Пилотирование самолетов стало увлечением, объединившим взрослых и детей со всего мира. Но с развитием данного развлечения развиваются и движители для мини самолетов. Самый многочисленный двигатель для самолетов такого типа является электрический. Но с недавних пор на арене двигателей для RC авиамоделей появились реактивные двигатели (РД).

Они постоянно дополняется всевозможными инновациями и придумками конструкторов. Задача перед ними стоит довольно сложная, но возможная. После создания одной из первых моделей уменьшенного двигателя, которая стала значимой для авиамоделирования, в 1990-х годах изменилось многое. Первый ТРД был 30 см в длину, около 10 см в диаметре и весом в 1,8 кг, но за десятки лет, у конструкторов получилось создать более компактную модель. Если основательно взяться за рассмотрение их строения, то можно поубавить сложностей и рассмотреть вариант создания собственного шедевра.

Устройство РД

Турбореактивные двигатели (ТРД) работают благодаря расширению нагретого газа. Это самые эффективные двигатели для авиации, даже мини работающие на углеродном топливе. С момента появления идеи создания самолета без пропеллера, идея турбины стала развиваться во всем обществе инженеров и конструкторов. ТРД состоит из следующих компонентов:

  • Диффузор;
  • Колесо турбины;
  • Камера сгорания;
  • Компрессор;
  • Статор;
  • Конус сопла;
  • Направляющий аппарат;
  • Подшипники;
  • Сопло приема воздуха;
  • Топливная трубка и многое другое.

Принцип работы

В основе строения турбированного двигателя лежит вал, который крутится при помощи тяги компрессора и нагнетает быстрым вращением воздух, сжимая его и направляя из статора. Попав в более свободное пространство, воздух сразу же начинает расширяться, пытаясь обрести привычное давление, но в камере внутреннего сгорания он подогревается топливом, что заставляет его расшириться еще сильней.

Единственный путь для выхода воздух под давлением - выйти из крыльчатки. С огромной скоростью он стремится на свободу, направляясь в противоположную от компрессора сторону, к крыльчатке, которая раскручивается мощным потоком, и начинает быстро вращаться, придавая тяговой силы всему движку. Часть полученной энергии начинает вращать турбину, приводя в действие компрессор с большей силой, а остаточное давление освобождается через сопло двигателя мощным импульсом, направленным в хвостовую часть.

Чем больше воздуха нагревается и сжимается, тем сильней нагнетаемое давление, и температура внутри камер. Образовываемые выхлопные газы раскручивают крыльчатку, вращают вал и дают возможность компрессору постоянно получать свежие потоки воздуха.

Виды управления ТРД

Существует три вида управления двигателем:



Виды двигателей для авиамоделей

Реактивные двигатели на авиамодели бывают нескольких основных типов и двух классов: воздушно-реактивные и ракетные . Некоторые из них устарели, другие слишком затратные, но азартные любители управляемых авиамоделей пытаются опробовать новый двигатель в действии. Со средней скоростью полета в 100 км/час авиамодели становятся только интересней для зрителя и пилота. Популярнейшие типы двигателя отличаются для управляемых и стендовых моделей, в силу разного КПД, веса и тяги. Всего типов в авиамоделировании немного:

  • Ракетный;
  • Прямоточный воздушно-реактивный (ПРВД);
  • Пульсирующий воздушно-реактивный (ПуРВД);
  • Турбореактивный (ТРД);

Ракетный используется только на стендовых моделях, и то довольно редко. Его принцип работы отличается от воздушно-реактивного. Основным параметром здесь выступает удельный импульс. Популярен из-за отсутствия необходимости взаимодействия с кислородом и возможности работы в невесомости.

Прямоточный сжигает воздух из окружающей среды, который всасывается из входного диффузора в камеру сгорания. Воздухозаборник в этом случае направляет кислород в двигатель, который благодаря внутреннему строению заставляет нагнетать давление у свежего потока воздуха. Во время работы, воздух подходит к воздухозаборнику со скоростью полета, но во входном сопле она резко уменьшается в несколько раз. За счет замкнутого пространства нагнетается давление, которое при смешивании с топливом выплескивает из обратной стороны выхлоп с огромной скоростью.

Пульсирующий работает идентично прямоточному, но в его случае сгорание топлива непостоянное, а периодичное. При помощи клапанов топливо подается только в необходимые моменты, когда в камере сгорания начинает падать давление. В своем большинстве реактивный пульсирующий двигатель совершает от 180 до 270 циклов впрыскивания топлива в секунду. Чтобы стабилизировать состояние давления (3,5 кГ/см2), используется принудительная подача воздуха с помощью насосов.

Турбореактивный двигатель, устройство которого вы рассматривали выше, обладает самым скромным расходом топлива, за счет чего и ценятся. Единственным их минусов является низкое соотношение веса и тяги. Турбинные РД позволяют развить скорость модели до 350 км/ч, при этом холостой ход двигателя держится на уровне 35 000 оборотов в минуту.

Технические характеристики

Важным параметром, заставляющим авиамодели летать, является тяга. Она обеспечивает хорошую мощность, способную поднимать в воздух большие грузы. Тяга у старых и новых двигателей отличается, но у моделей, созданных по чертежам 1960-х годов, работающих на современном топливе, и модернизированных современными приспособлениями, КПД и мощность существенно возрастают.

В зависимости от типа РД, характеристики, как и принцип работы, могут отличаться, но всем им для запуска необходимо создать оптимальные условия. Запускаются двигатели при помощи стартера — других двигателей, преимущественно электрических, которые прикрепляются к валу двигателя перед входных диффузором, либо запуск происходит раскручиванием вала с помощью сжатого воздуха, подаваемого на крыльчатку.

двигателя GR-180

На примере данных из технического паспорта серийного турбореактивного двигателя GR-180 можно увидеть фактические характеристики рабочей модели:
Тяга: 180N при 120 000 об/мин, 10N при 25 000 об/мин
Диапазон оборотов: 25 000 — 120 000 об/мин
Температура выхлопного газа: до 750 C°
Скорость истечения реактивной струи: 1658 км/ч
Расход топлива: 585мл/мин (при нагрузке), 120мл/мин (холостой ход)
Масса: 1.2кг
Диаметр: 107мм
длина: 240мм

Использование

Основной сферой применения была и остается авиационная направленность . Количество и размер разных типов ТРД для самолетов ошеломляет, но каждый из них особенный и применяется при необходимости. Даже в авиамоделях радиоуправляемых самолетов время от времени появляются новые турбореактивные системы, которые представляются на всеобщий обзор зрителям выставок и соревнований. Внимание к его использованию позволяет существенно развивать способности двигателей, дополняя принцип работы свежими идеями.
В последнее десятилетие парашютисты и спортсмены экстремального вида спорта вингсьют, интегрируют мини ТРД как источник тяги для полета с применением костюм-крыло из ткани для вингсьюта, в этом случае двигатели крепятся к ногам, или жесткого крыла , надеваемого как рюкзак на спину, к которому и крепятся двигатели.
Еще одним перспективным направлением использования являются боевые беспилотники для военных , на данный момент их активно используют в армии США.

Самым перспективным направлением использования мини ТРД — беспилотники для транспортировки товаров между городами и по миру.

Установка и подключение

Установка реактивного двигателя и его подключение к системе - процесс сложный. В единую цепь необходимо подключить топливный насос, перепускные и регулировочные клапана, бак и температурные датчики. В силу воздействия высоких температур, обычно используются соединения и топливные трубки с огнеупорным покрытием. Закрепляется все самодельными фитингами, паяльником и уплотнениями. Так как трубка может быть по размеру с головку иголки, соединение должно быть плотным и изолированным. Неправильное подключение может привести к разрушению или взрыву двигателя. Принцип соединения цепи на стендовых и летающих моделях отличается и должен выполняться согласно рабочим чертежам.

Преимущества и недостатки РД

Преимуществ у всех типов реактивных двигателей множество. Каждый из типов турбин применяется для определенных целей, которым не страшны его особенности. В авиамоделировании использование реактивного двигателя открывает двери в преодоление высоких скоростей и возможности маневрирования независимо от многих внешних раздражителей. В отличие от электро- и ДВС реактивные модели более мощные и позволяют проводить самолету в воздухе больше времени.
Выводы
Реактивные двигатели для авиамоделей могут иметь различную тягу, массу, структуру и внешний вид. Для авиамоделизма они всегда останутся незаменимы из-за высокой производительности и возможности применять турбину с использование разного топлива и принципа работы. Выбирая определенные цели, конструктор может корректировать номинальную мощность, принцип образования тяги и т. д., применяя разные виды турбин к разным моделям. Работа двигателя на сгорании топлива и нагнетании давления кислорода делает его максимально эффективным и экономичным от 0,145 кГ/л до 0,67 кГ/л, чего всегда добивались авиаконструкторы.

То сделать? Купить или сделать своими руками

Данный вопрос не простой. Так как турбореактивные двигатели, будь они полномасштабными или уменьшенными моделями, но они технически сложные устройства. Сделать из — задача не из простых. С другой стороны мини ТРД производят исключительно в США или странах Европы, поэтому и цена у них в среднем 3000 долларов, плюс минус 100 баксов. Так что покупка готового турбореактивного двигателя вам обойдется с учетом пересылки и всех сопутствующих патрубков и систем 3500 долларов. Цену мощете сами посмотреть, достаточно загуглить «турбореактивный двигатель Р180-RX»

Поэтому в современных реалиях лучше подойти к этому делу следующим образом — что называется сделать своими руками. Но это не совсем верная трактовка, скорее отдать работу подрядчикам. Двигатель состоит из механической и электронной части. Компоненты для электронной части движителя покупаем в Китае, механическую часть заказываем у местных токарей, но для этого необходимы чертежи или 3D модели и в принципе механическая часть у вас в кармане.

Электронная часть

Контроллер поддержания режимов двигателя можно собрать на Arduino. Для этого нужен прошитый Arduino чип, датчики — датчик оборотов и датчик температуры и исполнительные механизмы, регулируемая электроникой заслонка подачи топлива. Чип можно прошить самому, если знаете языки программирования, либо обратиться на форум для ардуинщиков за услугой.

Механическая часть

С механикой все интереснее все запчасти в теории вам могут изготовить токаря и фрезеровщики, проблема вся в том, что для этого нужно их специально искать. Не проблема найти токаря, который изготовит вал и втулку вала, а вот все остальное. Самая сложная деталь в изготовлении — это колесо центробежного компрессора. Оно изготовляется либо отливкой. либо на 5 координатном фрезерном станке. Самый простой способ заполучить крыльчатку центробежного насоса это ее купить, как зап часть для турбонагнетателя ДВС автомобиля. И уже под нее ориентировать все остальные детали.

Иногда хочется чего-то странного. Вот, недавно меня потянуло на ракетомоделизм. Так как я строю ракеты на нубовском уровне, для меня ракета состоит из двух частей – двигателя и корпуса. Да, я знаю, что все намного сложнее, но даже с таким подходом ракеты летают. Естественно, вам интересно, как делается двигатель.

Хочу предупредить, что если вы соберетесь повторить то, что написано в этой статье, то будете делать это на свой страх и риск. Я не гарантирую точность или безопасность предложенной методики.

Для корпуса двигателя я использую толстостенные ПВХ трубы диаметром 3/4 дюйма. Трубы такого диаметра относительно дешевы и широкодоступны. Лучше всего трубы режутся специальными ножницами. Я очень много намучался, пытаясь резать такие трубы электролобзиком – всегда получалось очень криво.


Трубу я размечаю так:

Все размеры в дюймах. кто не знает, размер в дюймах нужно умножить на 2.54 и получится размер в сантиметрах. Эти размеры я нашел в замечательной книге

Там есть и куча других конструкций. Верхний кусок двигателя (который пустой) я не делаю. Там должен быть вышибной заряд для парашюта, мне пока далеко до этого.

Отрезанный кусок трубы вставляется в специальную приспособу. Покажу все приспособы сразу, дабы не возникало вопросов:

Длинная палка играет роль “пестика” Ей утрамбовывается глина и топливо. Вторая деталька – это кондуктор. Он служит для того, чтобы просверлить сопло точно по центру двигателя. Вот их чертежи:


Сверло используется длинное – длинной 13см. Его как раз хватает для того, чтобы просверлить канал через все топливо.

Теперь нужно замешивать топливо. Я использую стандартную “карамельку” – сахар и селитра в соотношении 65 селитры/35сахара. Плавить карамель я не хочу – занятие это рискованное, да и не стоит это того геморроя. Я не пытаюсь вытянуть из топлива все возможное. Это ведь любительское ракетостроение. Я просто смешиваю сахарную пудру и селитру в порошках:



Забиваем порошок по разметку. Бить нужно довольно сильно.


Забивка топлива и заглушки ничем не отличается. Кажется, что по топливу стучать опасно, но карамелька трудно воспламеняется даже от спички. Естественно, базовые меры предосторожности соблюдать стоит – не склонятся над двигателем, работать в защитной маске, итп.

Последние 5мм заглушки я оставляю для термоклея. Я несколько раз пробовал сделать ракету без заглушки из термоклея, верхнюю пробку вырывало давлением. Термоклей обладает отличной адгезией к пластику и не успевает расплавится при горении двигателя.

Сверлим сопло через кондуктор:


Топливо очень плохо сверлится – сахар плавится и липнет на сверло, поэтому его приходится часто вытаскивать и счищать налипшее топливо. Проверяем сопло:


Заливаем последние 5мм трубки и ее торец термоклеем


Все, двигатель готов. Вот так выглядит двигатель на статических испытаниях. К сожалению, видео не показательно – в этом двигателе канал был просверлен на половину, и фотоаппарат не правильно записал звук. В реале “рев” двигателе очень громкий и серьёзный, а не такой игрушечный как на записи.

Бесклапанный пульсирующий двигатель – простейший в мире реактивный двигатель. Его разработки к сожалению были приостановлены с началом широкого применения турбореактивных двигателей, но он продолжает представлять интетрес для любителей, так как может быть построен в домашней мастерской. Я построил мой двигатель изучив патент Локвуда, согласно которому устройство может иметь любой размер, при соблюдении определенных пропорций. Двигатель не имеет движущихся частей, также он может работать на любом топливе, если его испарить до входа в камеру сгорания (я использовал смесь бензина и дизельного топлива в равных частях), но старт происходит на газе (это значительно проще). Конструкция проста и относительно недорога для повторения. Я не знаю, с какой частотой происходят взрывы в камере сгорания моего двигателя, но догадываюсь, что это происходит около 30-50 раз в секунду, работа устройства сопровождается очень сильным шумом. Надеюсь когда-нибудь измерить эту частоту.

Двигатель работает на пропане, который поступает в камеру сгорания через длинную металлическую трубку, на конце которой установлен распылитель, который помогает испарить жидкое топливо. Когда используется пропан, распылитель не обязателен, в моем случае газ поступает прямо через трубку внутренним диаметром 4 мм. Трубка присоединяется к камере сгорания фитингом 10мм. У меня сделаны три таких трубки – одна для пропана, две другие для дизельного топлива и керосина.

В процессе старта пропан подают в камеру сгорания, и затем достаточно всего одной искры на свече, чтобы двигатель запустился.

Согласно патенту можно построить такой двигатель любого размера. На моем чертеже изображен мой вариант устройства, которое немного отличается от предложенного в патенте конструкцией выхлопной трубы, что упрощает изготовление, однако так как я не делал замеров тяги, возможно это сказалось на эффективности. Спрямители потока обычно удваивают тягу, и я собираюсь попробовать их сделать.

Сокращения на чертеже:

  • NL – длина сопла
  • NM – диаметр сопла
  • CL – Длина камеры сгорания
  • CM – диаметр камеры сгорания
  • TL – Длина хвостовой трубы
  • TM – Диаметр хвостовой трубы

Баллоны с газом можно купить где угодно, я выбрал 11-килограмовый, с индустриальным разъемом. Я не использовал никаких редукторов, просто установил игольчатый клапан, так как расход газа довольно большой и обычный редуктор не даст нужного потока. Шанс того, что пропан в трубке и баллоне загорится, очень мал, если не опустошать баллон до конца. На картинках ниже вы можете видеть как это выглядит.

Искровая свеча вкручена в специально изготовленную на токарном станке деталь, вваренную в камеру сгорания. Свечу можно использовать любую, я поставил NGK BP6E S без дополнительного сопротивления, а боббину использовал от старого автомобиля. Также я сделал электронную схему для получения искры, которую надо получить только один раз, в момент старта двигателя.

Корпус трубы сварен из трехмиллиметровой нержавейки марки 316L. Я не знал как расчитать толщину, и просто взял лист потолще, с запасом. Двигатель запускался очень много раз, и никаких проблем обнаружено не было.

Запись создана в Среда, 23 января 2008 г. в 17:11. Рубрика: Новости. Вы можете подписаться на комментарии к этой записи . Все пинги запрещены.

Вы знали, что если в согнутую дугой трубу положить сухого спирта, подуть воздухом из компрессора и подать газ из баллона, то она взбесится, будет орать громче взлетающего истребителя и краснеть от злости? Это образное, но весьма близкое к истине описание работы бесклапанного пульсирующего воздушно-реактивного двигателя — настоящего реактивного двигателя, построить который под силу каждому.

Принципиальная схема Бесклапанный ПуВРД не содержит ни одной подвижной детали. Клапаном ему служит фронт химических превращений, образующийся при сгорании топлива.


Механический клапан помогает двигателю работать более эффективно.


Чтобы работать было приятно и безопасно, мы предварительно очищаем листовой металл от пыли и ржавчины с помощью шлифовальной машинки. Края листов и деталей, как правило, очень острые и изобилуют заусенцами, поэтому работать с металлом надо только в перчатках.


Прежде чем отправляться в мастерскую, мы начертили на бумаге и вырезали шаблоны разверток деталей в натуральную величину. Осталось лишь обвести их перманентным маркером, чтобы получить разметку для вырезания.


При работе с электрическими ножницами главный враг — вибрации. Поэтому заготовку нужно надежно фиксировать с помощью струбцины. При необходимости можно очень аккуратно погасить вибрации рукой.


Трубы фиксированного диаметра легко формуются вокруг трубы. В основном это делается руками за счет эффекта рычага, а края заготовки закругляются с помощью киянки. Края лучше формовать так, чтобы при состыковке они образовывали плоскость — так легче положить сварной шов.


Сварка тонкого листового металла — тончайшая работа, особенно если вы используете ручную дуговую сварку, как мы. Возможно, для данной задачи лучше подойдет сварка неплавящимся вольфрамовым электродом в аргонной среде, но оборудование для нее редкое и требует специфических навыков.


Сгибание конических секций — это исключительно ручной труд. Залог успеха — обжимать узкий конец конуса вокруг трубы малого диаметра, давая на него больше нагрузки, чем на широкую часть.

Бесклапанный ПуВРД — удивительная конструкция. В ней нет движущихся частей, компрессора, турбины, клапанов. Простейший ПуВРД может обойтись даже без системы зажигания. Этот двигатель способен работать практически на чем угодно: замените баллон с пропаном канистрой с бензином — и он продолжит пульсировать и создавать тягу.

К сожалению, ПуВРД оказались несостоятельными в авиации, но в последнее время их всерьез рассматривают как источник тепла при производстве биотоплива. И в этом случае двигатель работает на графитовой пыли, то есть на твердом топливе. Наконец, элементарный принцип работы пульсирующего двигателя делает его относительно безразличным к точности изготовления. Поэтому изготовление ПуВРД стало излюбленным занятием для людей, неравнодушных к техническим хобби, в том числе авиамоделистов и начинающих сварщиков.

Несмотря на всю простоту, ПуВРД — это все-таки реактивный двигатель. Собрать его в домашней мастерской весьма непросто, и в этом процессе немало нюансов и подводных камней. Поэтому мы решили сделать наш мастер-класс многосерийным: в этой статье мы поговорим о принципах работы ПуВРД и расскажем, как изготовить корпус двигателя. Материал в следующем номере будет посвящен системе зажигания и процедуре запуска. Наконец, в одном из последующих номеров мы обязательно установим наш мотор на самодвижущееся шасси, чтобы продемонстрировать, что он действительно способен создавать серьезную тягу.

От русской идеи до немецкой ракеты

Собирать пульсирующий реактивный двигатель особенно приятно, зная, что впервые принцип действия ПуВРД запатентовал российский изобретатель Николай Телешов еще в 1864 году. Авторство первого действующего двигателя также приписывается россиянину — Владимиру Караводину. Высшей точкой развития ПуВРД по праву считается знаменитая крылатая ракета «Фау-1», состоявшая на вооружении армии Германии во время Второй мировой войны.

Конечно же, речь идет о клапанных пульсирующих двигателях, принцип действия которых понятен из рисунка. Клапан на входе в камеру сгорания беспрепятственно пропускает в нее воздух. В камеру подается топливо, образуется горючая смесь. Когда свеча зажигания поджигает смесь, избыточное давление в камере сгорания закрывает клапан. Расширяющиеся газы направляются в сопло, создавая реактивную тягу. Движение продуктов сгорания создает в камере технический вакуум, благодаря которому клапан открывается, и в камеру всасывается воздух.

В отличие от турбореактивного двигателя, в ПуВРД смесь горит не непрерывно, а в импульсном режиме. Именно этим объясняется характерный низкочастотный шум пульсирующих моторов, который делает их неприменимыми в гражданской авиации. С точки зрения экономичности ПуВРД также проигрывают ТРД: несмотря на впечатляющее отношение тяги к массе (ведь у ПуВРД минимум деталей), степень сжатия в них достигает от силы 1,2:1, поэтому топливо сгорает неэффективно.

Зато ПуВРД бесценны как хобби: ведь они могут обходиться вообще без клапанов. Принципиально конструкция такого двигателя представляет собой камеру сгорания с подсоединенными к ней входной и выходной трубами. Входная труба гораздо короче выходной. Клапаном в таком двигателе служит не что иное, как фронт химических превращений.

Горючая смесь в ПуВРД сгорает с дозвуковой скоростью. Такое горение называется дефлаграцией (в отличие от сверхзвукового — детонации). При воспламенении смеси горючие газы вырываются из обеих труб. Именно поэтому и входная, и выходная трубы направлены в одну сторону и сообща участвуют в создании реактивной тяги. Но за счет разницы длин в тот момент, когда давление во входной трубе падает, по выходной еще движутся выхлопные газы. Они создают разрежение в камере сгорания, и через входную трубу в нее затягивается воздух. Часть газов из выходной трубы также направляется в камеру сгорания под действием разрежения. Они сжимают новую порцию горючей смеси и поджигают ее.

Бесклапанный пульсирующий двигатель неприхотлив и стабилен. Для поддержания работы ему не требуется система зажигания. За счет разрежения он всасывает атмосферный воздух, не требуя дополнительного наддува. Если строить мотор на жидком топливе (мы для простоты предпочли газ пропан), то входная труба исправно выполняет функции карбюратора, распыляя в камеру сгорания смесь бензина и воздуха. Единственный момент, когда необходима система зажигания и принудительный наддув, — это запуск.

Китайский дизайн, российская сборка

Существует несколько распространенных конструкций пульсирующих реактивных двигателей. Кроме классической «U-образной трубы», весьма сложной в изготовлении, часто встречается «китайский двигатель» с конической камерой сгорания, к которой под углом приваривается небольшая входная труба, и «русский двигатель», по конструкции напоминающий автомобильный глушитель.

Прежде чем экспериментировать с собственными конструкциями ПуВРД, настоятельно рекомендуется построить двигатель по готовым чертежам: ведь сечения и объемы камеры сгорания, входной и выходной труб всецело определяют частоту резонансных пульсаций. Если не соблюдать пропорции, двигатель может не запуститься. Разнообразные чертежи ПуВРД доступны в интернете. Мы выбрали модель под названием «Гигантский китайский двигатель», размеры которой приводим во врезке.

Любительские ПуВРД делаются из листового металла. Применять в строительстве готовые трубы допустимо, но не рекомендуется по нескольким причинам. Во‑первых, практически невозможно подобрать трубы точно требуемого диаметра. Тем более сложно найти необходимые конические секции.

Во‑вторых, трубы, как правило, имеют толстые стенки и соответствующий вес. Для двигателя, который должен обладать хорошим соотношением тяги к массе, это неприемлемо. Наконец, во время работы двигатель раскаляется докрасна. Если применять в конструкции трубы и фитинги из разных металлов с разным коэффициентом расширения, мотор проживет недолго.

Итак, мы выбрали путь, который выбирает большинство любителей ПуВРД, — изготовить корпус из листового металла. И тут же встали перед дилеммой: обратиться к профессионалам со специальным оборудованием (станки для водно-абразивной резки с ЧПУ, вальцы для проката труб, специальная сварка) или, вооружившись простейшими инструментами и самым распространенным сварочным аппаратом, пройти нелегкий путь начинающего двигателестроителя от начала до конца. Мы предпочли второй вариант.

Снова в школу

Первое, что необходимо сделать, — начертить развертки будущих деталей. Для этого необходимо вспомнить школьную геометрию и совсем немного вузовского черчения. Сделать развертки цилиндрических труб проще простого — это прямоугольники, одна сторона которых равна длине трубы, а вторая — диаметру, умноженному на «пи». Рассчитать развертку усеченного конуса или усеченного цилиндра — чуть более сложная задача, для решения которой нам пришлось заглянуть в учебник черчения.

Выбор металла — весьма деликатный вопрос. С точки зрения термостойкости для наших целей лучше всего подходит нержавейка, но для первого раза лучше использовать черную низкоуглеродистую сталь: ее проще формовать и варить. Минимальная толщина листа, способного выдержать температуру сгорания топлива, — 0,6 мм. Чем тоньше сталь, тем легче ее формовать и труднее варить. Мы выбрали лист толщиной 1 мм и, похоже, не прогадали.

Даже если ваш сварочный аппарат может работать в режиме плазменной резки, не используйте его для вырезания разверток: края обработанных таким образом деталей плохо свариваются. Ручные ножницы по металлу — тоже не лучший выбор, так как они загибают края заготовок. Идеальный инструмент — электрические ножницы, которые режут миллиметровый лист как по маслу.

Для сгибания листа в трубу есть специальный инструмент — вальцы, или листогиб. Он относится к профессиональному производственному оборудованию и поэтому вряд ли найдется у вас в гараже. Согнуть достойную трубу помогут тиски.

Процесс сварки миллиметрового металла полноразмерным сварочным аппаратом требует определенного опыта. Чуть передержав электрод на одном месте, легко прожечь в заготовке дыру. При сварке в шов могут попасть пузырьки воздуха, которые затем дадут течь. Поэтому имеет смысл шлифовать шов болгаркой до минимальной толщины, чтобы пузырьки не оставались внутри шва, а становились видимыми.

В следующих сериях

К сожалению, в рамках одной статьи невозможно описать все нюансы работы. Принято считать, что эти работы требуют профессиональной квалификации, однако при должном усердии все они доступны любителю. Нам, журналистам, самим было интересно освоить новые для себя рабочие специальности, и для этого мы читали учебники, советовались с профессионалами и совершали ошибки.

Корпус, который мы сварили, нам понравился. На него приятно смотреть, его приятно держать в руках. Так что искренне советуем и вам взяться за такое дело. В следующем номере журнала мы расскажем, как изготовить систему зажигания и запустить бесклапанный пульсирующий воздушно-реактивный двигатель.

Для начала думаю будет разумно изготовить маленький самодельный двигатель,принаровиться так сказать.Раз делал ракеты под МРД может оправка осталась для корпуса,под такой калибр и сделай.Возьми гильзу охотничью 12 калибра -это корпус движка,без капсуля-это сопло.Топливо приготовь так.Найди калийную селитру,где незнаю,аммиачная и натриевая не пойдет.Дух пишет что у них на Урале просто в магазинах свободно продаеться.Я брал в цеху где стекло варили.Ну и обычный сахар.ПО ОТДЕЛЬНОСТИ измельчи в электрической кофемолке и смешай в соотношении 60% селитры и 40% сахара.Самодельные весы сделай из крышек,ниток и палки.Гири-медные советские монеты(1,2,5коп.)соотв.граммам.На двигатель идет где то 10 грамм.Перемешать компоненты путем пересыпания из стороны в сторону на листе бумаги.Так.Теперь надо нагреть это хозяйство где то до 150 градусов.В принципе ТАКИЕ КОЛИЧЕСТВА мы грели просто на электрической плитке,но нужна снаровка.При перегреве (не надо иметь иллюзий) вспышка горячей и размазанной по посудине смеси очень активная.ТАКИЕ ВЕЩИ КАК НЕ НАКЛОНЯТЬСЯ НАД СМЕСЬЮ И РАБОТАТЬ НА ПОЧТИ ВЫТЯНУТЫХ РУКАХ ДОЛЖНЫ БЫТЬ ИНСТИНКТОМ.Тогда в случае чего просто руку обожгешь-больно,но поучительно(почитай космос-счастливое детство)Да греть можно в маленькой консервной банке,приделав к ней ручку,лучше сковородка из детского кухонного набора.Я сегодня попробовал расплавить сахар на перевернутом утюге-плавиться.В принципе почти уверен что температура даваемая утюгом меньше температуры вспышки смеси.Проверь свой утюг-положи на него спичку,подожди минут 15,не вспыхнет О.К.В сопло двигателя надо вставить палочку на конус-используй деревянную детскую кисточку,обрезав ее так,чтобы после того как она плотно встанет в сопле,она выходила на примерно 2 см внутрь,и натри ее парафином.Итак,греешь значит смесь,сначала начнет по краям становиться прозрачным,вообщем полученную стеклообразную массу надо затолкать в гильзу деревянной палочкой,это подробно не объяснишь,надо самому пробовать.И утрамбовать,быстро гадость остывает.В итоге в гильзе будет заряд с каналом где то до половины.Рекомендую все это проделать с смесью в тех же пропорциях,но вместо селитры взять соль поваренную(мысль Варбана-просто пять!),потом разорвать гильзу и посмотреть как выглядит заряд.Много ли рытвин и неоднородностей.Оставшуюся часть гильзы забей бумагой плотно.Все -готово,воспломенение путем ввода в сопло нихромовой проволки на проводах,как и в МРД.Удачи!
Лишь после освоения изготовления таких двигателей успешно,мы можем говорить о несколько больших зарядах,а то трудно говорить о том что человек не пробовал,считающим что смесь можно залить в двигатель(через воронку).Ваши травмы будут на моей совести.