Желе́зо - элемент побочной подгруппы восьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 26. Обозначается символом Fe (лат. Ferrum). Один из самых распространённых в земной коре металлов (второе место после алюминия). Металл средней активности, восстановитель.

Основные степени окисления — +2, +3

Простое вещество железо - ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе.

Химические свойства простого вещества — железа:

Ржавление и горение в кислороде

1) На воздухе железо легко окисляется в присутствии влаги (ржавление):

4Fe + 3O 2 + 6H 2 O → 4Fe(OH) 3

Накалённая железная проволока горит в кислороде, образуя окалину — оксид железа (II, III):

3Fe + 2O 2 → Fe 3 O 4

3Fe+2O 2 →(Fe II Fe 2 III)O 4 (160 °С)

2) При высокой температуре (700–900°C) железо реагирует с парами воды:

3Fe + 4H 2 O – t° → Fe 3 O 4 + 4H 2 ­

3) Железо реагирует с неметаллами при нагревании:

2Fe+3Cl 2 →2FeCl 3 (200 °С)

Fe + S – t° → FeS (600 °С)

Fe+2S → Fe +2 (S 2 -1) (700°С)

4) В ряду напряжений стоит левее водорода, реагирует с разбавленными кислотами НСl и Н 2 SO 4 , при этом образуются соли железа(II) и выделяется водород:

Fe + 2HCl → FeCl 2 + H 2 ­ (реакции проводятся без доступа воздуха, иначе Fe +2 постепенно переводится кислородом в Fe +3)

Fe + H 2 SO 4 (разб.) → FeSO 4 + H 2 ­

В концентрированных кислотах–окислителях железо растворяется только при нагревании, оно сразу переходит в катион Fе 3+ :

2Fe + 6H 2 SO 4 (конц.) – t° → Fe 2 (SO 4) 3 + 3SO 2 ­ + 6H 2 O

Fe + 6HNO 3 (конц.) – t° → Fe(NO 3) 3 + 3NO 2 ­ + 3H 2 O

(на холоде концентрированные азотная и серная кислоты пассивируют

Железный гвоздь, погруженный в голубоватый раствор медного купороса, постепенно покрывается налетом красной металлической меди

5) Железо вытесняет металлы, стоящие правее его в из растворов их солей.

Fe + CuSO 4 → FeSO 4 + Cu

Амфотерность железа проявляется только в концентрированных щелочах при кипячении:

Fе + 2NaОН (50 %) + 2Н 2 O= Nа 2 ↓+ Н 2

и образуется осадок тетрагидроксоферрата(II) натрия.

Техническое железо - сплавы железа с углеродом: чугун содержит 2,06-6,67 % С, сталь 0,02-2,06 % С, часто присутствуют другие естественные примеси (S, Р, Si) и вводимые искусственно специальные добавки (Мn, Ni, Сr), что придает сплавам железа технически полезные свойства — твердость, термическую и коррозионную стойкость, ковкость и др.

Доменный процесс производства чугуна

Доменный процесс производства чугуна составляют следующие стадии:

а) подготовка (обжиг) сульфидных и карбонатных руд - перевод в оксидную руду:

FeS 2 →Fe 2 O 3 (O 2 ,800°С, -SO 2) FeCO 3 →Fe 2 O 3 (O 2 ,500-600°С, -CO 2)

б) сжигание кокса при горячем дутье:

С (кокс) + O 2 (воздух) →СO 2 (600-700°С) СO 2 + С (кокс) ⇌ 2СО (700-1000 °С)

в) восстановление оксидной руды угарным газом СО последовательно:

Fe 2 O 3 →(CO) (Fe II Fe 2 III)O 4 →(CO) FeO→(CO) Fe

г) науглероживание железа (до 6,67 % С) и расплавление чугуна:

Fе (т) →(C (кокс) 900-1200°С) Fе (ж) (чугун, t пл 1145°С)

В чугуне всегда в виде зерен присутствуют цементит Fe 2 С и графит.

Производство стали

Передел чугуна в сталь проводится в специальных печах (конвертерных, мартеновских, электрических), отличающихся способом обогрева; температура процесса 1700-2000 °С. Продувание воздуха, обогащенного кислородом, приводит к выгоранию из чугуна избыточного углерода, а также серы, фосфора и кремния в виде оксидов. При этом оксиды либо улавливаются в виде отходящих газов (СО 2 , SО 2), либо связываются в легко отделяемый шлак — смесь Са 3 (РO 4) 2 и СаSiO 3 . Для получения специальных сталей в печь вводят легирующие добавки других металлов.

Получение чистого железа в промышленности — электролиз раствора солей железа, например:

FеСl 2 → Fе↓ + Сl 2 (90°С) (электролиз)

(существуют и другие специальные методы, в том числе восстановление оксидов железа водородом).

Чистое железо применяется в производстве специальных сплавов, при изготовлении сердечников электромагнитов и трансформаторов, чугун — в производстве литья и стали, сталь - как конструкционный и инструментальный материалы, в том числе износо-, жаро- и коррозионно-стойкие.

Оксид железа(II) F еО . Амфотерный оксид с большим преобладанием основных свойств. Черный, имеет ионное строение Fе 2+ O 2- . При нагревании вначале разлагается, затем образуется вновь. Не образуется при сгорании железа на воздухе. Не реагирует с водой. Разлагается кислотами, сплавляется со щелочами. Медленно окисляется во влажном воздухе. Восстанавливается водородом, коксом. Участвует в доменном процессе выплавки чугуна. Применяется как компонент керамики и минеральных красок. Уравнения важнейших реакций:

4FеО ⇌(Fe II Fe 2 III) + Fе (560-700 °С, 900-1000°С)

FеО + 2НС1 (разб.) = FеС1 2 + Н 2 O

FеО + 4НNO 3 (конц.) = Fе(NO 3) 3 +NO 2 + 2Н 2 O

FеО + 4NаОН =2Н 2 O + N а 4 F е O 3(красн .) триоксоферрат(II) (400-500 °С)

FеО + Н 2 =Н 2 O + Fе (особо чистое) (350°С)

FеО + С (кокс) = Fе + СО (выше 1000 °С)

FеО + СО = Fе + СO 2 (900°С)

4FеО + 2Н 2 O (влага) + O 2 (воздух) →4FеО(ОН) (t)

6FеО + O 2 = 2(Fe II Fe 2 III)O 4 (300-500°С)

Получение в лаборатории : термическое разложение соединений железа (II) без доступа воздуха:

Fе(ОН) 2 = FеО + Н 2 O (150-200 °С)

FеСОз = FеО + СO 2 (490-550 °С)

Оксид дижелеза (III) – железа( II ) ( Fe II Fe 2 III)O 4 . Двойной оксид. Черный, имеет ионное строение Fe 2+ (Fе 3+) 2 (O 2-) 4 . Термически устойчив до высоких температур. Не реагирует с водой. Разлагается кислотами. Восстанавливается водородом, раскаленным железом. Участвует в доменном процессе производства чугуна. Применяется как компонент минеральных красок (железный сурик ), керамики, цветного цемента. Продукт специального окисления поверхности стальных изделий (чернение, воронение ). По составу отвечает коричневой ржавчине и темной окалине на железе. Применение брутто-формулы Fe 3 O 4 не рекомендуется. Уравнения важнейших реакций:

2(Fe II Fe 2 III)O 4 = 6FеО + O 2 (выше 1538 °С)

(Fe II Fe 2 III)O 4 + 8НС1 (разб.) = FеС1 2 + 2FеС1 3 + 4Н 2 O

(Fe II Fe 2 III)O 4 +10НNO 3 (конц.) =3Fе(NO 3) 3 + NO 2 + 5Н 2 O

(Fe II Fe 2 III)O 4 + O 2 (воздух) = 6Fе 2 O 3 (450-600°С)

(Fe II Fe 2 III)O 4 + 4Н 2 = 4Н 2 O + 3Fе (особо чистое, 1000 °С)

(Fe II Fe 2 III)O 4 + СО =ЗFеО + СO 2 (500-800°C)

(Fe II Fe 2 III)O4 + Fе ⇌4FеО (900-1000 °С, 560-700 °С)

Получение: сгорание железа (см.) на воздухе.

магнетит.

Оксид железа(III) F е 2 О 3 . Амфотерный оксид с преобладанием основных свойств. Красно-коричневый, имеет ионное строение (Fе 3+) 2 (O 2-) 3. Термически устойчив до высоких температур. Не образуется при сгорании железа на воздухе. Не реагирует с водой, из раствора выпадает бурый аморфный гидрат Fе 2 O 3 nН 2 О. Медленно реагирует с кислотами и щелочами. Восстанавливается монооксидом углерода, расплавленным железом. Сплавляется с оксидами других металлов и образует двойные оксиды — шпинели (технические продукты называются ферритами). Применяется как сырье при выплавке чугуна в доменном процессе, катализатор в производстве аммиака, компонент керамики, цветных цементов и минеральных красок, при термитной сварке стальных конструкций, как носитель звука и изображения на магнитных лентах, как полирующее средство для стали и стекла.

Уравнения важнейших реакций:

6Fе 2 O 3 = 4(Fe II Fe 2 III)O 4 +O 2 (1200-1300 °С)

Fе 2 O 3 + 6НС1 (разб.) →2FеС1 3 + ЗН 2 O (t) (600°С,р)

Fе 2 O 3 + 2NaОН (конц.) →Н 2 O+ 2 N а F е O 2 (красн.) диоксоферрат(III)

Fе 2 О 3 + МО=(М II Fе 2 II I)O 4 (М=Сu, Мn, Fе, Ni, Zn)

Fе 2 O 3 + ЗН 2 =ЗН 2 O+ 2Fе (особо чистое, 1050-1100 °С)

Fе 2 O 3 + Fе = ЗFеО (900 °С)

3Fе 2 O 3 + СО = 2(Fe II Fе 2 III)O 4 + СO 2 (400-600 °С)

Получение в лаборатории — термическое разложение солей железа (III) на воздухе:

Fе 2 (SO 4) 3 = Fе 2 O 3 + 3SO 3 (500-700 °С)

4{Fе(NO 3) 3 9 Н 2 O} = 2Fе a O 3 + 12NO 2 + 3O 2 + 36Н 2 O (600-700 °С)

В природе — оксидные руды железа гематит Fе 2 O 3 и лимонит Fе 2 O 3 nН 2 O

Гидроксид железа (II) F е(ОН) 2 . Амфотерный гидроксид с преобладанием основных свойств. Белый (иногда с зеленоватым оттенком), связи Fе — ОН преимущественно ковалентные. Термически неустойчив. Легко окисляется на воздухе, особенно во влажном состоянии (темнеет). Нерастворим в воде. Реагирует с разбавленными кислотами, концентрированными щелочами. Типичный восстановитель. Промежуточный продукт при ржавлении железа. Применяется в изготовлении активной массы железоникелевых аккумуляторов.

Уравнения важнейших реакций:

Fе(OН) 2 = FеО + Н 2 O (150-200 °С, в атм.N 2)

Fе(ОН) 2 + 2НС1 (разб.) =FеС1 2 + 2Н 2 O

Fе(ОН) 2 + 2NаОН (> 50%) = Nа 2 ↓ (сине-зеленый) (кипячение)

4Fе(ОН) 2 (суспензия) + O 2 (воздух) →4FеО(ОН)↓ + 2Н 2 O (t)

2Fе(ОН) 2 (суспензия) +Н 2 O 2 (разб.) = 2FеО(ОН)↓ + 2Н 2 O

Fе(ОН) 2 + КNO 3 (конц.) = FеО(ОН)↓ + NO+ КОН (60 °С)

Получение : осаждение из раствора щелочами или гидратом аммиака в инертной атмосфере:

Fе 2+ + 2OH (разб.) = F е(ОН) 2 ↓

Fе 2+ + 2(NH 3 Н 2 O) = F е(ОН) 2 ↓ + 2NH 4

Метагидроксид железа F еО(ОН). Амфотерный гидроксид с преобладанием основных свойств. Светло-коричневый, связи Fе — О и Fе — ОН преимущественно ковалентные. При нагревании разлагается без плавления. Нерастворим в воде. Осаждается из раствора в виде бурого аморфного полигидрата Fе 2 O 3 nН 2 O, который при выдерживании под разбавленным щелочным раствором или при высушивании переходит в FеО(ОН). Реагирует с кислотами, твердыми щелочами. Слабый окислитель и восстановитель. Спекается с Fе(ОН) 2 . Промежуточный продукт при ржавлении железа. Применяется как основа желтых минеральных красок и эмалей, поглотитель отходящих газов, катализатор в органическом синтезе.

Соединение состава Fе(ОН) 3 не известно (не получено).

Уравнения важнейших реакций:

Fе 2 O 3 . nН 2 O→(200-250 °С, — H 2 O ) FеО(ОН)→(560-700° С на воздухе, -H2O) →Fе 2 О 3

FеО(ОН) + ЗНС1 (разб.) =FеС1 3 + 2Н 2 O

FeO(OH)→Fe 2 O 3 . nH 2 O -коллоид (NаОН (конц.))

FеО(ОН)→N а 3 [ F е(ОН) 6 ] белый , Nа 5 и К 4 соответственно; в обоих случаях выпадает синий продукт одинакового состава и строения, КFе III . В лаборатории этот осадок называют берлинская лазурь , или турнбуллева синь :

Fе 2+ + К + + 3- = КFе III ↓

Fе 3+ + К + + 4- = КFе III ↓

Химические названия исходных реактивов и продукта реакций:

К 3 Fе III - гексацианоферрат (III) калия

К 4 Fе III - гексацианоферрат (II) калия

КFе III - гексацианоферрат (II) железа (Ш) калия

Кроме того, хорошим реактивом на ионы Fе 3+ является тиоцианат-ион NСS — , железо (III) соединяется с ним, и появляется ярко-красная («кровавая») окраска:

Fе 3+ + 6NСS — = 3-

Этим реактивом (например, в виде соли КNСS) можно обнаружить даже следы железа (III) в водопроводной воде, если она проходит через железные трубы, покрытые изнутри ржавчиной.

ОПРЕДЕЛЕНИЕ

Железо - элемент восьмой группы четвёртого периода Периодической системы химических элементов Д. И. Менделеева.

А томный номер — 26. Символ – Fe (лат. «ferrum»). Один из самых распространённых в земной коре металлов (второе место после алюминия).

Физические свойства железа

Железо – металл серого цвета. В чистом виде оно довольно мягкое, ковкое и тягучее. Электронная конфигурация внешнего энергетического уровня – 3d 6 4s 2 . В своих соединениях железо проявляет степени окисления «+2» и «+3». Температура плавления железа – 1539С. Железо образует две кристаллические модификации: α- и γ-железо. Первая из них имеет кубическую объемноцентрированную решетку, вторая – кубическую гранецентрированную. α-Железо термодинамически устойчиво в двух интервалах температур: ниже 912 и от 1394С до температуры плавления. Между 912 и 1394С устойчиво γ-железо.

Механические свойства железа зависят от его чистоты – содержания в нем даже весьма малых количеств других элементов. Твердое железо обладает способностью растворять в себе многие элементы.

Химические свойства железа

Во влажном воздухе железо быстро ржавеет, т.е. покрывается бурым налетом гидратированного оксида железа, который вследствие своей рыхлости не защищает железо от дальнейшего окисления. В воде железо интенсивно корродирует; при обильном доступе кислорода образуются гидратные формы оксида железа (III):

2Fe + 3/2O 2 + nH 2 O = Fe 2 O 3 ×H 2 O.

При недостатке кислорода или при затрудненном доступе образуется смешанный оксид (II, III) Fe 3 O 4:

3Fe + 4H 2 O (v) ↔ Fe 3 O 4 + 4H 2 .

Железо растворяется в соляной кислоте любой концентрации:

Fe + 2HCl = FeCl 2 + H 2 .

Аналогично происходит растворение в разбавленной серной кислоте:

Fe + H 2 SO 4 = FeSO 4 + H 2 .

В концентрированных растворах серной кислоты железо окисляется до железа (III):

2Fe + 6H 2 SO 4 = Fe 2 (SO 4) 3 + 3SO 2 + 6H 2 O.

Однако, в серной кислоте, концентрация которой близка к 100%, железо становится пассивным и взаимодействия практически не происходит. В разбавленных и умеренно концентрированных растворах азотной кислоты железо растворяется:

Fe + 4HNO 3 = Fe(NO 3) 3 + NO +2H 2 O.

При высоких концентрациях азотной кислоты растворение замедляется и железо становится пассивным.

Как и другие металлы железо вступает в реакции с простыми веществами. Реакции взаимодействия железа с галогенами (вне зависимости от типа галогена) протекают при нагревании. Взаимодействие железа с бромом протекает при повышенном давлении паров последнего:

2Fe + 3Cl 2 = 2FeCl 3 ;

3Fe + 4I 2 = Fe 3 I 8 .

Взаимодействие железа с серой (порошок), азотом и фосфором также происходит при нагревании:

6Fe + N 2 = 2Fe 3 N;

2Fe + P = Fe 2 P;

3Fe + P = Fe 3 P.

Железо способно реагировать с такими неметаллами, как углерод и кремний:

3Fe + C = Fe 3 C;

Среди реакций взаимодействия железа со сложными веществами особую роль играют следующие реакции — железо способно восстанавливать металлы, стоящие в ряду активности правее него, из растворов солей (1), восстанавливать соединения железа (III) (2):

Fe + CuSO 4 = FeSO 4 + Cu (1);

Fe + 2FeCl 3 = 3FeCl 2 (2).

Железо, при повышенном давлении, реагирует с несолеобразующим оксидом – СО с образованием веществ сложного состава – карбонилов — Fe(CO) 5 , Fe 2 (CO) 9 и Fe 3 (CO) 12 .

Железо при отсутствии примесей устойчиво в воде и в разбавленных растворах щелочей.

Получение железа

Основной способ получения железа – из железной руды (гематит, магнетит) или электролиз растворов его солей (в этом случае получают «чистое» железо, т.е. железо без примесей).

Примеры решения задач

ПРИМЕР 1

Задание Железная окалина Fe 3 O 4 массой 10 г была сначала обработана 150 мл раствора соляной кислоты (плотность 1,1 г/мл) с массовой долей хлороводорода 20%, а затем в полученный раствор добавили избыток железа. Определите состав раствора (в % по массе).
Решение Запишем уравнения реакций согласно условию задачи:

8HCl + Fe 3 O 4 = FeCl 2 +2FeCl 3 + 4H 2 O (1);

2FeCl 3 + Fe = 3FeCl 2 (2).

Зная плотность и объем раствора соляной кислоты, можно найти его массу:

m sol (HCl) = V(HCl) × ρ (HCl);

m sol (HCl) = 150×1,1 = 165 г.

Рассчитаем массу хлороводорода:

m(HCl) = m sol (HCl) ×ω(HCl)/100%;

m(HCl) = 165×20%/100% = 33 г.

Молярная масса (масса одного моль) соляной кислоты, рассчитанная с помощью таблицы химических элементов Д.И. Менделеева – 36,5 г/моль. Найдем количество вещества хлороводорода:

v(HCl) = m(HCl)/M(HCl);

v(HCl) = 33/36,5 = 0,904 моль.

Молярная масса (масса одного моль) окалины, рассчитанная с помощью таблицы химических элементов Д.И. Менделеева – 232 г/моль. Найдем количество вещества окалины:

v(Fe 3 O 4) = 10/232 = 0,043 моль.

Согласно уравнению 1, v(HCl): v(Fe 3 O 4) = 1:8, следовательно, v(HCl) = 8 v(Fe 3 O 4) = 0,344 моль. Тогда, количество вещества хлородорода, рассчитанное по уравнению (0,344 моль) будет меньше, чем указанное в условии задачи (0,904 моль). Следовательно, соляная кислота находится в избытке и будет протекать еще одна реакция:

Fe + 2HCl = FeCl 2 + H 2 (3).

Определим количество вещества хлоридов железа, образующихся в результате первой реакции (индексами обозначим конкретную реакцию):

v 1 (FeCl 2):v(Fe 2 O 3) = 1:1 = 0,043 моль;

v 1 (FeCl 3):v(Fe 2 O 3) = 2:1;

v 1 (FeCl 3) = 2×v(Fe 2 O 3) = 0,086 моль.

Определим количество хлороводорода, которое не прореагировало в реакции 1 и количество вещества хлорида железа (II), образовавшееся в ходе реакции 3:

v rem (HCl) = v(HCl) – v 1 (HCl) = 0,904 – 0,344 = 0,56 моль;

v 3 (FeCl 2): v rem (HCl) = 1:2;

v 3 (FeCl 2) = 1/2×v rem (HCl) = 0,28 моль.

Определим количество вещества FeCl 2 , образовавшегося в ходе реакции 2, общее количество вещества FeCl 2 и его массу:

v 2 (FeCl 3) = v 1 (FeCl 3) = 0,086 моль;

v 2 (FeCl 2): v 2 (FeCl 3) = 3:2;

v 2 (FeCl 2) = 3/2× v 2 (FeCl 3) = 0,129 моль;

v sum (FeCl 2) = v 1 (FeCl 2) + v 2 (FeCl 2) + v 3 (FeCl 2) = 0,043+0,129+0,28 = 0,452 моль;

m(FeCl 2) = v sum (FeCl 2) ×M(FeCl 2) = 0,452×127 = 57,404 г.

Определим количество вещества и массу железа, вступившего в реакции 2 и 3:

v 2 (Fe): v 2 (FeCl 3) = 1:2;

v 2 (Fe) = 1/2× v 2 (FeCl 3) = 0,043 моль;

v 3 (Fe): v rem (HCl) = 1:2;

v 3 (Fe) = 1/2×v rem (HCl) = 0,28 моль;

v sum (Fe) = v 2 (Fe) + v 3 (Fe) = 0,043+0,28 = 0,323 моль;

m(Fe) = v sum (Fe) ×M(Fe) = 0,323 ×56 = 18,088 г.

Вычислим количество вещества и массу водорода, выделившегося в реакции 3:

v(H 2) = 1/2×v rem (HCl) = 0,28 моль;

m(H 2) = v(H 2) ×M(H 2) = 0,28 ×2 = 0,56 г.

Определяем массу полученного раствора m’ sol и массовую долю FeCl 2 в нём:

m’ sol = m sol (HCl) + m(Fe 3 O 4) + m(Fe) – m(H 2);

  • Обозначение - Fe (Iron);
  • Период - IV;
  • Группа - 8 (VIII);
  • Атомная масса - 55,845;
  • Атомный номер - 26;
  • Радиус атома = 126 пм;
  • Ковалентный радиус = 117 пм;
  • Распределение электронов - 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 ;
  • t плавления = 1535°C;
  • t кипения = 2750°C;
  • Электроотрицательность (по Полингу/по Алпреду и Рохову) = 1,83/1,64;
  • Степень окисления: +8, +6, +4, +3, +2, +1, 0;
  • Плотность (н. у.) = 7,874 г/см 3 ;
  • Молярный объем = 7,1 см 3 /моль.

Соединения железа :

Железо является самым распространенным металлом в земной коре (5,1% по массе) после алюминия .

На Земле железо в свободном состоянии встречается в незначительных количествах в виде самородков, а также в упавших метеоритах.

Промышленным способом железо добывают на железнорудных месторождениях, из железосодержащих минералов: магнитного, красного, бурого железняка.

Следует сказать, что железо входит в состав многих природных минералов, обуславливая их природную окраску. Окраска минералов зависит зависит от концентрации и соотношения ионов железа Fe 2+ /Fe 3+ , а также от атомов, окружающих эти ионы. Например, присутствие примесей ионов железа влияет на окраску многих драгоценных и полудрагоценных камней: топазов (от бледно-желтого до красного), сапфиров (от голубого до темно-синего), аквамаринов (от светло-голубого до зеленовато-голубого) и проч.

Железо содержится в тканях животных и растений, например, в организме взрослого человека присутствует около 5 г железа. Железо является жизненно важным элементом, оно входит в состав белка гемоглобина, участвуя в транспортировке кислорода от легких к тканям и клеткам. При недостатке железа в организме человека развивается малокровие (железодефицитная анемия).


Рис. Строение атома железа .

Электронная конфигурация атома железа - 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 (см. Электронная структура атомов). В образовании химических связей с другими элементами могут участвовать 2 электрона, находящихся на внешнем 4s-уровне + 6 электронов 3d-подуровня (всего 8 электронов), поэтому в соединениях железо может принимать степени окисления +8, +6, +4, +3, +2, +1, (наиболее часто встречаются +3, +2). Железо обладает средней химической активностью.


Рис. Степени окисления железа: +2, +3.

Физические свойства железа:

  • металл серебристо-белого цвета;
  • в чистом виде достаточно мягкий и пластичный;
  • хобладает хорошей тепло- и электропроводимостью.

Железо существует в виде четырех модификаций (различаются строением кристаллической решетки): α-железо; β-железо; γ-железо; δ-железо.

Химические свойства железа

  • реагирует с кислородом, в зависимости от температуры и концентрации кислорода могут образовываться различные продукты или смесь продуктов окисления железа (FeO, Fe 2 O 3 , Fe 3 O 4):
    3Fe + 2O 2 = Fe 3 O 4 ;
  • окисление железа при низких температурах:
    4Fe + 3O 2 = 2Fe 2 O 3 ;
  • реагирует с водяным паром:
    3Fe + 4H 2 O = Fe 3 O 4 + 4H 2 ;
  • мелко раздробленное железо реагирует при нагревании с серой и хлором (сульфид и хлорид железа):
    Fe + S = FeS; 2Fe + 3Cl 2 = 2FeCl 3 ;
  • при высоких температурах реагирует с кремнием, углеродом, фосфором:
    3Fe + C = Fe 3 C;
  • с другими металлами и с неметаллами железо может образовывать сплавы;
  • железо вытесняет менее активные металлы из их солей:
    Fe + CuCl 2 = FeCl 2 + Cu;
  • с разбавленными кислотами железо выступает в роли восстановителя, образуя соли:
    Fe + 2HCl = FeCl 2 + H 2 ;
  • с разбавленной азотной кислотой железо образует различные продукты восстановления кислоты, в зависимости от ее концентрации (N 2 , N 2 O, NO 2).

Получение и применение железа

Промышленное железо получают выплавкой чугуна и стали.

Чугун - это сплав железа с примесями кремния, марганца, серы, фосфора, углерода. Содержание углерода в чугуне превышает 2% (в стали менее 2%).

Чистое железо получают:

  • в кислородных конверторах из чугуна;
  • восстановлением оксидов железа водородом и двухвалентным оксидом углерода;
  • электролизом соответствующих солей.

Чугун получают из железных руд восстановлением оксидов железа. Выплавку чугуна осуществляют в доменных печах. В качестве источника тепла в доменной печи используется кокс.

Доменная печь является очень сложным техническим сооружением высотой в несколько десятков метров. Она выкладывается из огнеупорного кирпича и защищается внешним стальным кожухом. По состоянию на 2013 год самая крупная доменная печь была построена в Южной Корее сталелитейной компанией POSCO на металлургическом заводе в городе Кванъян (объем печи после модернизации составил 6000 кубометров при ежегодной производительности 5 700 000 тонн).


Рис. Доменная печь .

Процесс выплавки чугуна в доменной печи идет непрерывно в течение нескольких десятилетий, пока печь не выработает свой ресурс.


Рис. Процесс выплавки чугуна в доменной печи .

  • обогащенные руды (магнитный, красный, бурый железняк) и кокс засыпаются через колошник, расположенный в самом верху доменной печи;
  • процессы восстановления железа из руды под действием оксида углерода (II) протекают в средней части доменной печи (шахте) при температуре 450-1100°C (оксиды железа восстанавливаются до металла):
    • 450-500°C - 3Fe 2 O 3 + CO = 2Fe 3 O 4 + CO 2 ;
    • 600°C - Fe 3 O 4 + CO = 3FeO + CO 2 ;
    • 800°C - FeO + CO = Fe + CO 2 ;
    • часть двухвалентного оксида железа восстанавливается коксом: FeO + C = Fe + CO.
  • параллельно идет процесс восстановления оксидов кремния и марганца (входят в железную руду в виде примесей), кремний и марганец входят в состав выплавляющегося чугуна:
    • SiO 2 + 2C = Si + 2CO;
    • Mn 2 O 3 + 3C = 2Mn + 3CO.
  • при термическом разложении известняка (вносится в доменную печь) образуется оксид кальция, который реагирует с оксидами кремния и алюминия, содержащихся в руде:
    • CaCO 3 = CaO + CO 2 ;
    • CaO + SiO 2 = CaSiO 3 ;
    • CaO + Al 2 O 3 = Ca(AlO 2) 2 .
  • при 1100°C процесс восстановления железа прекращается;
  • ниже шахты располагается распар, самая широкая часть доменной печи, ниже которой следует заплечник, в котором выгорает кокс и образуются жидкие продукты плавки - чугун и шлаки, накапливающиеся в самом низу печи - горне;
  • в верхней части горна при температуре 1500°C в струе вдуваемого воздуха происходит интенсивное сгорание кокса: C + O 2 = CO 2 ;
  • проходя через раскаленный кокс, оксид углерода (IV) превращается в оксид углерода (II), являющийся восстановителем железа (см. выше): CO 2 + C = 2CO;
  • шлаки, образованные силикатами и алюмосиликатами кальция, располагаются выше чугуна, защищая его от действия кислорода;
  • через специальные отверстия, расположенные на разных уровнях горна, чугун и шлаки выпускаются наружу;
  • бОльшая часть чугуна идет на дальнейшую переработку - выплавку стали.

Сталь выплавляют из чугуна и металлолома конверторным способом (мартеновский уже устарел, хотя еще и применяется) или электроплавкой (в электропечах, индукционных печах). Суть процесса (передела чугуна) заключается в понижении концентрации углерода и других примесей путем окисления кислородом.

Как уже было сказано выше, концентрация углерода в стали не превышает 2%. Благодаря этому, сталь в отличие от чугуна достаточно легко поддается ковке и прокатке, что позволяет изготавливать из нее разнообразные изделия, обладающие высокой твердостью и прочностью.

Твердость стали зависит от содержания углерода (чем больше углерода, тем тверже сталь) в конкретной марке стали и условий термообработки. При отпуске (медленном охлаждении) сталь становится мягкой; при закалке (быстром охлаждении) сталь получается очень твердой.

Для придания стали нужных специфических свойств в нее добавляют лигирующие добавки: хром, никель, кремний, молибден, ванадий, марганец и проч.

Чугун и сталь являются важнейшими конструкционными материалами в подавляющем большинстве отраслей народного хозяйства.

Биологическая роль железа:

  • в организме взрослого человека содержится около 5 г железа;
  • железо играет важную роль в работе кроветворных органов;
  • железо входит в состав многих сложных белковых комплексов (гемоглобина, миоглобина, различных ферментов).

68. Соединения железа

Оксид железа (II) FeO – черное кристаллическое вещество, нерастворимое в воде и щелочах. FeO соответствует основание Fe(OH)2 .

Получение. Оксид железа (II) можно получить неполным восстановлением магнитного железняка оксидом углерода (II):

Химические свойства. Является основным оксидом. Реагируя с кислотами, образует соли:

Гидроксид железа (II) Fe(OH)2 – кристаллическое вещество белого цвета.

Получение. Гидроксид железа (II) получается из солей двухвалентного железапри действии растворов щелочей:

Химические свойства. Основный гидроксид. Вступает в реакции с кислотами:

На воздухе Fe(OH)2 окисляется до Fе(ОН)3:

Оксид железа(III) Fe2O3 – вещество бурого цвета, встречается в природе в виде красного железняка, нерастворим в воде.

Получение . При обжиге пирита:

Химические свойства. Проявляет слабые амфотерные свойства. При взаимодействии со щелочами образует соли:

Гидроксид железа (III) Fe(OH)3 – вещество красно-бурого цвета, нерастворимое в воде и избытке щелочи.

Получение . Получают путем окисления оксида железа (III) и гидроксида железа (II).

Химические свойства. Является амфотерным соединением (с преобладанием основных свойств). Выпадает в осадок при действии щелочей на соли трехвалентного железа:

Соли двухвалентного железа получают взаимодействием металлического железа с соответствующими кислотами. Они сильно гидро-лизуются, потому их водные растворы – энергичные восстановители:

При нагревании выше 480 °C разлагается, образуя оксиды:

При действии щелочей на сульфат железа (II) образуется гидроксид железа (II):

Образует кристаллогидрат – FeSO4?7Н2О (железный купорос). Хлорид железа (III) FeCl3 – кристаллическое вещество темно-коричневого цвета.

Химические свойства. Растворим в воде. FeCl3 проявляет окислительные свойства.

Восстановители – магний, цинк, сероводород, окисляются без нагревания.

В организме человека содержится около 5 г железа, большая часть его (70%) входит в состав гемоглобина крови.

Физические свойства

В свободном состоянии железо - серебристо-белый металл с сероватым оттенком. Чистое железо пластично, обладает ферромагнитными свойствами. На практике обычно используются сплавы железа - чугуны и стали.


Fe - самый главный и самый распространенный элемент из девяти d-металлов побочной подгруппы VIII группы. Вместе с кобальтом и никелем образует «семейство железа».


При образовании соединений с другими элементами чаще использует 2 или 3 электрона (В = II, III).


Железо, как и почти все d-элементы VIII группы, не проявляет высшую валентность, равную номеру группы. Его максимальная валентность достигает VI и проявляется крайне редко.


Наиболее характерны соединения, в которых атомы Fe находятся в степенях окисления +2 и +3.


Способы получения железа

1. Техническое железо (в сплаве с углеродом и другими примесями) получают карботермическим восстановлением его природных соединений по схеме:




Восстановление происходит постепенно, в 3 стадии:


1) 3Fe 2 O 3 + СО = 2Fe 3 O 4 + СO 2


2) Fe 3 O 4 + СО = 3FeO +СO 2


3) FeO + СО = Fe + СO 2


Образующийся в результате этого процесса чугун содержит более 2% углерода. В дальнейшем из чугуна получают стали - сплавы железа, содержащие менее 1,5 % углерода.


2. Очень чистое железо получают одним из способов:


а) разложение пентакарбонила Fe


Fe(CO) 5 = Fe + 5СО


б) восстановление водородом чистого FeO


FeO + Н 2 = Fe + Н 2 O


в) электролиз водных растворов солей Fe +2


FeC 2 O 4 = Fe + 2СO 2

оксалат железа (II)

Химические свойства

Fe - металл средней активности, проявляет общие свойства, характерные для металлов.


Уникальной особенностью является способность к «ржавлению» во влажном воздухе:



В отсутствие влаги с сухим воздухом железо начинает заметно реагировать лишь при Т > 150°С; при прокаливании образуется «железная окалина» Fe 3 O 4:


3Fe + 2O 2 = Fe 3 O 4


В воде в отсутствие кислорода железо не растворяется. При очень высокой температуре Fe реагирует с водяным паром, вытесняя из молекул воды водород:


3 Fe + 4Н 2 O(г) = 4H 2


Процесс ржавления по своему механизму является электрохимической коррозией. Продукт ржавления представлен в упрощенном виде. На самом деле образуется рыхлый слой смеси оксидов и гидроксидов переменного состава. В отличие от пленки Аl 2 О 3 , этот слой не предохраняет железо от дальнейшего разрушения.

Виды коррозии


Защита железа от коррозии


1. Взаимодействие с галогенами и серой при высокой температуре.

2Fe + 3Cl 2 = 2FeCl 3


2Fe + 3F 2 = 2FeF 3



Fe + I 2 = FeI 2



Образуются соединения, в которых преобладает ионный тип связи.

2. Взаимодействие с фосфором, углеродом, кремнием (c N 2 и Н 2 железо непосредственно не соединяется, но растворяет их).

Fe + Р = Fe x P y


Fe + C = Fe x C y


Fe + Si = Fe x Si y


Образуются вещества переменного состава, т к. бертоллиды (в соединениях преобладает ковалентный характер связи)

3. Взаимодействие с «неокисляющими» кислотами (HCl, H 2 SO 4 разб.)

Fe 0 + 2Н + → Fe 2+ + Н 2


Поскольку Fe располагается в ряду активности левее водорода (Е° Fe/Fe 2+ = -0,44В), оно способно вытеснять Н 2 из обычных кислот.


Fe + 2HCl = FeCl 2 + Н 2


Fe + H 2 SO 4 = FeSO 4 + Н 2

4. Взаимодействие с «окисляющими» кислотами (HNO 3 , H 2 SO 4 конц.)

Fe 0 - 3e - → Fe 3+


Концентрированные HNO 3 и H 2 SO 4 «пассивируют» железо, поэтому при обычной температуре металл в них не растворяется. При сильном нагревании происходит медленное растворение (без выделения Н 2).


В разб. HNO 3 железо растворяется, переходит в раствор в виде катионов Fe 3+ а анион кислоты восстанавливется до NO*:


Fe + 4HNO 3 = Fe(NO 3) 3 + NO + 2Н 2 O


Очень хорошо растворяется в смеси НСl и HNO 3

5. Отношение к щелочам

В водных растворах щелочей Fe не растворяется. С расплавленными щелочами реагирует только при очень высоких температурах.

6. Взаимодействие с солями менее активных металлов

Fe + CuSO 4 = FeSO 4 + Cu


Fe 0 + Cu 2+ = Fe 2+ + Cu 0

7. Взаимодействие с газообразным монооксидом углерода (t = 200°C, P)

Fe(порошок) + 5CO (г) = Fe 0 (CO) 5 пентакарбонил железа

Соединения Fe(III)

Fe 2 O 3 - оксид железа (III).

Красно-бурый порошок, н. р. в Н 2 O. В природе - «красный железняк».

Способы получения:

1) разложение гидроксида железа (III)


2Fe(OH) 3 = Fe 2 O 3 + 3H 2 O


2) обжиг пирита


4FeS 2 + 11O 2 = 8SO 2 + 2Fe 2 O 3


3) разложение нитрата


Химические свойства

Fe 2 O 3 - основный оксид с признаками амфотерности.


I. Основные свойства проявляются в способности реагировать с кислотами:


Fe 2 О 3 + 6Н + = 2Fe 3+ + ЗН 2 О


Fe 2 О 3 + 6HCI = 2FeCI 3 + 3H 2 O


Fe 2 О 3 + 6HNO 3 = 2Fe(NO 3) 3 + 3H 2 O


II. Слабокислотные свойства. В водных растворах щелочей Fe 2 O 3 не растворяется, но при сплавлении с твердыми оксидами, щелочами и карбонатами происходит образование ферритов:


Fe 2 О 3 + СаО = Ca(FeО 2) 2


Fe 2 О 3 + 2NaOH = 2NaFeО 2 + H 2 O


Fe 2 О 3 + MgCO 3 = Mg(FeO 2) 2 + CO 2


III. Fe 2 О 3 - исходное сырье для получения железа в металлургии:


Fe 2 О 3 + ЗС = 2Fe + ЗСО или Fe 2 О 3 + ЗСО = 2Fe + ЗСO 2

Fe(OH) 3 - гидроксид железа (III)

Способы получения:

Получают при действии щелочей на растворимые соли Fe 3+ :


FeCl 3 + 3NaOH = Fe(OH) 3 + 3NaCl


В момент получения Fe(OH) 3 - красно-бурый слизистоаморфный осадок.


Гидроксид Fe(III) образуется также при окислении на влажном воздухе Fe и Fe(OH) 2:


4Fe + 6Н 2 O + 3O 2 = 4Fe(OH) 3


4Fe(OH) 2 + 2Н 2 O + O 2 = 4Fe(OH) 3


Гидроксид Fe(III) является конечным продуктом гидролиза солей Fe 3+ .

Химические свойства

Fe(OH) 3 - очень слабое основание (намного слабее, чем Fe(OH) 2). Проявляет заметные кислотные свойства. Таким образом, Fe(OH) 3 имеет амфотерный характер:


1) реакции с кислотами протекают легко:



2) свежий осадок Fe(OH) 3 растворяется в горячих конц. растворах КОН или NaOH с образованием гидроксокомплексов:


Fe(OH) 3 + 3КОН = K 3


В щелочном растворе Fe(OH) 3 может быть окислен до ферратов (солей не выделенной в свободном состоянии железной кислоты H 2 FeO 4):


2Fe(OH) 3 + 10КОН + 3Br 2 = 2K 2 FeO 4 + 6КВr + 8Н 2 O

Соли Fe 3+

Наиболее практически важными являются: Fe 2 (SO 4) 3 , FeCl 3 , Fe(NO 3) 3 , Fe(SCN) 3 , K 3 4- желтая кровяная соль = Fe 4 3 берлинская лазурь (темно-синий осадок)


б) Fe 3+ + 3SCN - = Fe(SCN) 3 роданид Fe(III) (р-р кроваво-красного цвета)