Цель занятия. На этом занятии вы узнаете о, пожалуй, самых важных химических элементах для жизни на земле – водороде и кислороде, узнаете об их химических свойствах, а также о физических свойствах простых веществ, ими образуемых, узнаете больше о роли кислорода и водорода в природе и жизни человека.

Водород – самый распространённый элемент во Вселенной. Кислород – самый распространённый элемент на Земле. Вместе они образуют воду – вещество, которое составляет больше половины массы человеческого тела. Кислород – газ, необходимый нам для дыхания, а без воды мы не смогли бы прожить и нескольких дней, так что без сомнения можно считать кислород и водород важнейшими химическими элементами, необходимыми для жизни.

Строение атомов водорода и кислорода

Таким образом, водород проявляет неметаллические свойства. В природе водород встречается в виде трёх изотопов, протия , дейтерия и трития , изотопы водорода очень сильно отличаются друг от друга по физическим свойствам, поэтому им даже присвоены индивидуальные символы.

Если вы не помните или не знаете, что такое изотопы, поработайте с материалами электронного образовательного ресурса «Изотопы как разновидности атомов одного химического элемента». В нём вы узнаете, чем отличаются друг от друга изотопы одного элемента, к чему приводит наличие нескольких изотопов у одного элемента, а также познакомитесь с изотопами нескольких элементов.

Таким образом, возможные степени окисления кислорода ограничены значениями от –2 до +2. Если кислород принимает два электрона (становясь анионом) или образует две ковалентные связи с менее электроотрицательными элементами, он переходит в степень окисления –2. Если кислород образует одну связь с другим атомом кислорода, а вторую – с атомом менее электроотрицательного элемента, он переходит в степень окисления –1. Образуя две ковалентные связи со фтором (единственным элементом с более высоким значением электроотрицательности), кислород переходит в степень окисления +2. Образуя одну связь с другим атомом кислорода, а вторую – с атомом фтора – +1. И наконец, если кислород образует одну связь с менее электроотрицательным атомом, а вторую – со фтором, он будет находиться в степени окисления 0.

Физические свойства водорода и кислорода, аллотропия кислорода

Водород – бесцветный газ без вкуса и запаха. Очень лёгкий (в 14,5 раз легче воздуха). Температура сжижения водорода – -252,8 °C – почти самая низкая среди всех газов (уступает только гелию). Жидкий и твёрдый водород – очень лёгкие бесцветные вещества.

Кислород – бесцветный газ без вкуса и запаха, немного тяжелее воздуха. При температуре -182,9 °C превращается в тяжёлую жидкость голубого цвета, при -218 °C затвердевает с образованием кристаллов синего цвета. Молекулы кислорода парамагнитны, то есть кислород притягивается магнитом. Кислород плохо растворим в воде.

В отличие от водорода, образующего молекулы только одного типа, , кислород проявляет аллотропию и образует молекулы двух типов, то есть элемент кислород образует два простых вещества: кислород и озон .

Химические свойства и получение простых веществ

Водород.

Связь в молекуле водорода – одинарная, однако это одна из самых прочных одинарных связей в природе, и чтобы разорвать её необходимо затратить много энергии, по этой причине водород весьма малоактивен при комнатной температуре, однако при повышении температуры (или в присутствии катализатора) водород легко взаимодействует со многими простыми и сложными веществами.

Водород с химической точки зрения является типичным неметаллом. То есть он способен взаимодействовать с активными металлами с образованием гидридов, в которых он проявляет степень окисления –1. С некоторыми металлами (литий, кальций) взаимодействие протекает даже при комнатной температуре, однако довольно медленно, поэтому при синтезе гидридов используют нагревание:

,

.

Образование гидридов прямым взаимодействием простых веществ возможно только для активных металлов. Уже алюминий не взаимодействует с водородом непосредственно, его гидрид получают обменными реакциями.

С неметаллами водород также реагирует только при нагревании. Исключениями являются галогены хлор и бром, реакция с которыми может быть индуцирована светом:

.

Реакция со фтором также не требует нагревания, она протекает со взрывом даже при сильном охлаждении и в абсолютной темноте.

Реакция с кислородом протекает по разветвлённому цепному механизму, поэтому скорость реакции стремительно возрастает, и в смеси кислорода с водородом в соотношении 1:2 реакция протекает со взрывом (такая смесь носит название «гремучий газ»):

.

Реакция с серой протекает гораздо более спокойно, практически без выделения тепла:

.

Реакции с азотом и йодом протекают обратимо:

,

.

Это обстоятельство сильно затрудняет получение аммиака в промышленности: процесс требует использования повышенного давления для смешения равновесия в сторону образования аммиака. Йодоводород прямым синтезом не получают, поскольку имеется несколько гораздо более удобных способов его синтеза.

С малоактивными неметаллами () водород непосредственно не реагирует, хотя его соединения с ними известны.

В реакциях со сложными веществами водород в большинстве случаев выступает в роли восстановителя. В растворах водород может восстанавливать малоактивные металлы (располагающиеся после водорода в ряду напряжений ) из их солей:

При нагревании водород может восстанавливать многие металлы из их оксидов. При этом чем активнее металл, тем сложнее его восстановить и тем более высокая для этого нужна температура:

.

Металлы более активные, чем цинк, практически невозможно восстановить водородом.

Водород в лаборатории получают взаимодействием металлов с сильными кислотами. Чаще всего используют цинк и соляную кислоту:

Реже используется электролиз воды в присутствии сильных электролитов:

В промышленности водород получают как побочный продукт при получении едкого натра электролизом раствора хлорида натрия:

Кроме того, водород получают при переработке нефти.

Получение водорода фотолизом воды – один из наиболее перспективных способов в будущем, однако на сегодняшний момент промышленное применение этого метода затруднительно.

Поработайте с материалами электронных образовательных ресурсов Лабораторная работа «Получение и свойства водорода» и Лабораторная работа «восстановительные свойства водорода». Изучите принцип действия аппарата Киппа и аппарата Кирюшкина. Подумайте, в каких случаях удобнее использовать аппарат Киппа, а в каких – Кирюшкина. Какие свойства проявляет водород в реакциях?

Кислород.

Связь в молекуле кислорода двойная и весьма прочная. Поэтому кислород довольно малоактивен при комнатной температуре. При нагревании он, однако, начинает проявлять сильные окислительные свойства.

Кислород без нагревания реагирует с активными металлами (щелочными, щелочноземельными и некоторыми лантаноидами):

При нагревании кислород взаимодействует с большинством металлов с образованием оксидов:

,

,

.

Серебро и менее активные металлы не окисляются кислородом.

Кислород также реагирует с большинством неметаллов с образованием оксидов:

,

,

.

Взаимодействие с азотом происходит только при очень высоких температурах, около 2000 °C.

С хлором, бромом и йодом кислород не реагирует, хотя многие их оксиды можно получить косвенным путём.

Взаимодействие кислорода со фтором можно провести при пропускании электрического разряда через смесь газов:

.

Фторид кислорода(II) – нестойкое соединение, легко разлагается и является очень сильным окислителем.

В растворах кислород является сильным, хотя и медленным, окислителем. Как правило, кислород способствует переходу металлов в более высокие степени окисления:

Присутствие кислорода часто позволяет растворять в кислотах металлы, расположенные сразу за водородом в ряду напряжений :

При нагревании кислород может окислять низшие оксиды металлов:

.

Кислород в промышленности не получают химическими способами, его получают из воздуха перегонкой.

В лаборатории используют реакции разложения богатых кислородом соединений – нитратов, хлоратов, перманганатов при нагревании:

Также можно получить кислород при каталитическом разложении перекиси водорода:

Кроме того, для получения кислорода может использоваться приведённая выше реакция электролиза воды.

Поработайте с материалами электронного образовательного ресурса Лабораторная работа «Получение кислорода и его свойства».

Как называется используемый в лабораторной работе метод собирания кислорода? Какие ещё способы собирания газов существуют и какие из них подходят для собирания кислорода?

Задание 1. Посмотрите видеофрагмент «Разложение перманганата калия при нагревании».

Ответьте на вопросы:

    1. Какой из твёрдых продуктов реакции растворим в воде?
    2. Какой цвет имеет раствор перманганата калия?
    3. Какой цвет имеет раствор манганата калия?

Напишите уравнения протекающих реакций. Уравняйте их, используя метод электронного баланса.

Обсудите выполнение задания с учителем на или в видеокомнате.

Озон.

Молекула озона трёхатомна и связи в ней менее прочные, чем в молекуле кислорода, что приводит к большей химической активности озона: озон легко окисляет многие вещества в растворах или в сухом виде без нагревания:

Озон способен легко окислить оксид азота(IV) до оксида азота(V), а оксид серы(IV) до оксида серы(VI) без катализатора:

Озон постепенно разлагается с образованием кислорода:

Для получения озона используются специальные приборы – озонаторы, в которых через кислород пропускают тлеющий разряд.

В лаборатории для получения незначительных количеств озона иногда используют реакции разложения пероксосоединений и некоторых высших оксидов при нагревании:

Поработайте с материалами электронного образовательного ресурса Лабораторная работа «Получение озона и исследование его свойств».

Объясните, почему обесцвечивается раствор индиго. Напишите уравнения реакций, протекающих при смешении растворов нитрата свинца и сульфида натрия и при пропускании через полученную взвесь озонированного воздуха. Для реакции ионного обмена составьте ионные уравнения. Для окислительно-восстановительной реакции составьте электронный баланс.

Обсудите выполнение задания с учителем на или в видеокомнате.

Химические свойства воды

Для лучшего ознакомления с физическими свойствами воды и её значимостью поработайте с материалами электронных образовательных ресурсов «Аномальные свойства воды» и «Вода – важнейшая жидкость на Земле».

Вода обладает огромной важностью для любых живых организмов – по сути многие живые организмы состоят из воды более чем наполовину. Вода является одним из наиболее универсальных растворителей (при высоких температурах и давлениях её возможности как растворителя существенно возрастают). С химической точки зрения вода является оксидом водорода, при этом в водном растворе она диссоциирует (хотя и в очень малой степени) на катионы водорода и гидроксид-анионы:

.

Вода взаимодействует со многими металлами. С активными (щелочными, щелочноземельными и некоторыми лантаноидами) вода реагирует без нагревания:

С менее активными взаимодействие происходит при нагревании.

В нашей повседневной жизни есть вещи, которые настолько распространены, что почти каждый человек знает о них. Например, всем известно, что вода - жидкость, она легко доступна и не горит, следовательно, она может гасить огонь. Но вы когда-нибудь задумывались почему это так?

Источник изображения: pixabay.com

Вода состоит из атомов водорода и кислорода. Оба этих элемента поддерживают горение. Итак, исходя из общей логики (не научной) из этого следует, что вода тоже должна гореть, верно? Тем не менее этого не происходит.

Когда происходит горение?

Горение -это химический процесс, в котором молекулы и атомы объединяются, при этом выделяется энергия в виде тепла и света. Чтобы что-нибудь сжечь вам потребуется две вещи - топливо как источник горения (например, лист бумаги, кусок дерева и т. д.) и окислитель (содержащийся в земной атмосфере кислород является основным окислителем). Также нам потребуется тепло необходимое для достижения температуры воспламенения вещества, чтобы начался процесс горения.

Источник изображения auclip.ru

Например, рассмотрим процесс сжигания бумаги с использованием спичек. Бумага в этом случае будет являться топливом, газообразный кислород, содержащийся в воздухе будет выступать в качестве окислителя, а температура воспламенения будет достигаться благодаря горящей спичке.

Структура химического состава воды

Источник изображения: water-service.com.ua

Вода состоит из двух атомов водорода и одного атома кислорода. Ее химическая формула Н2О. Теперь интересно отметить, что два составных элемента воды действительно легко воспламеняющиеся вещества.

Почему водород является горючим веществом?

Атомы водорода имеют только один электрон и поэтому легко соединяется с другими элементами. Как правило в природе водород встречается в виде газа, молекулы которого состоят из двух атомов. Этот газ очень реактивный и быстро окисляется в присутствии окислителя, что делает его легковоспламеняемым.

Источник изображения: myshared.ru

При сгорании водорода происходит выделение большого количества энергии, поэтому его часто используют в сжиженном виде для запуска в космос космических аппаратов.

Кислород поддерживает горение

Как упоминалось ранее, для любого горения необходим окислитель. Есть много химических окислителей, в их числе кислород, озон, перекись водорода, фтор и т.д. В качестве основного окислителя, который в избытке содержится в атмосфере Земли является кислород. Он как правило является основным окислителем в большинстве пожаров. Именно поэтому для поддержания огня необходим постоянный приток кислорода.

Вода тушит огонь

Вода может гасить огонь по ряду причин, одной из которых является то, что это негорючая жидкость, несмотря на то, что состоит из двух элементов, которые могут по отдельности создать огненный ад.

Вода - самое распространенное средство тушения пожаров. Источник изображения: pixabay.com

Как мы уже говорили ранее, водород легко воспламеняется, все что для этого нужно это окислитель и температура воспламенения для начала реакции. Так как кислород является самым распространенным окислителем на Земле он быстро соединяется с атомами водорода с выделением большого количества света и тепла, при этом образуются молекулы воды. Вот как это происходит:

Обратите внимание на то, что смесь водорода с небольшим объемом кислорода или воздуха взрывоопасна и называется гремучим газом, она сгорает чрезвычайно быстро с громким хлопком, что воспринимается как взрыв. Катастрофа дирижабля "Гинденбург" в 1937 г. в Нью-Джерси унесла десятки жизней в результате возгорания водорода, которым была наполнена оболочка дирижабля. Легкая воспламеняемость водорода и его взрывоопасность в сочетании с кислородом - это главная причина того, что мы не получаем воду химическим путем в лабораториях.

Кислород - самый распространенный на Земле элемент. Вместе с азотом и незначительным количеством других газов свободный кислород образует атмосферу Земли. Его содержание в воздухе составляет 20,95% по объему или 23,15% по массе. В земной коре 58% атомов - это атомы связанного кислорода(47% по массе). Кислород входит в состав воды (запасы связанного кислорода в гидросфере исключительно велики), горных пород, многих минералов и солей, содержится в жирах, белках и углеводах, из которых состоят живые организмы. Практически весь свободный кислород Земли возник и сохраняется в результате процесса фотосинтеза.

Физические свойства.

Кислород- газ без цвета, вкуса и запаха, немного тяжелее воздуха. В воде малорастворим (в 1 л воды при 20 градусах растворяется 31 мл кислорода), но всё же лучше, чем другие газы атмосферы, поэтому вода обогащается кислородом. Плотность кислорода при нормальных условиях 1,429г/л. При температуре -183 0 С и давлении 101,325 кПа кислород переходит в жидкое состояние. Жидкий кислород имеет голубоватый цвет, втягивается в магнитное поле, а при -218,7°С, образует синие кристаллы.

Природный кислород имеет три изотопа О 16 , О 17 , О 18 .

Аллотропия- способность химического элемента существовать в виде двух или нескольких простых веществ, отличающихся лишь числом атомов в молекуле, либо строением.

Озон О 3 – существует в верхних слоях атмосферы на высоте 20-25 км от поверхности Земли и образует так называемый «озоновый слой», который защищает Землю от губительного ультрафиолетового излучения Солнца; бледно-фиолетовый, ядовитый в больших количествах газ со специфическим, резким, но приятным запахом. Температура плавления равна-192,7 0 С, температура кипения-111,9 0 С. В воде растворим лучше кислорода.

Озон - сильный окислитель. Его окислительная активность основана на способности молекулы разлагаться с выделением атомного кислорода:

Он окисляет многие простые и сложные вещества. С некоторыми металлами образует озониды, например озонид калия:

К + О 3 = КО 3

Озон получают в специальных приборах - озонаторах. В них под действием электрического разряда происходит превращение молекулярного кислорода в озон:

Аналогичная реакция происходит и под действием грозовых разрядов.

Применение озона обусловлено его сильными окислительными свойствами: он используется для отбеливания тканей, обеззараживания питьевой воды, в медицине как дезинфицирующее средство.

Вдыхание озона в больших количествах вредно: он раздражает слизистые оболочки глаз и дыхательных органов.

Химические свойства.

В химических реакциях с атомами других элементов (кроме фтора) кислород проявляет исключительно окислительные свойства



Важнейшее химическое свойство - способность образовывать оксиды почти со всеми элементами. При этом с большинством веществ кислород реагирует непосредственно, особенно при нагревании.

В результате этих реакций, как правило, образуются оксиды, реже – пероксиды:

2Са + О 2 =2СаО

2Ва + О 2 =2ВаО

2Na + O 2 = Na 2 O 2

Кислород не взаимодействует непосредственно с галогенами, золотом, платиной, их оксиды получаются косвенным путем. При нагревании сера, углерод, фосфор горят в кислороде.

Взаимодействие кислорода с азотом начинается лишь при температуре 1200 0 С или в электрическом разряде:

N 2 + О 2 = 2NО

С водородом кислород образует воду:

2Н 2 + О 2 = 2Н 2 О

В процессе этой реакции выделяется значительное количество теплоты.

Смесь двух объемов водорода с одним кислорода при поджигании взрывается; она носит название гремучего газа.

Многие металлы при контакте с кислородом воздуха подвергаются разрушению - коррозии. Некоторые металлы в обычных условиях окисляются лишь с поверхности (например, алюминий, хром). Образующаяся пленка оксида препятствует дальнейшему взаимодействию.

4Al + 3O 2 = 2Al 2 O 3

Сложные вещества при определенных условиях также взаимодействуют с кислородом. При этом образуются оксиды, а в некоторых случаях - оксиды и простые вещества.

СН 4 +2О 2 =СО 2 + 2Н 2 О

Н 2 S+О 2 =2SО 2 +2Н 2 О

4NН 3 +ЗО 2 =2N 2 +6Н 2 О

4CH 3 NH 2 + 9O 2 = 4CO 2 + 2N 2 + 10H 2 O

При взаимодействии со сложными веществами кислород выступает в качестве окислителя. На окислительной активности кислорода основано его важное свойство- способность поддерживать горение веществ.

С водородом кислород образует также соединение – пероксид водорода Н 2 О 2 – бесцветная прозрачная жидкость со жгучим вяжущим вкусом, хорошо растворимая в воде. В химическом отношении пероксид водорода очень интересное соединение. Характерна его малая устойчивость: при стоянии медленно разлагается на воду и кислород:

Н 2 О 2 = Н 2 О + О 2

Свет, нагревание, присутствие щелочей, соприкосновение с окислителями или восстановителями ускоряют процесс разложения. Степень окисления кислорода в пероксиде водорода = - 1, т.е. имеет промежуточное значение между степенью окисления кислорода в воде (-2) и в молекулярном кислороде (0), поэтому пероксид водорода проявляет окислительно-восстановительную двойственность. Окислительные свойства пероксида водорода выражены гораздо сильнее, чем восстановительные, и проявляются они в кислой, щелочной и нейтральной средах.

H 2 O 2 + 2KI + H 2 SO 4 = K 2 SO 4 + I 2 + 2H 2 O

Общая и неорганическая химия

Лекция 6. Водород и кислород. Вода. Пероксид водорода.

Водород

Атом водорода – простейший объект химии. Строго говоря, его ион – протон – еще проще. Впервые описан в 1766 г. Кавендишем . Название от греч. “hydro genes” – порождающий воду.

Радиус атома водорода примерно 0,5*10-10 м, а его иона (протона) – 1,2*10-15 м. Или же от 50 пм до 1,2*10-3 пм или от 50 метров (диагональ СХА) до 1 мм.

Следующий 1s элемент – литий меняется только от 155 пм до 68 пм у Li+ . Такая разница в размерах атома и его катиона (5 порядков) уникальна.

Благодаря малому размеру протона осуществляется обменная водородная связь , прежде всего между атомами кислорода, азота и фтора. Прочность водородных связей составляет 10-40 кДж/моль, что значительно меньше энергии разрыва большинства обычных связей (100-150 кДж/моль в органических молекулах), но больше средней кинетической энергии теплового движения при 370 С (4 кДж/моль). В результате в живом организме водородные связи обратимо разрываются, обеспечивая протекание процессов жизнедеятельности.

Водород плавится при 14 К, кипит при 20,3 К (давление 1 атм), плотность жидкого водорода всего 71 г/л (в 14 раз легче воды).

В разреженной межзвездной среде обнаружены возбужденные атомы водорода с переходами вплоть до n 733 → 732 с длиной волны 18 м, что соответствует боровскому радиусу (r = n2 *0,5*10-10 м) порядка 0,1 мм (!) .

Самый распространенный элемент в космосе (88,6% атомов, 11,3% атомов приходится на гелий, и только 0,1% – атомы всех остальных элементов) .

4 H → 4 He + 26,7 МэВ 1 эВ = 96,48 кДж/моль

Поскольку протоны имеют спин 1/2, существуют три варианта молекул водорода:

ортоводород о-Н2 с параллельными ядерными спинами, параводород п-Н2 с антипараллельными спинами и нормальный н-Н2 – смесь 75% орто-водорода и 25% пара-водорода. При превращении о-Н2 → п-Н2 выделяется 1418 Дж/моль.

Свойства орто- и параводорода

Так как атомная масса водорода – минимально возможная, его изотопы – дейтерий D (2 H) и тритий T (3 H) существенно отличаются от протия 1 Н по физическим и химическим свойствам. Например, замена одного из водородов в органическом соединении на дейтерий заметно отражается на его колебательном (инфракрасном) спектре, что позволяет устанавливать структуру сложных молекул. Подобные замены (“метод меченых атомов”) используют также для установления механизмов сложных

химических и биохимических процессов. Особенно чувствителен метод меченых атомов при использовании вместо протия радиоактивного трития (β -распад, период полураспада 12,5 лет).

Свойства протия и дейтерия

Плотн., г/л (20 К)

Основной метод получения водорода в промышленности – конверсия метана

или гидратация угля при 800-11000 С (катализатор):

CH4 + H2 O = CO + 3 H2

выше 10000 С

«Водяной газ»: C + H2 O = CO + H2

Затем конверсия CO: CO + H2 O = CO2 + H2

4000 C, окислы кобальта

Суммарно: C + 2 H2 O = CO2 + 2 H2

Другие источники водорода.

Коксовый газ: около 55% водорода, 25% метана, до 2% тяжелых углеводородов, 4-6% СО, 2% СО2 , 10-12% азота.

Водород, как продукт горения:

Si + Ca(OH)2 + 2 NaOH = Na2 SiO3 + CaO + 2 H2

На 1 кг пиротехнической смеси выделяется до 370 л водорода .

Водород в виде простого вещества применяют для производства аммиака и гидрирования (отверждения) растительных жиров, для восстановления из оксидов некоторых металлов (молибден, вольфрам), для получения гидридов (LiH, CaH2 ,

LiAlH4 ).

Энтальпия реакции: H. + H. = H2 составляет -436 кДж/моль, поэтому атомарный водород используется для получения высокотемпературного восстановительного «пламени» («горелка Ленгмюра»). Струя водорода в электрической дуге атомизируется при 35000 С на 30%, затем при рекомбинации атомов удается достичь 50000 С.

Сжиженный водород используется в качестве топлива в ракетах (см. кислород). Перспективное экологически чистое топливо для наземного транспорта; идут эксперименты по использованию металлгидридных аккумуляторов водорода. Например, сплав LaNi5 может поглотить в 1,5-2 раза больше водорода, чем его содержится в таком же объеме (как объем сплава) жидкого водорода.

Кислород

Согласно общепринятым сейчас данным, кислород открыт в 1774 г. Дж. Пристли и независимо К.Шееле . История открытия кислорода – хороший пример влияния парадигм на развитие науки (см. Дополнение 1).

По-видимому, на самом деле кислород был открыт гораздо раньше официальной даты. В 1620 г. любой желающий мог прокатиться по Темзе (в Темзе) на подводной лодке конструкции Корнелиуса ван Дреббеля . Лодка двигалась под водой благодаря усилиям дюжины гребцов. По свидетельствам многочисленных очевидцев, изобретатель подводной лодки успешно решил проблему дыхания, “освежая” воздух в ней химическим способом. Роберт Бойль писал в 1661 г. : “... Кроме механической конструкции лодки, у изобретателя имелся химический раствор (liquor), который он

считал главным секретом подводного плавания. И когда время от времени он убеждался в том, что пригодная для дыхания часть воздуха уже израсходована и затрудняла дыхание находящихся в лодке людей, он мог, раскупорив наполненный этим раствором сосуд, быстро восполнить воздух таким содержанием жизненных частей, которые сделали бы его вновь пригодным для дыхания на достаточно длительное время”.

Здоровый человек в спокойном состоянии за сутки прокачивает через свои легкие около 7200 л воздуха, забирая безвозвратно 720 л кислорода. В закрытом помещении объемом 6 м3 человек может продержаться без вентиляции до 12 часов, а при физической работе 3-4 часа. Основная причина затруднения дыхания – не недостаток кислорода, а накопление углекислого газа с 0,3 до 2,5% .

Долгое время основным методом получения кислорода был "бариевый" цикл (получение кислорода по методу Брина) :

BaSO4 -t-→ BaO + SO3 ;

5000 C ->

BaO + 0,5 O2 ====== BaO2 <- 7000 C

Секретный раствор Дреббеля мог быть раствором пероксида водорода: BaO2 + H2 SO4 = BaSO4 ↓ + H2 O2

Получение кислорода при горении пиросмеси: NaClO3 = NaCl + 1,5 O2 + 50,5 кДж

В смеси до 80% NaClO3 , до 10% железного порошка, 4% перекиси бария и стекловата.

Молекула кислорода парамагнитна (практически – бирадикал) , поэтому высока ее активность. Органические вещества на воздухе окисляются через стадию образования пероксидов.

Кислород плавится при 54,8 К, кипит при 90,2 К.

Аллотропная модификация элемента кислорода – вещество озон O3 . Чрезвычайно важна биологическая озоновая защита Земли. На высоте 20-25 км устанавливается равновесие:

УФ<280 нм

УФ 280-320нм

O2 ----> 2 O*

O* + O2 + M --> O3

O3 -------

> O2 + O

(M – N2 , Ar)

В 1974 г обнаружено, что атомарный хлор, который образуется из фреонов на высоте больше 25 км, катализирует распад озона, как бы заменяя "озоновый" ультрафиолет. Этот УФ способен вызывать рак кожи (в США в год до 600 тыс. случаев). Запрет на фреоны в аэрозольных баллонах действует в США с 1978 г.

С 1990 г. в список запрещенных веществ (в 92 странах) включены CH3 CCl3 , CCl4 , хлорбромуглеводороды – их производство сворачивается к 2000 г .

Горение водорода в кислороде

Реакция очень сложная (схема в лекции 3), поэтому до начала практического применения потребовалось длительное изучение.

21 июля 1969 г. первый землянин – Н.Армстронг прошелся по Луне. Ракетаноситель “Сатурн-5” (конструктор – Вернер фон Браун) состоит из трех ступеней. В первой керосин и кислород, во второй и третьей – жидкие водород и кислород. Всего 468 т жидких O2 и H2 . Произведено 13 успешных запусков.

С апреля 1981 г. в США осуществляет полеты “Спейс шаттл”: 713 т жидких O2 и H2 , а также два твердотопливных ускорителя по 590 т (суммарная масса твердого топлива 987 т). Первые 40 км подъем на ТТУ, от 40 до 113 км работают двигатели на водороде и кислороде.

15 мая 1987 г. первый старт “Энергии”, 15 ноября 1988 г. первый и единственный полет “Бурана”. Стартовая масса 2400 т., масса топлива (керосина в

боковых отсеках, жидких O2 и H2 ) 2000 т. Мощность двигателей 125000 МВт, полезный груз 105 т .

Не всегда горение было управляемым и удачным.

В 1936 г. был построен самый большой в мире водородный дирижабль LZ-129 “Гинденбург”. Объем 200000 м3 , длина около 250 м, диаметр 41,2 м. Скорость 135 км/час благодаря 4 двигателям по 1100 л.с., полезная нагрузка 88 т. Дирижабль совершил 37 рейсов через Атлантику и перевез более 3 тыс. пассажиров.

6 мая 1937 г. при причаливании в США дирижабль взорвался и сгорел. Одна из возможных причин – диверсия .

28 января 1986 г. на 74-й секунде полета взорвался “Челленджер” с семью космонавтами – 25-й рейс системы “Шаттл”. Причина – дефект твердотопливного ускорителя.

Демонстрация:

взрыв гремучего газа (смеси водорода с кислородом)

Топливные элементы

Технически важный вариант этой реакции горения – разделение процесса на два:

электроокисление водорода (анод): 2 H2 + 4 OH– - 4 e– = 4 H2 O

электровосстановление кислорода (катод): O2 + 2 H2 O + 4 e– = 4 OH–

Система, в которой осуществляется такое “горение” – топливный элемент . КПД гораздо выше, чем у тепловых электростанций, поскольку отсутствует

специальная стадия генерации теплоты. Максимальный КПД = ∆ G/∆ H; для горения водорода получается 94%.

Эффект известен с 1839 г., но первые практически работающие ТЭ реализованы

в конце XX века в космосе (“Джемини”,“Аполлон”, “Шаттл” – США, “Буран” – СССР) .

Перспективы топливных элементов [ 17 ]

Представитель фирмы Ballard Power Systems, выступая на научной конференции в Вашингтоне, подчеркнул, что коммерчески оправданным двигатель на топливных элементах станет, когда он будет отвечать четырем основным критериям: снижению стоимости вырабатываемой энергии, повышению долговечности, уменьшению размеров установки и возможности быстрого запуска в холодную погоду. Стоимость одного киловатта энергии, выработанного установкой на топливных элементах, должна снизиться до 30 долларов США. Для сравнения, в 2004 году аналогичный показатель составлял 103 долларов, а в 2005 ожидается на уровне 80 долларов. Для достижения данной цены необходимо выпускать не менее 500 тысяч двигателей в год. Европейские ученые более осторожны в прогнозах и считают, что коммерческое использование топливных водородных элементов в автопромышленности начнется не ранее 2020 года.