По данному признаку основания делят на растворимые в воде (щелочи) и нерастворимые в воде. Рис. 5.

Рис. 5. Классификация оснований

Амфотерные гидроксиды - это сложные вещества, которые имеют свойства и кислот, и оснований, и потому их формулы можно записывать в разных формах:

Zn(OH) 2 = H 2 ZnO 2

форма основания форма кислоты

Существует несколько видов солей (рис. 6).

Рис. 6. Виды солей

Средние соли состоят из катионов металла (или аммония) и анионов кислотных остатков. Кислые соли, кроме катионов металла, содержат катионы водорода и анион кислотного остатка. Основные соли в своем составе содержат гидроксид-анионы.

Если соль образована двумя видами катионов металлов и одним анионом, то ее называют двойной. Например, сульфат алюминия-калия KAl(SO 4) 2 .

Соли с двумя разными анионами и одним катионом называют смешанными. Например, Са(OCl)Cl - хлорид-гипохлорит кальция.

В комплексных солях содержится сложный ион, который принято заключать в квадратные скобки.

Список литературы

  1. Кузнецова Н.Е., Литвинова Т.Н., Лёвкин А.Н. Химия: 11 класс: учебник для учащихся общеобраз. учрежд. (профильный уровень): в 2-х ч. Ч.2. - М.: Вентана-Граф, 2008. (§55)
  2. Радецкий А.М. Химия. Дидактический материал. 10-11 классы. - М.: Просвещение, 2011.
  3. Хомченко И.Д. Сборник задач и упражнений по химии для средней школы. - М.: РИА «Новая волна»: Издатель Умеренков, 2008. (с. 27-30)
  4. Энциклопедия для детей. Том 17. Химия / Глав. ред. В.А. Володин, вед. науч. ред. И. Леенсон. - М.: Аванта+, 2003. (с. 156-159)