Внутри любого материала имеются внутренние междуатомные силы, наличие которых определяет способность тела воспринимать действующие на него внешние силы, сопротивляться разрушению, изменению формы и размеров. Приложение к телу внешней нагрузки вызывает изменение внутренних сил. В сопротивлении материалов изучаются дополнительные внутренние силы. В сопротивлении материалов они называются просто внутренними силами.

Внутренние силы – силы взаимодействия между отдельными элементами конструкций или между отдельными частями элемента, возникающие под действием внешних сил.

Чтобы численно установить величину внутренних сил пользуются методом сечений.

Метод сечений сводится к четырем действиям:

Рис. 7

    Отбрасывают любую отрезанную часть тела (желательно наиболее сложную), а ее действие на оставшуюся часть заменяют внутренними силами, чтобы оставшаяся исследуемая часть находилась в равновесии (рис.8);

Рис. 8

Полученные силы (N, Qy, Qz) (рис. 9) и моменты (Мк, Мy, Mz) называют внутренними силовыми факторами в сечении

Рис. 9

Для внутренних силовых факторов приняты следующие названия:

-продольная или осевая сила;

и-поперечные силы ;

-крутящий момент ;

и
-изгибающие моменты .

    Находят внутренние силовые факторы, составляя шесть уравнений равновесия статики для рассматриваемой части рассеченного тела.

Напряжение

Если в сечении выделить бесконечно малую площадку
и предположить, что внутренние силы, приложенные к его различным точкам, одинаковы по величине и направлению, то равнодействующая их
будет проходить через центр тяжести элемента
(рис. 10).

Рис. 10

Проекциями
на оси,ибудут элементарная продольная сила
, и элементарные поперечные силы
и
.

Разделим эти элементарные силы на площадь
, получим величины, называемые напряжениями в точке проведенного сечения.

;
;
,

где - нормальное напряжение;- касательное напряжение.

Напряжение – внутренняя сила, отнесенная к единице площади в данной точке рассматриваемого сечения.

Напряжение измеряется в единицах напряжения - паскалях (Па) и кратных ему – (кПа, МПа)

Иногда кроме нормальных и касательных напряжений рассматривают еще и полное напряжение

Понятие «напряжение » играет очень важную роль в расчетах на прочность. Поэтому значительная часть курса сопротивления материалов отводится изучению способов вычисления напряженийи.

Растяжение и сжатие

Центральным растяжением (сжатием) называется такой вид деформации, при котором в поперечном сечении бруса возникает только продольная сила (растягивающая и сжимающая) а все остальные внутренние силовые факторы равны нулю.

Продольные силы определяются с помощью метода сечений.

Пример

Пусть имеется ступенчатый стержень, нагруженный силами
,
и
вдоль оси стержня, показанного на рис. 11, а. Определить величину продольных сил.

Решение . Стержень может быть разделен на участки по местам приложения нагрузок и по местам изменения поперечного сечения.

Первый участок ограничен точками приложения сил и. Направим ось(начало первого участка). Мысленно рассечем первый участок поперечным сечением на расстоянииот начала первого участка. Причем координатаможет быть взята в интервале
, где- длина первого участка.


;
, кН

Положительный знак продольной силы говорит о том, что первый участок растянут.

Значение продольной силы не зависит от координаты , поэтому на всем участке значение продольной силы постоянно и равно.

Рис. 11

Второй участок ограничен точками приложения сил и. Направим осьвдоль оси участка вверх с началом координат в точке приложения силы(начало второго участка).

Мысленно рассечем второй участок поперечным сечением на расстоянии от начала второго участка. Причем координатаможет быть взята в интервале
, где- длина второго участка.

Рассмотрим равновесие нижней части стержня, заменив действие верхней части на нижнюю часть стержня продольной силой
, предварительно направив ее в сторону растяжения рассматриваемой части.

Из условия равновесия статики:


;

Знак минус говорит о том, что второй участок сжат.

Аналогично для третьего участка:

;

Полученные результаты для большей наглядности удобней представить в виде графика (эпюры N ), показывающего изменение продольной силы вдоль оси стержня. Для этого проводим нулевую (базовую) линию параллельно оси стержня, перпендикулярно которой будем в масштабе откладывать значения осевых усилий (рис.1.11, д). В одну сторону откладываем положительные значения, в другую - отрицательные. Эпюра заштриховывается перпендикулярно нулевой линии, а в нутрии эпюры ставится знак откладываемой величины. Рядом указываются значения откладываемых величин. Рядом с эпюрой в кавычках указывается название эпюры («N») и через запятую - единицы измерения (кН)

Этапы метода сечения

Метод сечений состоит из четырех последовательных этапов: разрезать, отбросить, заменить, уравновесить.

Разрежем стержень, находящийся в равновесии под действием некоторой системы сил (рис. 1.3, а) на две части плоскостью, перпендикулярной к его оси z.

Отбросим одну из частей стержня и рассмотрим оставленную часть.

Поскольку мы как бы разрезали бесчисленное множество пружинок, соединявших бесконечно близкие частицы тела, разделенного теперь на две части, в каждой точке поперечного сечения стержня необходимо приложить силы упругости, которые при деформации тела возникли между этими частицами. Иными словами,заменим действие отброшенной части внутренними силами (рис. 1.3, б).

Деформации рассматриваемого тела (элементов конструкции) возникают от приложения внешней силы. При этом изменяются расстояния между частицами тела, что в свою очередь приводит к изменению сил взаимного притяжения между ними. Отсюда, как следствие, возникают внутренние усилия. При этом внутренние усилия определяются универсальным методом сечений (или метод разреза).

Известно, что различают силы внешние и силы внутренние. Внешние усилия (нагрузки) – это количественная мера взаимодействия двух различных тел. К ним относятся и реакции в связях. Внутренние усилия – это количественная мера взаимодействия двух частей одного тела, расположенных по разные стороны сечения и вызванные действием внешних усилий. Внутренние усилия возникают непосредственно в деформируемом теле.

На рис.1 приведена расчетная схема бруса с произвольной комбинацией внешней нагрузки образующую равновесную систему сил:

Сверху вниз: упругое тело, левая отсеченная часть, правая отсеченная часть
Рис.1. Метод сечений.

При этом, реакции связей определяются из известных уравнений равновесия статики твердого тела:

где х 0 , у 0 , z 0 - базовая система координат осей.

Мысленное разрезание бруса на две части произвольным сечением А (рис.1 a), приводит к условиям равновесия каждой из двух отсеченных частей (рис.1 б,в). Здесь {S’ } и {S" }- внутренние усилия, возникающих соответственно в левой и правой отсеченных частях вследствие действия внешних усилий.

При составлении мысленно отсеченных частей, условие равновесия тела обеспечивается соотношением:

Так как исходная система внешних сил (1) эквивалентна нулю, получаем:

{S ’ } = – {S ” } (3)

Это условие соответствует четвертой аксиоме статики о равенстве сил действия и противодействия.

Используя общую методологию теоремыПуансо о приведении произвольной системы сил к заданному центру и выбрав за полюс приведения центр масс, сечения А " , точку С " , систему внутренних усилий для левой части {S ’ } сводим к главному вектору и главному моменту внутренних усилий. Аналогично делается для правой отсеченной части, где положение центра масс сечения А”; определяется, соответственно, точкой С " (рис.1 б,в).

Здесь в соответствие с четвертой аксиомой статики по-прежнему имеют место следующие соотношения:

Таким образом главный вектор и главный момент системы внутренних усилий, возникающие в левой, условно отсеченной части бруса, равны по величине и противоположны по направлению главному вектору и главному моменту системы внутренних усилий, возникающих в правой условно отсеченной части.

График (эпюра) распределения численных значений главного вектора и главного момента вдоль продольной оси бруса и предопределяют, прежде всего, конкретные вопросы прочности, жесткости и надежности конструкций.

Определим механизм формирования компонент внутренних усилий, которые характеризуют простые виды сопротивлений: растяжение-сжатие, сдвиг, кручение и изгиб.

В центрах масс исследуемых сечений С" или С " зададимся соответственно левой (с", х", у", z") или правой (с", х", у", z”) системами координатных осей (рис.1 б, в), которые в отличие от базовой системы координат x, у, z будем называть "следящими". Термин обусловлен их функциональным назначением. А именно: отслеживание изменения положения сечения А (рис.1 а) при условном смещении его вдоль продольной оси бруса, например при: 0 х’ 1 а, а x’ 2 b и т.д., где а и b - линейные размеры границ исследуемых участков бруса.

Зададимся положительными направлениями проекций главного вектора или и главного момента или на координатные оси следящей системы (рис.1 б, в):

При этом положительные направления проекций главного вектора и главного момента внутренних усилий на оси следящей системы координат соответствуют правилам статики в теоретической механике: для силы - вдоль положительного направления оси, для момента - против вращения часовой стрелки при наблюдении со стороны конца оси. Они классифицируются следующим образом:

N x - нормальная сила, признак центрального растяжения или сжатия;

М x - внутренний крутящий момент, возникает при кручении;

Q z , Q у - поперечные или перерезывающие силы – признак сдвиговых деформаций,

М у, М z - внутренние изгибающие моменты, соответствуют изгибу.

Соединение левой и правой мысленно отсеченных частей бруса приводит к известному (3) принципу равенства по модулю и противоположной направленности всех одноименных компонент внутренних усилий, а условие равновесии бруса определяется в виде:

С учетом эквивалентности нулю исходной системы сил (1) имеет место:

Как естественное следствие из соотношений 3,4,5 полученное условие является необходимым для того, чтобы одноименные компоненты внутренних усилий попарно образовали подсистемы сил эквивалентные нулю:

Общее число внутренних усилий (шесть) в статически определимых задачах совпадает с количеством уравнений равновесия для пространственной системы сил и связано с числом возможных взаимных перемещений одной условно отсеченной части тела по отношению к другой. z (P i ) = M z + M z (P i ) + … + M z (P k ) = 0 > M z

Здесь для простоты обозначений системы координат с" х" у" z" и с" х" у" т" заменены единой оxуz .

Для того чтобы судить о прочности исследуемого тела, находящегося в равновесии под действием внешних сил, прежде всего необходимо уметь определить вызванные ими внутренние усилия.

Внешние силы деформируют тело; внутренние усилия сопротивляясь этой деформации, стремятся сохранить первоначальную форму и объем тела.

Обнаружение внутренних усилий, их вычисление составляют первую и основную задачу сопротивления материалов, которая решается с помощью метода сечений, сущность этого метода заключается в следующем:

  • - первая операция. Рассекаем (мысленно) стержень по сечению в котором следует определить величину внутренних усилий.
  • - вторая операция. Отбрасываем какую-либо часть стержня, например, часть 1. Обычно отбрасывают ту часть, к которой приложено большее число сил.
  • - третья операция. Заменяем силы, действующие на оставшуюся часть главным вектором и главным моментом, совместив центр приведения О с центром тяжести (ц. т.) сечения (на рис.1,б М не показан).
  • - четвертая операция. Уравновешиваем оставшуюся часть, так как до рассечения она находилась в равновесии. Для этого в точке О прикладываем силу R и момент M, равные и противоположно направленные главному вектору и главному моменту. Усилия и и являются теми внутренними усилиями, которые передавались со стороны отброшенной на оставшуюся часть стержня.
  • - Метод сечений является лишь первым шагом по пути исследования внутренних сил, так как с его помощью не удается выяснить закон распределения внутренних сил в сечении.

Составляя уравнения равновесия для отсечённой части тела, можно получить проекции на координатные оси как главного вектора, так и главного момента.

При расчёте брусьев начало координат помещают в центре тяжести рассматриваемого поперечного сечения его. Ось "Z" в прямом брусе совмещают с его продольной осью, в кривом - направляют по касательной к его оси в точке, где помещено начало координат.

Оси "X" и "Y" совмещают с направлениями главных центральных осей инерции рассматриваемого сечения. Проекции на координатные оси главного вектора и главного момента внутренних сил в брусе обозначают соответственно: , N, M x , M y , и называют внутренними силовыми факторами (внутренними усилиями).

Представляют собой поперечные силы в направлении оси "X" или "Y" (Н)

N - нормальную (продольную) силу (н.).

M x , M y - изгибающие моменты относительно осей соответственно "X" или "Y" (нм)

M z - крутящий момент (нм).

Рассмотрев отсечённую часть бруса (например правую) (рис.1,б) и составив на основании метода сечений уравнения равновесия, можно сказать следующее: нормальная сила N есть сила внутренняя, численно равная сумма проекции на продольную ось бруса всех внешних сил, расположенных по одну сторону от рассматриваемого сечения.

  • -поперечная сила в направлении оси "X" численно равна сумме проекций на ось "X" всех внешних сил, расположенных по одну сторону от рассматриваемого сечения.
  • - поперечная сила в направлении оси "Y" численно равна сумме проекций на ось "Y" всех внешних сил, расположенных по одну сторону от рассматриваемого сечения

M x - изгибающий момент относительно оси "X" численно равна сумме моментов всех внешних сил, расположенных по одну сторону от этого сечения.

M Y - изгибающий момент относительно оси "Y" численно равна сумме моментов всех внешних сил, расположенных по одну сторону от этого сечения.

M z - изгибающий момент относительно оси "Z" численно равна сумме моментов всех внешних сил, расположенных по одну сторону от этого сечения.

Итак, в общем случае нагружения бруса внутренние силы в его поперечных сечениях приводятся к указанным шести внутренним силовым факторам.

Виды нагрузок, типы опор и балок.

Всякий стержень, работающий на изгиб, называется балкой.

Активные силы полагаются известными и сводятся к сосредоточенным силам F(H), парам сил m (нм) и распределенным по длине балки нагрузкам q (н/м). Величина и направление реакций R 1, R 2 определяются из условия равновесия балки и вида её опорных закреплений.

Балки могут иметь следующие три типа опор:

  • 1. Жёсткое защемление или заделка. Конец балки лишён трёх степеней свободы. Он не может перемещаться ни в вертикальном, ни в горизонтальном направлениях и не имеет возможности поворачиваться. Следовательно, в этой опоре возникают три реакции: две силы R 1 и R 2 , препятствующие линейным смещениям конца балки и один реактивный момент M R , препятствующий повороту.
  • 2. Шарнирно-неподвижная опора.

Такая опора лишает балку двух степеней свободы: вертикального и горизонтального смещений, но не препятствует вращению балки вокруг шарнира. Следовательно, в данной опоре возникают две составляющие опорной реакции R 1 и R 2 .

3. Шарнирно-подвижная опора - это наименее жёсткое опирание, она лишает конец балки только одной степени свободы - вертикального линейного перемещения. В шарнирно-подвижной опоре возникает одна реакция.

Следует обратить внимание на то, что данная опора препятствует перемещению конца балки как вниз, так и вверх. Необходимо заметить, что на практике плоскость катания подвижной опоры всегда делают параллельной оси балки. Тогда реакция подвижной опоры должна иметь направление перпендикулярное к оси балки.

Применяя разные виды опор, получаем различные типы балок. Так как балка в плоскости имеет три степени свободы, то для неподвижного закрепления балку необходимо лишить всех трёх степеней свободы.

Первый тип балки - консоль. Консоль имеет на одном конце заделку, отнимающую все три степени свободы, а другой её конец свободный. В заделке возникают: реактивный момент, вертикальная реакция и при наличии горизонтальной или наклонной нагрузки, горизонтальная реакция. Консоль применяется в технике в виде кронштейнов, мачт и т.д.

Второй тип балки - двухопорная балка. Опирание балки в двух точках осуществляется применением одной подвижной и одной неподвижной шарнирных опор, в совокупности отнимающих у балки все три степени свободы. В подвижной опоре возникает только вертикальная реакция, в неподвижной - вертикальная и горизонтальная (при наличии горизонтальных составляющих нагрузок).

Расстояния между опорами называется пролётом. Если одна из опор смещена на некоторое расстояние, то балка называется одноконсольной. Балки перечисляемых типов имеют минимально необходимое число опор, в связи с этим они статически определимы, т.е. их опорные реакции могут быть найдены из уравнения равновесия.

Постановка дополнительных опор делает балку статически неопределимой: расчёт таких балок возможен лишь с учётом их деформаций.

Метод сечений заключается в том что тело мысленно рассекается плоскостью на 2 части, любая из которых отбрасывается и в замен ее к оставшемуся сечению прикладывают силы действующие до разреза, оставленную часть рассматривают как самостоятельное тело, находящееся в равновесии под действием внешних и приложенных к сечению внутренних сил. Согласно 3 му закону Ньютона внутренние силы, действующие в сечении оставшейся и отброшенной частей тела равны по модулю, но противоположны следовательно рассматриваем равновесие любой из 2 частей рассеченного тела мы получили одно и тоже значение внутренних сил.

Изгибом называется вид нагружения бруса, при котором к нему прикладывается момент, лежащий в плоскости проходящей через продольную ось. В поперечных сечениях бруса возникают изгибающие моменты. При изгибе возникают деформация, при которой происходит искривление оси прямого бруса или изменение кривизны кривого бруса.

Брус, работающий при изгибе, называется балкой . Конструкция, состоящая из нескольких изгибаемых стержней, соединенных между собой чаще всего под углом 90°, называется рамой.

Изгиб называется плоским или прямым, если плоскость действия нагрузки проходит через главную центральную ось инерции сечения.

При плоском поперечном изгибе в балке возникают два вида внутренних усилий: поперечная сила Q и изгибающий момент M. В раме при плоском поперечном изгибе возникают три усилия: продольная N, поперечная Q силы и изгибающий момент M.

Если изгибающий момент является единственным внутренним силовым фактором, то такой изгиб называется чистым (рис.6.2). При наличии поперечной силы изгиб называется поперечным . Строго говоря, к простым видам сопротивления относится лишь чистый изгиб; попереч­ный изгиб относят к простым видам сопротивления условно, так как в большинстве слу­чаев (для достаточно длинных балок) действием поперечной силы при расчетах на проч­ность можно пренебречь.

Косой изгиб - изгиб, при котором нагрузки действуют в одной плоскости, не совпадающей с главными плоскостями инерции.

Сложный изгиб - изгиб, при котором нагрузки действуют в различных (произвольных) плоскостях.

Построение эпюр поперечной силы и изгибающего момента

Для того, чтобы произвести расчет балки на изгиб, необходимо знать величину наибольшего изгибающего момента М и положение сечения, в котором он возникает. Точно также, надо знать и наибольшую поперечную силу Q. Для этой цели строят эпюры изгибающих моментов и поперечных сил. По эпюрам легко судить о том, где будет максимальное значение момента или поперечной силы.



Перед тем, как определять внутренние усилия (поперечные силы и изгибающие моменты) и строить эпюры, как правило, надо найти опорные реакции, возникающие в закреплении стержня. Если опорные реакции и внутренние усилия можно найти из уравнений статики, то конструкция называется статически определимой. Чаще всего мы встречаемся с тремя видами опорных закреплений стержней: жестким защемлением (заделкой), шарнирно-неподвижной опорой и шарнирно-подвижной опорой. На рис. 6.5 показаны эти закрепления. Для неподвижной (рис 6.5,б) и подвижной (рис. 6.5,в) опор приведены два эквивалентных обозначения этих закреплений. Напомним, что при действии нагрузки в одной плоскости в заделке возникают три опорных реакции (вертикальная, горизонтальная реакции и сосредоточенный реактивный момент) (рис. 6.5,а); в шарнирно-неподвижной опоре – две реактивные силы (рис. 6.3,б); в шарнирно-подвижной опоре – одна реакция – сила, перпендикулярная плоскости опирания (рис.6.5,в).

Если внешняя сила вращает отрезанную часть балки по часовой стрелке, то сила является положительной, если внешняя сила вращает отрезанную часть балки против хода часовой стрелки, то сила является отрицательной.

Если под действием внешней силы изогнутая ось балки принимает вид вогнутой чаши, такой, что идущий сверху дождь будет наполнять ее водой, то изгибающий момент является положительным. Если под действием внешней силы изогнутая ось балки принимает вид выпуклой чаши, такой, что идущий сверху дождь не будет наполнять ее водой, то изгибающий момент является отрицательным.

Достаточно очевидно и подтверждается опытом, что балка при изгибе деформируется таким образом, что волокна, расположенные в выпуклой части, растягиваются, а в вогнутой – сжимаются. Между ними лежит слой волокон, который лишь искривляется, не изменяя своей первоначальной длины (рис.6.8). Этот слой называется нейтральным или нулевым, а его след на плоскости поперечного сечения – нейтральной (нулевой) линией или осью.

При построении эпюр Q и М договоримся на эпюре Q положительные значения откладывать сверху нулевой линии. На эпюре М у строителей принято откладывать положительные ординаты снизу. Такое правило построения эпюры М называется построением эпюры со стороны растянутых волокон, т. е. положительные значения М откладываются в сторону выпуклости изогнутой балки.

Рассмотрим для простоты балку с прямоугольным поперечным сечением (рис.6.9). Следуя методу сечений, мысленно проведем разрез и отбросим какую-либо часть балки, а другую оставим. На оставшейся части покажем действующие на нее силы и в поперечном сечении – внутренние силовые факторы, которые являются результатом приведения к центру сечения сил, действующих на отброшенную часть. Учитывая, что внешние силы и распределенные нагрузки лежат в одной плоскости и действуют перпендикулярно оси балки, в сечении получим поперечную силу и изгибающий момент. Эти внутренние силовые факторы заранее неизвестны, поэтому их показывают в положительном направлении в соответствии с принятыми правилами знаков.

Внутренние силы. Метод сечений

Внешние силы, действующие на реальный объект, чаще всего известны. Обычно необходимо определить внутренние силы (результат взаимодействия между отдельными частями данного тела) которые неизвестны по величине и направлению, но знание которых необходимо для прочностных и деформационных расчетов. Определение внутренних сил осуществляется с помощью так называемого метода сечений , сущность которого заключается в следующем:

    Мысленно разрезают тело по интересующему нас сечению.

    Отбрасывают одну из частей (независимо какую).

    Заменяют действие отброшенной части тела на оставшуюся системой сил, которые в данном случае переходят в разряд внешних. Силы упругости по принципу действия и противодействия всегда взаимны и представляют непрерывно распределенную по сечению систему сил. Их значение и ориентация в каждой точке сечения произвольны, зависят от ориентации сечения относительно тела, величины и направления внешних сил, геометрических размеров тела. Внутренние силы можно привести к главному векторуR и главному моменту М. За точку приведения обычно принимают центр тяжести сечения. Выбрав систему координат Х, У, Z (Z – продольная ось по нормали к поперечному сечению, Х и У – в плоскости этого сечения) и начало системы в центре тяжести, обозначим проекции главного вектора R на координатные оси через N, Q x , Q y , а проекции главного момента М – М х, М у, М k . Эти три силы и три момента называют внутренними силовыми факторами в сечении :

N – продольная сила,

Q x , Q y – поперечные силы,

M k – крутящий момент,

M x , M y – изгибающие моменты.

4. Так как внутренние силы находятся в равновесии с внешними силами, они могут быть определены из уравнений равновесия статики:

Р z =0, P y =0, P x =0,

 M x =0, M y =0, M z =0.

Любой внутренний силовой фактор в сечении равен алгебраической сумме соответствующих внешних силовых факторов, действующих с одной стороны от сечения.

Внутренний силовой фактор в сечении численно равен интегральной сумме соответствующих элементарных внутренних сил или моментов по всей площади сечения:

Классификация основных видов нагружения связана с внутренним силовым фактором, возникающим в сечении. Так, если в поперечных сечениях возникает только продольная сила N, а другие внутренние силовые факторы обращаются в нуль, то на этом участке имеет место растяжение или сжатие, в зависимости от направления силы N. Нагружение, когда в поперечном сечении возникает только поперечная сила Q, называют сдвигом.

Если в поперечном сечении возникает только крутящий момент М к, то стержень работает на кручение. В случае, когда от внешних сил, приложенных к стержню возникает только изгибающий момент М х (или М у), то такой вид нагружения называют чистым изгибом в плоскости уz (или xz). Если в поперечном сечении наряду с изгибающим моментом (например, М х) возникает поперечная сила Q y , то такой вид нагружения называют плоским поперечным изгибом (в плоскости yz). Вид нагружения, когда в поперечном сечении стержня возникают только изгибающие моменты М х и М у, называют косым изгибом (плоским или пространственным). При действии в поперечном сечении нормальной силы N и изгибающих моментов М х и М у возникает нагружение, называемое сложным изгибом с растяжением сжатием или внецентренным растяжением (сжатием). При действии в сечении изгибающего момента и крутящего момента возникает изгиб с кручением.

Общим случаем нагружения называют случай, когда в поперечном сечении возникают все шесть внутренних силовых факторов.

К особым видам нагружения следует отнести смятие, когда деформация носит местный характер, не распространяясь на всё тело и продольный изгиб (частный случай общего явления потери устойчивости).

Понятие о напряжениях

Величина внутренних силовых факторов не отражает интенсивности
напряженного состояния тела, близости к опасному состоянию (разрушению). Для оценки интенсивности внутренних сил вводится критерий (числовая мера), называемый напряжением. Если в поперечном сечении F некоторо-го тела выделим элементарную пло-щадку F, рис.1.1, в пределах которой выявлена внутрен-няя сила R, то за среднее напряжение на площадке F может быть принято отношение:

Истинное напряжение в точке можно определить, уменьшая площадку:

Векторная величина р представляет собой полное напряжение в точке. Размерность напряжения принима-ется в Па (Паскаль) или МПа (Мегапас-каль). Полное напря-жение обычно в расчетах не применя-ется, а определяется его нормальная к сечению составля-ющая  - нормальное напряжение, и каса-тельные   ,   – касательные напряжения (рис.1.2). Полные напряжения, приходящиеся на единицу площади, можно выразить через нормальные и касательные напряжения:

Между действующими напряжениями и внутренними силовыми факторами существует следующая связь:

;

Нормальные и касательные напряжения являются функцией внутренних силовых факторов и геометрических характеристик сечения. Эти напряжения, вычисленные по соответствующим формулам, можно назвать фактическими или рабочими.

Наибольшее значение фактических напряжений ограничено предельным напряжением, при котором материал разрушается или появляются недопустимые пластические деформации. Первая из этих границ существует у любого хрупкого материала и называется пределом прочности ( в,  в), вторая имеет место только у пластичных материалов и называется пределом текучести ( т,  т). При действии циклически изменяющихся напряжениях разрушение происходит при достижении так называемого предела выносливости ( R ,  R), значительно меньшего, чем соответствующие пределы прочности.